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Abstract. The following document explains some details of the paper
Large-Scale Gaussian Process Classification with Flexible Adaptive His-
togram Kernels and gives additional background information for the last
experiment performed. The information given in this document is not
necessary to understand the paper.

S1 Details on Learning with Imbalanced Datasets

As shown by [1, p. 144], learning binary tasks with Gaussian process regression
and classification can be related to the following optimization problem:

minimize
f∈Rn

−
n∑
i=1

log p(yi | fi) +
1

2
fTK−1f . (S1)

The vector f ∈ Rn contains all values of the latent function f on the training
data, i.e., f = Kα. For Gaussian process regression with a Gaussian noise model,
as used in our paper (Eq. (1)), the optimization problem turns into:

minimize
f∈Rn

1

2σ2
||y − f ||2 +

1

2
fTK−1f . (S2)

The objective function can now be split into the quadratic error term and the reg-
ularization term. The noise variance controls the trade-off between those terms
similar to the standard C parameter of SVM classifiers. Let us have a closer look
on the error term in (S2):

1

2σ2
||y − f ||2 =

n∑
i=1

(
1

2σ2

)
(yi − fi)2

. (S3)

As can be seen, each term is weighted equally with w =
(
2σ2
)−1

. For imbalanced
training data with a large set of negatives but only a few positive examples, the
optimization is biased towards the negative ones. This is also a common prob-
lem for SVM learning and the solution is to choose two different regularization
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parameters for each of the classes [2]. We choose the noise levels σ2
pos and σ2

neg

for the npos positive and nneg negative examples, respectively. If we require the
sum of weights of the two classes to be equal:

1

2σ2
pos

npos =
1

2σ2
neg

nneg (S4)

and to sum up to the original weight sum of the optimization problem (S2):

1

2σ2
pos

npos +
1

2σ2
neg

nneg =
1

2σ2
n , (S5)

we directly arrive at σ2
neg = 2σ2

(nneg
n

)
and σ2

pos = 2σ2
(npos

n

)
. This is similar

in spirit to the adaptations of [3] for least-squares support vector machines to
handle imbalanced datasets.

S2 Feature Relevance Experiment

For the synthetic experiments in Sect. 6.5, we used the same distributions as
already done in [4]. The specific distributions with 500 samples per dimension
and class are displayed in Fig. 1.

Fig. 1. Random distributions used in the synthetic feature relevance experiments (see
Sect. 6.5). Top row : class 1, bottom row : class 2

S3 Details on the Log-Determinant Upper Bound

In our paper, we used the upper bound of the log-determinant of a positive
definite matrix D as derived by Bai and Golub [5]:

log det(D) ≤
[
log β, log t

] [ β t

β2 t
2

]−1 [
µ1

µ2

]
·
= ub(β, µ1, µ2) (S6)

with t̄ =
βµ1 − µ2

βn− µ1
. (S7)
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The bound itself depends on the maximum eigenvalue β, the trace µ1, and
the squared Frobenius norm µ2 of the matrix D. The only term that is not
efficiently computable for HIK matrices is the Frobenius norm. Therefore, we
propose in the paper to use a lower bound based on the sum of the M largest
eigenvalues. In the following, we will prove that we obtain a valid upper bound
of the log-determinant with the bound of [5] even when using a lower bound
of the Frobenius norm. Our proofs are completely algebraic and do not require
knowledge of the Gaussian quadrature techniques used in [5]. First of all, we
show the validity of the modified upper bound for β = 1.

Lemma 1 (Monotonicity for β = 1). Let µ̃2 with 0 < µ̃2 ≤ µ2 be a lower
bound of the squared Frobenius norm of a regular positive definite matrix D, e.g.,
µ̃2 =

∑M
i=1 λ

2
i with M < n. Then the following holds for every positive definite

matrix D with µ1 = trace(D) and β = λ1(D) = 1:

ub(1, µ1, µ̃2) ≥ ub(1, µ1, µ2) . (S8)

Proof. First note that due to the conditions of the Lemma the following holds:
1 ≤ µ2 < µ1 ≤ n and t̄ > 0. Furthermore, the bound is only valid for β 6= t̄,
because otherwise the 2 × 2 matrix within the bound would be singular. We
start by deriving the coefficients for µ1 and µ2. The first part of Eq. (S6) can be
written as:

[
log β, log t̄

] [ β t

β2 t
2

]−1

=
[
log β, log t̄

]( 1

βt̄2 − t̄β2

[
t̄2 −t̄
−β2 β

])
=

1

βt̄2 − t̄β2

[
t̄2 log β − β2 log t̄ , β log t̄− t̄ log β

]
=

1

t̄− β

[
log β

β
t̄− log t̄

t̄
β ,

log t̄

t̄
− log β

β

]
. (S9)

Therefore, we get the following short form of Eq. (S6) with β = 1 :

ub(1, µ1, µ2) =
log t̄

t̄ (t̄− 1)
(µ2 − µ1)

definition of t̄ = log

(
µ1 − µ2

n− µ1

)(
µ1 − µ2

n− µ1

(
µ1 − µ2

n− µ1
− 1

))−1

· (µ2 − µ1)

simplify = log

(
µ1 − µ2

n− µ1

)
(n− µ1)2(µ2 − µ1)

(µ1 − µ2)(µ1 − µ2 − n+ µ1)

cancel µ1 − µ2 = log

(
µ1 − µ2

n− µ1

)
(n− µ1)2

n− 2µ1 + µ2
. (S10)

Let µ̃2 with 0 < µ̃2 ≤ µ2 be a lower bound of the squared Frobenius norm. If
we replace µ2 with µ̃2 in Eq. (S10), we notice that the log-term increases and the
denominator of the second part decreases. This directly leads us to the validity
of the Lemma. ut
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The next Lemma shows that scaling the matrix D with γ > 0 leads to
an additive constant in the bound, which is independent of µ1 and µ2. This
constant is equivalent to the one occurring in log det (γD) = log det (D)+n log γ,
therefore, the quality of the bound is invariant with respect to γ. Note that the
squared Frobenius norm scales with γ2 and t̄ with γ.

Lemma 2 (Multiplicative scaling). For all suitable parameters β, µ1, and µ2

of a positive definite matrix and every positive factor γ > 0, the following holds:

ub(γβ, γµ1, γ
2µ2) = ub(β, µ1, µ2) + n · log γ . (S11)

Proof.

ub(γβ, γµ1, γ
2µ2) =

[
log γβ, log γt̄

]
·
([
γ 0
0 γ2

][
β t̄

β2 t
2

])−1 [
γ 0
0 γ2

][
µ1

µ2

]
=
([

log β, log t̄
]

+
[
log γ, log γ

])
·
[
β t̄
β2 t̄2

]−1 [
µ1

µ2

]
definition of ub = ub(β, µ1, µ2)+

[
log γ, log γ

]
·
[
β t̄
β2 t̄2

]−1 [
µ1

µ2

]
︸ ︷︷ ︸

·
=

= ub(β, µ1, µ2) + ũbγ(β, µ1, µ2) .

Now, we show that the second term equals to n · log γ by using the definition of
t̄ and the calculation of the weights for µ1 and µ2 as done in the beginning of
the proof of Lemma 1:

ũbγ(β, µ1, µ2) = (log γ)
[
1, 1
]
·
[
β t̄
β2 t̄2

]−1 [
µ1

µ2

]
cf. proof of L1 =

log γ

t̄− β

[
t̄

β
− β

t̄
,

1

t̄
− 1

β

] [
µ1

µ2

]
=

log γ

(t̄− β) t̄β

[
t̄2 − β2, β − t̄

] [µ1

µ2

]
=

log γ

t̄β

[
t̄+ β, −1

] [µ1

µ2

]
=

log γ

t̄β
((t̄+ β)µ1 − µ2)

definition of t̄ = (log γ)
βn− µ1

β2µ1 − βµ2

((
βµ1 − µ2 + β2n− βµ1

βn− µ1

)
µ1 − µ2

)
= (log γ)

−µ1µ2 + β2nµ1 − βnµ2 + µ1µ2

β2µ1 − βµ2

= (log γ)
β2nµ1 − βnµ2

β2µ1 − βµ2

= n · log γ . ut
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Theorem 1 (Upper bound with µ̃2). For a given positive definite matrix
D ∈ Rn×n with trace µ1 and squared Frobenius norm µ2 the following holds:

log det(D) ≤ ub(β, µ1, µ2) ≤ ub(β, µ1, µ̃2) , (S12)

if µ̃2 is a lower bound of µ2.

Proof. The first part of the inequality was proved by Bai and Golub [5] and the
proof for the second part is straightforward by applying Lemma 2 with γ = 1

β
followed by using Lemma 1:

ub(β, µ1, µ2) = ub

(
1,
µ1

β
,
µ2

β2

)
− n · log

(
1

β

)
Lemma 2

≤ ub

(
1,
µ1

β
,
µ̃2

β2

)
− n · log

(
1

β

)
Lemma 1

= ub(β, µ1, µ̃2) . Lemma 2

ut

The upper bound of Bai and Golub [5] is also plotted in Fig. 2 for various
values of µ2, µ1, and β. It can be seen that the value of the bound ub(β, µ1, µ2)
is monotonically decreasing with respect to µ2. Therefore, using a lower bound
of µ2 leads to an upper bound of ub(β, µ1, µ2).
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Fig. 2. Illustration of the fact that the upper bound of [5] is still an upper bound
when using a lower bound of the squared Frobenius norm. The bound ub(β, µ1, µ2) is
plotted in the valid range β ≤ µ2 ≤ min{(µ1 − β)2 + β2, βµ1} for β = {0.5, 1.0, 5.0}
and n = 50. It can be seen that ub is monotonically decreasing in µ2.


