
Simplified Concrete Dropout - Improving the
Generation of Attribution Masks for

Fine-grained Classification

- Supplementary material -

Dimitri Korsch1[0000−0001−7187−1151], Maha Shadaydeh1[0000−0001−6455−2400],
and Joachim Denzler1[0000−0002−3193−3300]

Computer Vision Group, Friedrich Schiller University Jena, Jena, Germany
{dimitri.korsch,maha.shadaydeh,joachim.denzler}@uni-jena.de

https://inf-cv.uni-jena.de

Abstract. This document contains supplementary material for the pa-
per Simplified Concrete Dropout - Improving the Generation of Attribu-
tion Masks for Fine-grained Classification. In Sect. S1, we show a Python
snippet of our implementation of the Concrete Dropout layer using the
PyTorch [2] framework. In Sect. S2, we provide the results of an addi-
tional experiment about the improved gradient stability of our proposed
implementation.

S1 Implementation

In the following, we report the Python code for our improved implementation us-
ing the PyTorch [2] framework. Contrary to the original implementation, the in-
puts of our presented function are directly the logits of the dropout probabilities.
Mathematically, our implementation and the implementation of Gal et al. [1]1

are identically, but our implementation improves the stability of the estimated
gradients, as we show in Sect. S2.

The implementation presented below is part of our FIDO implementation
that can be found on GitHub: https://github.com/cvjena/fido-pytorch.

1 https://github.com/yaringal/ConcreteDropout

https://inf-cv.uni-jena.de
https://github.com/cvjena/fido-pytorch
https://github.com/yaringal/ConcreteDropout

2 D. Korsch et al.

import numpy as np

import torch as th

def concrete_dropout(logit_p , temp: float = 0.1, u = None):

return ConcreteDropout.apply(logit_p , temp , u)

class ConcreteDropout(th.autograd.Function):

@staticmethod

def forward(ctx , logit_p , temp: float = 0.1, u = None):

"""

our proposed simplification

"""

eps = 1e-7 # small constant for stability

temp = th.scalar_tensor(temp)

if u is None:

u = th.zeros_like(logit_p).uniform_ ()

noise = ((u + eps) / (1 - u + eps)).log()

see Eq. (8) in the paper

logit_p_temp = (logit_p + noise) / temp

res = logit_p_temp.sigmoid ()

ctx.save_for_backward(res , logit_p_temp , temp)

return res

@staticmethod

def backward(ctx , grad_output):

"""

Gradient of the output w.r.t logit_p is

1/temp * sigmoid(logit_p_temp)^2 * e^(- logit_p_temp)

which is equivalent to

1/temp * output^2 * e^(- logit_p_temp)

"""

res , logit_p_temp , temp = ctx.saved_tensors

grad = th.zeros_like(res)

we need this masking trick for stability reasons

mask = res != 0

g0 = res[mask] **2

g1 = (-logit_p_temp[mask]).exp()

grad[mask] = g0 * g1 / temp

return grad * grad_output , None , None

Simplified Concrete Dropout - Improving Attribution Masks for FGVC 3

(a) L2-norms of the gradients during the optimization process.

(b) Standard deviation of the L2-norms for 30 runs.

Fig. 1: We visualized the L2-norms of the gradients during the optimization
process. Using 30 randomly initialized inputs, we observed the gradients during
the optimization process (a) and the standard deviation across these runs (b).
Except for one outlier, our improved implementation results in a lower variation
of the gradients, as we stated in out paper.

S2 Gradient Stability

In an additional experiment, we estimated the gradient stability of both imple-
mentations: the original implementation as it is proposed by Gal et al. [1] and
our improved implementation presented in this paper. First, we generated one
random input and estimated the dropout masks using both approaches. During
the optimization process, we observed the L2-norm of the gradients w.r.t. the
dropout probabilities. We repeated this setup 30 times for 100 iterations each
time. In Figure 1a, we visualized the observed L2-norms of the gradients for each
run. As one can see, the variance of the gradients is much higher if the original
implementation is used. Our implementation, on the other hand, produces gra-
dients with a much lower variance, as shown in Figure 1b. With this empirical
evaluation, we argue that using our implementation results in gradient estimates
with a lower variance, as we stated in our paper.

References

1. Gal, Y., Hron, J., Kendall, A.: Concrete dropout. Advances in neural information
processing systems 30 (2017)

2. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

	Simplified Concrete Dropout - Improving the Generation of Attribution Masks for Fine-grained Classification

