Occlusion-Robustness of Convolutional Neural
Networks via Inverted Cutout - Supplementary
Material

Matthias Korschens
Computer Vision Group
Friedrich Schiller University Jena
07737 Jena, Germany
Email: matthias.koerschens @uni-jena.de

S-I. INTRODUCTION

In this supplementary document we provide several example
images of both datasets used to provide a better insight
into the different occlusion levels and kinds of occlusion
used. Moreover, we also present the numerical results of our
experiments again with the addition of the respective standard
deviations to give a better indication of the significance of our
results.

S-II. DATASET EXAMPLES

As mentioned in the main paper, the Occluded-Vehicles
dataset, which is based on the Pascal3D+ dataset, has not only
four different occlusion levels, but also four different kinds
of occlusion, examples of which can be found in
The boxes for white box occlusion, texture occlusion and
noise occlusion are placed on random locations, however they
are consistent over the three mentioned kinds of occlusion.
The fourth kind is occlusion by segmented objects whose
classes are not contained in the classes to categorize. We
can see that, in contrast to the three other occlusion types,
the object occlusion comprises objects in strongly differing
shapes instead of rectangles. This resembles realistic occlusion
scenarios in the wild more closely and gives an indication of
the performance of the method in real applications.

In we can see several real occlusion scenarios
from the images of the Occluded-COCO-Vehicles dataset.
While at level LO the object is completely visible, with rising
occlusion levels the view is being blocked by poles, humans or
even bigger objects to the point at which the object in question
is only barely visible anymore.

S-I1I. EXPERIMENTAL RESULTS WITH STANDARD
DEVIATION

To provide an indication of the significance of our results,
we provide the experimental results from the main paper with
inclusion of the standard deviation for each value in [Table S-|
[ and On the Occluded-Vehicles dataset, we note
that for the experimental setups using Agap and Apc with
BCE and IC in, respectively, 10 and 11 of the 14 different
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occlusion setups, the state-of-the-art results of CompNet-Multi
lie outside the 20 range our results. In general, we can
also see that, regarding the mean over all occlusion setups,
the results of CompNet-Multi consistently lie outside the 20
range of our top results on both datasets. This suggests a
significant improvement of our methods over CompNet-Multi
of Kortylewski et al.[1]].

S-IV. ABLATION STUDY WITH CUTOUT

To show that, while our Inverted Cutout method is similar to
Cutout, it nevertheless yields significantly different results, in
this part we present an ablation study with the standard Cutout
augmentation [5] in the different setups. All hyperparameters
used here are the same as in the main paper and the sampled
cutouts also have sizes ranging from 16 x 16 pixels to 128 x 128
pixels. The results of the experiments on the Occluded-Images
dataset are shown in [Table S-III| and the respective results for
the Occluded-COCO-Vehicles dataset are shown in
We can also see here that, the results with Binary Cross En-
tropy loss are better than the typical classification Categorical
Cross Entropy loss. However, in comparison with the results
from our method in [Table S-I] and [Table S-II} using the Cutout
augmentation yields significantly worse results than Inverted
Cutout. This is especially notable in the higher occlusion levels
can be up to around 15% on both datasets when comparing
the same base setup, showing a significant advantage of our
method. As mentioned in the main paper, this difference is
likely caused by the correlations of object parts learned when
using Cutout. While the latter only removes a comparably
small part from the image, it leaves most of the image intact,
resulting in the network learning from co-occurring objects
parts. This makes the network unable to identify the object
correctly when several of the usually co-occurring object parts
are missing due to occlusion. In contrast, with Inverted Cutout
the network learns to identify the object from only the small
unoccluded image patches, making the network more robust
against partial occlusion.
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Fig. S2: Example images from the Occluded-COCO-Images
dataset with several levels of occlusion.

S-V. INVERTED CUTOUT MASK SIZE ABLATION

To quantify the effect of the mask size when utilizing
Inverted Cutout, we also present an ablation study using
different mask sizes on both datasets. Similar to the previous
ablation, the hyperparameters used are the same as in the main
paper. The sizes ablated include 16 x 16, 32 x 32, 64 x 64
and 128 x 128 pixels. The results for the Occluded-Vehicles
dataset are presented in and the ones for Occluded-
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the larger cutout sizes usually outperform the smaller ones
on both datasets. However, we also note that none of the
single cutout sizes outperforms the randomly sized cutouts
used in the main paper and in [Table S5-I and [Table S-TIl While
on the Occluded-Vehicles dataset the difference in average
occlusion accuracy in comparison to the top results from the
main paper for some setups is rather small, the gaps are
bigger on the Occluded-COCO-Vehicles dataset. The reason
for this is likely that the more regular artificial occlusions in
the Occluded-Vehicles are easier to classify despite occlusion
in contrast to the much more irregular natural occlusions
contained in Occluded-COCO-Vehicles, which, hence, require
more sophisticated training to become more robust against
more complex occlusions.

In summary, bigger cutouts were found to be more effective,
however, the combination of different cutout sizes by randomly
sampling the size during the training still outperforms using
constant sizes.

S-VI. FEATURE EXTRACTION LAYER ABLATION

While in the main paper we used, similar to the top results
from [J], the combined features from the two last convolu-
tional blocks of VGG-16, there is also the option to use only
the output of each of these blocks without the respective other.
In this section, we will discuss this possibility. Experimental
results for this setup are shown in[Table S-VII]and [Table S-VIII|
for the trials on the Occluded-Vehicles and Occluded-COCO-
Vehicles dataset, respectively, and the hyperparameters are the
same as before.

In both tables, one can see that, when using the layers
separately, the network also performs comparably well against




TABLE S-I: The accuracies (in %) and their respective standard deviations (denoted by +) of our method in comparison with
previously introduced methods on the Pascal3D+ Occluded-Vehicles dataset. The values of methods used for comparison have
been taken from [1]. * marks the results received after fine-tuning the whole network. The occlusion types are: w - white
box occlusion, n - noise box occlusion, t - texture occlusion, o - occlusion by segmented objects. CCE and BCE denote the
Categorical (Softmax) and Binary Cross Entropy loss, respectively. Agap and Apc denote the aggregation module with global
average pooling and the one utilizing a convolutional layer, respectively.

Occ. Area ([)‘gb L1: 20-40% L2: 40-60% L3: 60-80% Mean
Occ. Type - w n t o w n t o w n t o
VGG 2] 992 | 969 | 970 | 965 | 938 | 920 | 903 | 899 | 796 | 679 | 621 | 595 | 622 | 836
CoD [3] 921 | 927 | 923 | 917 | 923 | 874 | 895 | 887 | 906 | 702 | 803 | 769 | 871 | 87.1
VGG+CoD [3] 983 | 968 | 959 | 962 | 944 | 912 | 918 | 913 | 914 | 716 | 80.7 | 773 | 872 | 895
TDAPNet [4] 993 | 984 | 986 | 985 | 974 | 961 | 975 | 966 | 916 | 821 | 881 | 827 | 798 | 92.8
ﬁ‘;ﬁf’ﬁt 993 | 986 | 986 | 988 | 979 | 984 | 984 | 978 | 946 | 917 | 907 | 867 | 884 | 954
N CCE 995 | 975 | 974 | 971 | 920 | 903 | 882 | 883 | 687 | 582 | 472 | 466 | 471 | 784
GAP +00 | +£05| 402 | +04 | £12 | 430 | 17| £19 | 41 | £74 | £43 | £39 | £45 | £20
JU— 995 | 976 | 975 | 973 | 931 | 905 | 889 | 889 | 692 | 593 | 485 | 473 | 474 | 789
GAP +01 | £05| £02 | £03 | £10 | £28 | £15| £17 | £40 | £76 | £43 | £39 | £44 | £20
At CCE 997 | 979 | 980 | 980 | 952 | 932 | 927 | 914 | 804 | 618 | 562 | 519 | 608 | 829
FC +00 | £03 | +£04 | +£04 | £04 | £12 | £11 | £09 | £1.7 | £27 | +28 | 1.8 | £28 | +£1.1
R 997 | 98.1 | 982 | 981 | 953 | 933 | 931 | 916 | 804 | 620 | 568 | 524 | 61.1 | 83.1
FC +01 | 03| 403 | +04 | £05| 410 | 12| £08 | £20 | 24 | £29 | +14 | £29 | £1.0
N BCE 985 | 937 | 927 | 926 | 849 | 832 | 804 | 790 | 599 | 493 | 434 | 412 | 418 | 724
GAP +03 | £09 | £17 | £19 | £46 | £22 | £32 | £44 | £76 | £50 | £62 | £45 | £71 | £33
A s BCE 992 | 968 | 97.1 | 970 | 945 | 900 | 91.0 | 90.6 | 832 | 629 | 646 | 614 | 684 | 84.3
GAP +03 | 09 | 08 | 09 | £06 | 1.6 | 24 | £19 | 35 | +30 | £69 | £66 | +56 | £23
A ABCE 998 | 987 | 985 | 987 | 970 | 954 | 947 | 941 | 836 | 664 | 609 | 595 | 614 | 853
FC +01 | +£01 | 401 | +02| +03| 4+03|+05| +05| 423|407 | +£19 | +13 ]| +£29| +06
A BCE* 997 | 987 | 986 | 987 | 970 | 953 | 948 | 941 | 838 | 663 | 61.1 | 593 | 61.8 | 85.3
FC +01 | £01 | £01 | +02| £04 | £02| £04 | £05| £23 | £06 | £20 | £16 | £32 | £06
A CCEsIC | 995 | 992 [ 990 | 989 [ 968 | 990 | 977 | 963 | 908 | 952 | 866 | 744 | 780 | 932
GAP +01 | +£01 | 401 | +03] +£05| 401 | +02]| +04 | +25| +03 | £18 | +27 | +54| +£09
A osCCESICs | 997 | 994 | 993 | 990 | 978 | 992 | 983 | 969 | 928 | 964 | 870 | 754 | 823 | 941
GAP +00 | £01 | 201|400 | £02 | 02| £02 | £04 | £14 | £03 | £19 | £23 | £34 | £06
A CCEAIC 995 | 995 | 992 | 993 | 979 | 992 | 982 | 975 | 937 | 968 | 878 | 789 | 851 | 948
FC +00| £00 | £01 | £01 | £01 | £01 | £01 | £02 | £05 | £04 | £19 | £16 | £07 | £03
) 996 | 99.6 | 992 | 994 | 986 | 993 | 979 | 975 | 957 | 959 | 830 | 804 | 889 | 950
Arc+CCEHIC 1 500 1 01 | 202 | 201 | £01 | 202 | £05 | 02 | +06 | £08 | £48 | £13 | £1.1 | +06
A BCEAIC | 991 | 989 [ 983 [ 983 [ 974 | 980 | 964 | 967 | 931 | 928 | 838 | 805 | 848 | 037
GAP 401 | +£01 | £01 | 4£01|+02]| £03| £03|+01 ]| £06| 06| 17| +£14 | +10 ] +03
A BCESICE | 997 | 996 | 994 | 994 | 989 | 992 | 984 | 981 | 969 | 958 | 874 | 854 | 921 | 962
GAP +01 | £01 | 01| +£01 | £01 | £01 | £02| 03| £02 | £03 | £24 | 1.1 | £10 | £02
A ABCEAIC 996 | 99.6 | 993 | 993 | 987 | 994 | 983 | 981 | 954 | 970 | 905 | 828 | 874 | 958
FC +01 | +£01 | 401|401 ] +00| +01|+01] +02| 06| +01 ]| +13|+12]+10] +03
997 | 997 | 994 | 994 | 989 | 996 | 988 | 985 | 962 | 979 | 908 | 839 | 894 | 963
Apc+BCE+ICH
+01 | £01 | £01 | +01 | +£01 | 4+01|+02]| +£02|4+03] +01 | £16|+10] £10]| £02

occlusion. We can also see that using the P5 layer outperforms
the P4 layer in most instances, which is expected due to
the more sophisticated features generated by the later net-
work layers. While the overall performance is similar to the
combined one, we can, however, see some differences. Most
notably, the accuracy of the networks with separate blocks is
often much worse when training only the last layer instead of
fine-tuning the complete network. Hence, the combination of
both produces much more valuable features that can be used
when training the complete network is not desired. When fine-
tuning the complete network, however, the performance using
the separate layers comes closer to the combined approach,
with the P5 layer even surpassing the latter in one instance.
Nevertheless, the combined approach overall outperforms the
two separate layers, which was also found in the investigations
by Kortylewski et al.in [L].

S-VII. RESNET50-BACKBONE ABLATION

While in the main paper we utilized only the VGG-16
network architecture for the comparability to previous works,
in this section we will also take a look into the application of
Inverted Cutout in conjunction with another popular backbone
architecture: ResNet50 [6]. During the training process with
the ResNets, we utilized slightly different hyperparameters,
which are shown in Hyperparameters not men-
tioned are the same as in the main paper.

The experimental results for this ablation study are shown
in and for the Occluded-Vehicles and
Occluded-COCO-Vehicles datasets, respectively.

Generally, it is visible that for ResNet50, Inverted Cutout
is also strongly beneficial, especially when utilizing the Apc
aggregation module in comparison to the setups without IC.
Moreover, we notice that, when training the model without IC,



TABLE S-II: Accuracies (in %) and their respective standard
deviations (denoted by +) of our experiments on the Occluded-
COCO-Vehicles dataset. We compare our approaches with
previously introduced methods based on classification accu-
racy. The values of methods used for comparison have been
taken from [1]. * marks the results received after fine-tuning
the network. CCE and BCE denote the Categorical (Softmax)
and Binary Cross Entropy losses, respectively. Agap and Agc
denote the aggregation module with global average pooling
and with a convolutional layer, respectively.

Train Data MS-COCO

Occ. Area L0 L1 L2 L3 Avg
VGG 1] 991 | 887 | 788 | 630 | 824
VGG [2] + Cutout | 993 | 909 | 875 | 753 | 883
TDAPNet [4] 994 | 888 | 879 | 699 | 865
CompNet-Multi [T] | 994 | 953 | 909 | 863 | 93.0
AAPHCCE 202 | 430 | 16 | 440 | +18
Acap+CCE? Lon | 4is | 412 | 440 | 417
Arc+CCE 200 | 205 | £07 | 450 | 404
Apc+CCE* 200 | 405 | 260 | 236 | 2o
Acap+BCE 260 | £ro | 485 :|:691.15.5 ey
Acar+BCE* 260 | £16 | 188 | 416 | +54
Arc-+BCE son | 405 | 07| 422 | 407
Arc+BCE* 2o | 205 | 200 | +18 | £os
T T I By Bl B B
e S Iy B v I ey By
Apc+CCEIC 201 | 208 | 208 | £30 | 410
Apc+CCE+ICH ig('fl ?(')?6 1901'?0 ﬁ4é,27 iz(ﬂ
I Il vl Bl Bl By
S N [y W v iy Ry R
arcrBeesic | 50N G P00 85 | Lo
Apc+BCE+IC* igg(fo 195(')‘,14 ﬁsﬂ i88274 i936?7

in general training only the aggregation layer often yields bet-
ter results than fine-tuning the complete network. This effect
can likely be attributed to the batch normalization layers [7]
contained in the ResNet50 architecture. Batch normalization
appears to make the network unable to deal with occlusion
if it has not seen any occlusion examples during training.
This strong detrimental effect, however, is mitigated when
using IC, where the results surpass the ones after training the
aggregation layer alone.

When comparing the results on both datasets, we also
notice that the network trained without IC performs better
on the more natural occlusions seen in the Occluded-COCO-
Vehicles dataset in contrast to the artificial occlusions from
the Pascal3D+-based Occluded-Vehicles dataset. The reason

for this is likely that in the former bigger connected object
parts are visible in contrast to more randomly spread small
object parts like in the images from the Occluded-Vehicles
dataset. Such bigger object parts might make the class easier
to identify under occlusion for the ResNet.

Nevertheless, on both datasets, the usage of Inverted Cutout
improves the results in comparison to the ones generated after
training without IC. Therefore, our novel augmentation method
is also beneficial for network architecture beyond VGG-16,
yielding results comparable with the latter.
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TABLE S-III: Cutout Ablations - The accuracies (in %) and their respective standard deviations (denoted by +) of the Cutout
ablations on the Pascal3D+ Occluded-Vehicles dataset. * marks the results received after fine-tuning the whole network. The
occlusion types are: w - white box occlusion, n - noise box occlusion, t - texture occlusion, o - occlusion by segmented
objects. CCE and BCE denote the Categorical (Softmax) and Binary Cross Entropy loss, respectively. Agap and Agc denote
the aggregation module with global average pooling and the one utilizing a convolutional layer, respectively.

Occ. Area OL,‘,’/; L1: 20-40% L2: 40-60% L3: 60-80% Mean
Occ. Type - w n t 0 w n t o w n t o
A o CCErCutont | 997 | 992 [99.1 [ 988 [958 | 985 [ 973 [ 953 [ 799 [ 872 | 755 | 65.1 | 57.0 | 883
GAP uout 4 4 01| £01 | £00| 01| +04|L£02] L0605 14| L£26] £41 |£26]£26]L05
A cosCCE+Cutont | 997 | 995 | 993 | 99.0 | 968 | 98.8 | 97.7 | 96.0 | 86.1 | 92.1 | 825 | 70.7 | 67.2 | 91.2
GAP wout™ L o1+ 00 | £01 | +01 202 +£01|+02|+04|+15[+09] £26 |+17|£15|+04
At CCE+Cutout 99.7 | 995 | 993 | 992 | 97.4 | 987 | 978 | 96.6 | 857 | 907 | 77.6 | 71.7 | 68.1 | 90.9
FC utou +00|+£01|+01|+02|+02|+£03]+£06]|+07|+21|+£10] £39 |+£24]|+£18]|+07
At CCE+Cutonr | 995 | 989 | 97.7 | 98.5 | 97.7 | 97.7 | 909 | 959 | 92.6 | 856 | 542 | 756 | 827 | 898
FC utou +00[+£01|+£10|+02|+04|x£05]£62]+04|207|L£26] L2201 £26]£19]+23
A BCE+Cutout | 992 [ 975 [ 97.1 [ 966 | 922 [ 948 [ 925 [ 905 | 766 | 734 | 663 | 59.8 | 588 | 842
GAP wout 4 4 01| £03 | £04 | +03|+15[+£09]+£07]+09|+48|+44| £32 | £33 464|416
A ot BCE+Cutouts | 997 | 992 990 | 98.9 | 98.0 | 982 | 97.0 | 964 | 915 | 882 | 79.5 | 77.6 | 80.3 | 92.6
GAP uout™ f 4 9011 02| +03|+01| 204 +£02| 403|203 £13|£18] £35[+17|+27|=+06
At BCE+Cutout 99.8 | 99.5 | 995 | 995 | 985 | 992 | 984 | 97.7 | 903 | 93.1 | 825 | 756 | 73.0 | 92.8
FC utou +00[+£01|£01|200|+02|x£01][£03]|+02|+09|L£06] £28 |£18|£15]+03
At BCE+Cutourt | 998 | 99:6 | 995 | 99.5 | 98.6 | 99.4 | 984 | 979 | 911 | 936 | 826 | 763 | 750 | 932
FC utou +01|+01]£01|+01]+£02|+£01]|+05[+£03]|+10]+08]| £37 [£21|+21]|%04

TABLE S-1V: Cutout Ablations Accuracies (in %) and their
respective standard deviations (denoted by %) of our Cutout
ablation study on the Occluded-COCO-Vehicles dataset. *
marks the results received after fine-tuning the network. CCE
and BCE denote the Categorical (Softmax) and Binary Cross
Entropy losses, respectively. Agap and Apc denote the ag-
gregation module with global average pooling and with a
convolutional layer, respectively.

Train Data MS-COCO

Occ. Area Lo L1 L2 L3 Avg
e U I B v By el e
AawerCCErcuour | 0 | B B G B
T I Iy el I vl
s | 28 | 300 | 5| 5 | S
Acap+BCE+Cutout ﬁg(fl j§7(5.97 j:Bi.ls fil f(fs
o | 2| 5 | 2|5
e | 2, | 20| 365 | 50| S
ArcBCEscuowr | 00 | 2l | TS |




TABLE S-V: Inverted Cutout Mask Size Ablation The accuracies (in %) and their respective standard deviations (denoted
by =£) of the cutout size ablation study of our Inverted Cutout method. * marks the results received after fine-tuning the whole
network. The occlusion types are: w - white box occlusion, n - noise box occlusion, t - texture occlusion, o - occlusion by
segmented objects. CCE and BCE denote the Categorical (Softmax) and Binary Cross Entropy loss, respectively. Agap and
Apc denote the aggregation module with global average pooling and the one utilizing a convolutional layer, respectively.

Oce. Area ﬁg{; L1: 20-40% L2: 40-60% L3: 60-80% Mean
Occ. Type - w n t o \ n t o \ n t o
A ot CCESIC 564 | 55.1 | 534 | 53.8 526 | 527 | 517 51.6 498 | 464 | 457 437 | 480 | 508
GAP +41|£31 |31 £29 | £21 | +£30| £21 | £1.8 | £23 |£22| £30 | +£21 |+41|+14
Aot CCEAICH 62.6 | 589 | 59.8 | 598 480 | 545 | 546 54.8 415 | 49.1 | 412 423 | 350 | 509
GAP +72|+£80|+56| £63 | £64 | £82| +62 | +48 | £63 | £79|+108| £23 | +62|+57
At CCEAIC 485 | 509 | 482 | 484 473 | 521 | 484 48.4 472 | 558 | 471 469 | 47.1 | 489
FC +12|4+20|+£10| £1.1 | £03 | £23| £10 | £09 | £02 | £28| £06 | £07 |+01|+1.1
At CCEsIC: 2 | 897 | 883 | 770 | 855 80.5 86.6 | 569 80.8 766 | 808 | 126 660 | 722 | 73.3
FC S|l £13|+£09|+£24| £15 | £21 |11 £38 | £1.6 | £23 | £08| £38 | £2.1 | +25[+1.1
A cotBCEAIC 7| 494 | 508 | 494 | 472 420 | 493 | 48.1 442 378 | 417 | 422 349 | 356 | 44.1
GAP Slx99|£91[£82|£112[+119|+£73| £83 |[£11.1[£106[+63| £9.1 | £107|£99|£9.1
AcotBCE4IC: = | 094 | 098 | 653 | 68.1 619 | 683 | 554 63.3 58.1 60.7 | 323 453 | 520 | 59.2
GAP Sl+10|+27|+40] £15 | £34 [£37[+109] £12 | £41 |+65]|+153| £38 | +£60 |+ 1.8
A4 BCEAIC 552 | 59.0 | 545 | 546 504 | 613 | 54.7 54.3 496 | 652 | 541 51.6 | 492 | 54.9
FC +30|+£30|+27| £26 | £15 | +28| £20 | £19 | +1.1 |+£26| £17 | £15 [+12]|+21
At BCEAICH 737 | 755 | 704 | 716 675 | 756 | 613 68.6 644 | 735 | 546 595 | 62.8 | 68.1
FC +46|+42|+40| £44 | £52 | £40| £37 | £39 | £49 | £35| £1.7 | £28 | +45|+38
A aot CCBAIC 77.0 | 80.0 | 742 | 739 694 | 803 | 735 69.8 623 | 775 | 669 562 | 53.1 | 70.3
GAP +23|+21|+16| £19 | +24 | +£19| £1.8 | £18 | £24 | +22| +£1.1 | £ 1.1 | +£32|+14
Aot CCEAICH 909 | 929 | 887 | 894 81.8 | 93.1 86.5 85.0 738 | 902 | 758 679 | 635 | 83.1
GAP +10|+07|+11| £1.1 | £16 |£09| £14 | £13 | £21 |+08| £24 | £18 |+25|+ 1.1
At CCEAIC 883 | 884 | 84.0 | 845 823 | 877 | 820 80.4 789 | 851 | 736 69.1 | 748 | 815
FC +13|+09|+1.1| +£09 | £10 |+12| 12| £09 | £09 |+06| £1.1 | £12 | +15|+09
AnetCCEaIC: 2| 979 | 979 | 964 | 97.2 952 | 97.1 | 916 94.0 91.8 | 940 | 59.0 787 | 85.6 | 90.5
FC S|+01]|x01|£02| £01 | £04 |£02| £27 | £03 | £03 [£05|+128| 1.0 |[£1.1 |14
Aot BCEHC ~| 754 | 777 | 723 | 743 726 | 786 | 71.3 72.8 70.1 744 | 654 639 | 645 | 71.8
GAP N|£33[£30|£22| £24 | £1.7 |£34| £15 | £16 | £33 [£63| £1.6 | £22 | £46|+27
Aot BCEsICs @3 | 964 | 963 | 955 | 9538 93.1 959 | 924 93.6 9203 | 917 | 679 804 | 85.1 | 903
GAP “l1+06|+06]+08] £06 | £08 |+07| £21 | £07 | £09 | +19]|+103| £07 |+15]|+14
At BCEAIC 91.2 | 90.7 | 879 | 88.4 885 | 90.1 | 86.6 85.9 854 | 878 | 79.6 755 | 812 | 86.1
FC +07|+09|+£1.1| £1.1 | £1.1 |£07| £08 | £13 | £1.1 |£13| £10 | £13 |+£13 [+ 1.0
Arc+BCEAIC* 97.0 | 97.0 | 956 | 96.0 94.1 96.4 | 937 93.5 90.1 938 | 842 829 | 857 | 923
FC +04|+06|+11| +£08 | +£12 |+£07| £13 | £14 | £14 |+£10| £19 | £13 |+10| £ 10
PO 983 | 983 | 974 | 974 949 | 980 | 96.0 94.6 896 | 954 | 879 775 | 804 | 927
GAP +01|+01|+01| 4+02 | +05]|+01| 02| 02| +15]|+02] +£07 | +£12 |+28|+04
A xot COBHICH 989 | 99.1 | 98.8 | 985 97.1 988 | 977 96.6 927 | 972 | 894 80.8 | 84.5 | 946
GAP +01|+01|+01| +02| +03|+02| +£02| 05| 12 |+£02| +£22| +£09 [+31[+05
Aret CCEAIC 99.1 | 99.1 | 98.6 | 985 96.8 | 985 | 974 96.2 912 | 956 | 873 809 | 836 | 94.1
FC +01|+01|+01| +£02 | +£01 |+01| £01 | £03 | £03 |+04| £1.1 | £06 | +08[x0.1
At CCEsIC: = | 995 | 994 | 987 | 99.1 984 | 993 | 959 97.6 96.4 | 963 | 689 80.8 | 909 | 93.9
FC 5|1 £01|+£01|+£04| £01 | £01 |£01| £24 | £02 | £04 | £02|£132| £09 |09 |+14
A rot BCELIC ~| 978 | 977 | 967 | 97.1 946 | 969 | 94.9 95.4 899 | 932 | 832 815 | 817 | 924
GAP N|£04[£02|£03| £04 | £07 |£03| £05 | £05| £12|+£05| £37 | £32|£35[£10
Ac ot BCE4IC: 2| 994 | 995 | 990 | 994 986 | 992 | 97.7 98.3 9.5 | 964 | 717 85.1 | 91.7 | 953
GAP Bl1+01]|+£00|+£01| £02 | £01 |+£00| £04 | £02 | £02 | +04| £64 | £23 | +03|+06
At BCEAIC 993 | 993 | 99.0 | 989 97.9 | 989 | 98.1 97.6 949 | 963 | 91.5 850 | 879 | 957
FC +01|+01]|+01| +£02 | 03 |+01| £03 | £02 | £04 | £02| £07 | £07 [+07[x0.1
A BCEAICH 99.6 | 99.7 | 994 | 993 985 | 995 | 984 98.5 9.6 | 976 | 87.0 849 | 91.0 | 96.2
FC +01|+01|+01| +01 | +02]|+01| 01| +01|+04]|+02] £21 | +03 |[+06]|+02
Aot CCEAHC 997 | 994 | 992 | 99.0 977 | 992 | 97.8 96.8 912 | 959 | 847 745 | 782 | 933
GAP +00|+£00[£01| £01 | £02 |£01| £04 | £03 | £1.1 |£04| £30 | £19 | £28]|+£07
Aot CCEAICH 99.7 | 99.6 | 994 | 99.1 976 | 993 | 98.0 96.9 912 | 964 | 818 732 | 793 | 932
GAP +00|+01|+01| +£00 | £03 |+01| £03 | £03 | £1.1 |£03| £33 | £13 |+21|+05
At CCEAIC 99.7 | 995 | 993 | 99.3 984 | 994 | 982 97.6 938 | 953 | 809 75.6 | 83.8 | 93.9
FC +00|+00[+£01| £01 | +01 |£01| £03 | 01 | +£10[|+03| £29 | +12 |+25|+05
A . 2| 997 ] 995 | 993 | 99.3 988 | 99.1 | 97.7 97.4 956 | 93.1 | 784 77.1 | 88.6 | 94.1
FHCCEHCE 2 0 [ 200|201 | 201 | £02 |+01| +05 | £04 | £04 [+£04| 68 | +19 | +06]|+0.5
A osBCE4IC 2| 993 | 989 | 98.6 | 9838 975 | 98.1 96.4 96.9 922 | 912 | 784 775 | 813 | 92.7
GAP S|+o00|+01|+01] £02 | £04 [+£03| £06 | £03 | £13 |+08| £27 | £18 |+£29]|+038
AcrotBCEsICH | 998 | 997 | 995 | 995 99.1 994 | 98.6 98.6 96.7 | 942 | 807 825 | 89.7 | 95.2
GAP ®+00|+00]|+01] +£01 | +£01 [£01| £+03 | +03 | +03 |+15| 35| 16 |+10]|+03
A+ BCEAIC 998 | 99.6 | 994 | 99.4 989 | 995 | 985 98.4 954 | 962 | 84.1 797 | 852 | 94.9
FC +00|+01|£01| £01 | +01 |£01| +£01 | +02| +04 |£04| £03 | £04 |£+07|x01
A+ BCEAICH 99.7 | 99.6 | 994 | 99.4 98.8 | 99.6 | 984 98.2 956 | 97.0 | 832 785 | 854 | 94.8
FC +01|+00[+01| £00 | £01 |+£00| £02 | £01 | £06 | £02| £1.0 | £03 [+09 [ x0.1




TABLE S-VI: Inverted Cutout Mask Size Ablation Accura-
cies (in %) and their respective standard deviations (denoted
by =£) of our cutout size ablations on the Occluded-COCO-
Vehicles dataset. * marks the results received after fine-tuning
the network. CCE and BCE denote the Categorical (Softmax)
and Binary Cross Entropy losses, respectively. Agap and Apc
denote the aggregation module with global average pooling
and with a convolutional layer, respectively.

Train Data MS-COCO

Occ. Area Lo L1 L2 L3 Avg
rowccerc | T L | Eon | S
aawrccesier | 2010 20N 2 1 2N
Apc+CCE+IC 0 | a6 | e | £ 06| 21
Asc+CCEHICH 2 S | 5n | e |t | s
Agap+BCE+IC (‘;’E 3602'?9 fi?s 1211%3 i34é.95 iSSi(.)z
AaasBCERCr 3| 00| B B 20
Arc+BCEHIC P | 26| 20| 230 200
arcspeencr | BR800 ) |  | 5
RS el e Bl il Byt
Aarccericr | 01 308 B L1 S
arcrccesie | 00| BN L O 1 55| S
aresccener 2| 200 LIS S| 2
s o B I B S B )
R ST Iy B R v
s S v Il B v Byl
Arc+BCE+IC* 198(')4,‘2 j§86.26 ﬁs(')% i73£3 f66%9
e i B A A R I
Aawrccericr | 20| N B
Apc+CCE+IC ig(')h ﬁ26.23 ﬁgi(.)o fi(.’s fg(')i
Arc+CCEHICH  Z 201 |407|£07| 458|210
I I B By B
AGap+BCE+IC* R 199(')?1 i92(574 isg(fét f6i.36 igl(')?S
ArcsBCEnC | 0 | G | e | 5 | 206
Apc+BCE+IC* igdé.‘o :246.36 igld(.)s ﬁ7é(.)1 1926?5
e Byl Bl By S e B
N Iyl Bl il B B
Apc+CCE+IC 261 | 26| £1s| 46| 06
Apc+CCE+IC* g,f 201 | 405 | £01|4as| <1
NS S I B B o
AawesBCEnCe | S0 | 50 L 0L |
S S sy el S Bl Bt
Apc+BCE+IC* igg(fl i46§5 ioig.;l f7i74 i%(fé




TABLE S-VII: Feature Extraction Layer Ablations The accuracies (in %) and their respective standard deviations (denoted
by *) of the feature extraction layer ablation study of our Inverted Cutout method. * marks the results received after fine-tuning
the whole network. The occlusion types are: w - white box occlusion, n - noise box occlusion, t - texture occlusion, o - occlusion
by segmented objects. CCE and BCE denote the Categorical (Softmax) and Binary Cross Entropy loss, respectively. Agap and
Apc denote the aggregation module with global average pooling and the one utilizing a convolutional layer, respectively.

Oce. Area f;f,/’i L1: 20-40% L2: 40-60% L3: 60-80% Mean
Occ. Type - w n t 0 w n t o w n t o
A a0t CCEAIC 994 | 99.0 | 986 | 984 | 965 | 987 | 97.6 | 956 | 903 | 941 | 85.1 | 714 | 77.6 | 925
GAP +01|+02[4+01|+01|4+02]+01|+03|+02|+1.0]|+04][+15|+£07|+15|+03
Aot CCBHICH 995 | 993 | 99.1 | 988 | 97.4 | 989 | 983 | 957 | 923 | 956 | 87.0 | 71.8 | 81.8 | 93.5
GAP +01|+01|+01|4+01][+02]+01|+01|+03|+07]|+02|+14[+13]+17]+02
At CCEAIC 994 | 994 | 989 | 99.0 | 97.1 | 99.0 | 97.5 | 96.5 | 91.0 | 957 | 83.7 | 752 | 80.0 | 93.3
FC |01 [£01[£01|+01[£04[£00[£02|+01[£11[+02]£06|+06]+22]+03
At CCEAICs 2| 996 | 995 | 990 | 994 | 983 | 993 | 974 | 97.0 | 949 | 95.1 | 796 | 772 | 867 | 94.1
FC §1400]4+00[+02|+01[+£00[+01|+02[+02|4+05]|+1.1[+25|4+09|+11[=+03
A rot BCELIC S| 987 | 982 | 980 | 97.7 | 962 | 972 | 956 | 945 | 889 | 906 | 842 | 73.7 | 76.8 | 91.6
GAP w|+02|+£01|{£02|£03[£05]|+£05[+06|+£05|+£11[x£16|+£20[+12][+£18]|=£07
AcotBCEAICH & | 995 | 994 | 989 | 992 | 986 | 99.0 | 967 | 975 | 960 | 955 | 78.0 | 82.0 | 897 | 94.6
GAP z +01|+01|+01|4+01[+01]+01|+08|+02|+04]|+05|+26[+12]+08]+02
AwtBCEsIC T 995 | 994 | 992 | 99.1 | 982 | 99.2 | 982 | 975 | 93.0 | 958 | 904 | 80.0 | 828 [ 9438
FC +01|+01|+01|+00[+02|+£01|+02|+£01|+05]+03|+01]|+05|+14]+02
AvctBCEAICH 996 | 99.6 | 994 | 993 | 985 | 993 | 986 | 976 | 944 | 972 | 918 | 808 | 855 | 955
FC +01|+01|[+£01|+00|+01|+£01|+02|+02|+02]+02|+08|+06]|=+07]|=+0.1
Aot CCEAIC 993 | 991 | 985 | 985 | 946 | 979 | 959 | 956 | 79.6 | 90.6 | 742 | 705 | 58.6 | 88.7
GAP +01|+£01|+01|4+02[+05]+01|+05|+03|+24|+07|+35|+21]|+£37]+09
P 998 | 996 | 994 | 993 | 977 | 992 | 97.8 | 979 | 91.1 | 953 | 793 | 788 | 77.1 | 932
GAP +00|+01|+01|+01|+01|+£01|+05|+01|+13]+01|+34][4+06]|=+£32]|=+06
At COEHIC 992 | 992 | 99.0 | 988 | 96.8 | 985 | 96.7 | 964 | 869 | 924 | 729 | 708 | 69.7 | 90.6
FC |01 [£01|+02[£01[£02|+01|£06|£04]|+£21[£02]£29/+12|+39]|+03
AnctCCEAICs 2| 996 | 995 | 994 | 994 | 987 | 992 | 988 | 982 | 963 | 96.1 | 883 | 834 | 89.6 | 959
FC S|+o1]+01|+01|4+01|+02]+01|4+02|4+01|+02[+08|+16|+03]|+13][+£01
AcrotBCEsIC S | 990 | 987 | 982 | 983 | 956 | 97.6 | 958 | 959 | 86.6 | 90.1 | 78.2 | 752 | 693 [ 907
GAP w|+£01]|+£02{£01|£02[£05]£03][£04|£02|E£16[+£05|£25[£15[£29[£06
A rotBCEAICH & | 996 | 996 | 994 | 994 | 989 | 992 | 989 | 985 | 968 | 96.9 | 918 | 862 | 910 | 96.6
GAP z +00|+£01[4+00|{+£00[4+01]+01|+£02][+01|+03]|+04|+16|+06|+07|=x0.1
ActBCEAC 0| 994 | 993 | 989 | 99.1 | 975 | 986 | 97.1 | 97.1 | 889 | 935 | 782 | 742 | 718 | 918
FC +01[4+00[+01|+£01|+£03]+02|+02|+03|+18]|+04|+16|+02]+39]|+04
At BCEAICH 99.7 | 99.6 | 99.4 | 99.4 | 989 | 99.5 | 98.6 | 98.6 | 950 | 97.0 | 86.6 | 847 | 843 | 955
FC +01|+01|+01|+01|x01|+£01|+01]|+£01|+11]+02]|+17]|+10]|+£23]|+02
PP 995 | 992 | 99.1 | 989 | 968 | 99.0 | 97.7 | 963 | 908 | 952 | 86.6 | 744 | 780 | 932
GAP +01|+01[4+01|+03[4+05|+01|+02|+04|+25]|+03|+18|+27|+54|+09
Ace ot CCBHICH 99.7 | 99.4 | 993 | 99.0 | 97.8 | 992 | 983 | 969 | 928 | 964 | 87.0 | 754 | 823 | 94.1
GAP +00|+01|+01|+00|x02|+02|+02|+04|+14]+03|+£19]|+23|+34]|+06
At CCEslc 2| 995 | 995 | 992 | 993 | 979 | 992 | 982 | 975 | 93.7 | 968 | 87.8 | 789 | 85.1 | 9438
FC 00 +00|+01|£01|£01|£01[£01[£02|£05[£04|£19|£16|£07[£03
At CCEAICH &1 996 | 996 | 992 | 994 | 986 | 993 | 979 | 975 | 957 | 959 | 83.0 | 80.4 | 889 | 950
FC Sl+01|+01{+£02]+01|+01|+02[+05[+02|+06|+08|+48|+13|+11]|=+06
AcrotBCE4IC Z| 991 | 989 | 983 | 983 | 974 | 98.0 | 964 | 967 | 93.1 | 92.8 | 83.8 | 805 | 848 | 937
GAP %; +01|+£01|+01|4+01[4+02]4+03[+£03|+£01|+06]|+06|+17|+14|+£1.0]+03
Aot BCEsICH | 997 | 996 | 994 | 994 | 989 | 99.2 | 984 | 98.1 | 969 | 958 | 874 | 854 | 92.1 | 962
GAP Sl+01|+01]|+01|+£01]4+01]+01|+02][+03|+02]+03|+24|+11]x10|+02
R ﬁ 996 | 99.6 | 993 | 993 | 987 | 994 | 983 | 98.1 | 954 | 970 | 905 | 828 | 874 | 958
FC Al+01|+£01]+01|+01]+00[+01|+01]+02|+06|+01|+13[+12]|+1.0]|=+03
R — 99.7 | 99.7 | 99.4 | 994 | 989 | 99.6 | 988 | 985 | 962 | 979 | 90.8 | 839 | 894 | 96.3
FC +01]+£01|+£01|{+£01|+01|+£01][+£02]{+02][+03|+01][+16[+10|=+10[+x02




TABLE S-VIII: Feature Extraction Layer Ablations Accura-
cies (in %) and their respective standard deviations (denoted by
+) of our feature extraction layer ablations on the Occluded-
COCO-Vehicles dataset. * marks the results received after
fine-tuning the network. CCE and BCE denote the Categorical
(Softmax) and Binary Cross Entropy losses, respectively. Agap
and Apc denote the aggregation module with global average
pooling and with a convolutional layer, respectively.

Train Data MS-COCO

Occ. Area L0 L1 L2 L3 Avg
Agap+CCE+IC ig(fl fi.éz fzé.g4 ffl ﬁsig
powocsne | 88| 5 55| B | i
Apc+CCE+IC t igg(.)z,to i92(.)?3 fgi.54 fé?s jgi.gl
Apc+CCE+ICH g ig(')i i94<')?o io(.;z :Z9§6 ﬁob?s
poncsac 5| 5 S0 S
Agap+BCE+ICH _% ig()?z ?().25 fg(fé fgz'%s i26?7
1 v vl B A B o
e, |25 W g
Agap+CCE+IC igd?l i886.28 1841'.62 j?066 j§66.35
Agap+CCE+IC* :Eg(fl :34(5.26 :311'70 :ES(-)% :52(575
e R
Apc+CCE+ICH g ig()i isd.lz iz(')it j§46.66 :226.91
Agap+BCE+IC ; i99(.;1 f96?2 i85271 £6i(.)5 f7(576
A
et G S ot S e vt
ArcsBCEsICe | 70 | 56| 200 | 400 | 4 00
Agap+CCE+IC :Eg(.)?l 1906.65 :§7i.21 fi(.)s :216(.)6
e S Bl vl B vy By
arcrccenc L 0 20| 50| 250
Apc+CCE+IC* é :39(.)‘.‘1 :34(-)?6 :201.?0 :54(.)%7 :326.34
e e
Ao BCEACT 2 | 0| i | 205|215 |+ 04
Arc+BCEAC g | 0N | Do | 0 | £ | £ 05
Arc+BCE+IC* 200|408 | 404|434 407

TABLE S-IX: The hyperparameters used in the training pro-
cess of the ResNet50-networks. * denotes hyperparameters
used during fine-tuning of the network, Agap denotes the
aggregation module with global average pooling, and Apc the
module with kernel size equal to the input feature map. CCE
and BCE denote the Categorical (Softmax) and Binary Cross
Entropy losses, respectively.

Dataset Agg. Loss LR EP | LR* | EP*
A CCE | 1e3 | 90 | le5 90
Pascal3D+ GAP | BCE | le3 | 90 | le-5 90
A CCE | le4 | 90 | le-5 90
FC BCE | le4 | 90 | le-5 90
Aore | Bon | 1ed | 180 | 104 | 90
e- e-
MSCOCo N CCE | le-4 | 180 | 1e-5 | 90
FC BCE | le-4 | 180 | le-4 90




TABLE S-X: ResNet50 Ablations The accuracies (in %) and their respective standard deviations (denoted by =+) of the
ResNet50 ablation study of our Inverted Cutout method. * marks the results received after fine-tuning the whole network.
The occlusion types are: w - white box occlusion, n - noise box occlusion, t - texture occlusion, o - occlusion by segmented
objects. CCE and BCE denote the Categorical (Softmax) and Binary Cross Entropy loss, respectively. Agap and Apc denote
the aggregation module with global average pooling and the one utilizing a convolutional layer, respectively.

Occ. Area OL?/; L1: 20-40% 12: 40-60% L3: 60-80% Mean
Occ. Type - A n t o w n t o \ n t o
A o+CCE 997 | 987 | 985 | 985 | 936 | 944 | 929 | 931 | 725 | 69.1 | 613 | 618 | 528 | 83.6
GAP +00|+02|+£02|+02|+05]+04|+03|+05|+12] £17 |£07|+£20|+18]+05
A ot CCE* 99.7 | 983 | 983 | 979 | 922 | 91.9 | 90.0 | 89.9 | 708 | 584 | 51.3 | 51.7 | 522 | 802
GAP +01|+£05[+03|+£03|+24|+13|+19|+04|+65]| +£45 |+81|+25|+57|+14
At CCE 998 | 989 | 984 | 984 | 942 | 943 | 932 | 92.6 | 762 | 649 | 59.8 | 57.8 | 579 | 83.6
FC +01|+£02[+03|+£01[+09|+05|+19|+11|+16] £3.1 [+62|+49|+26]+15
At CCE 998 | 979 | 973 | 976 | 91.8 | 912 | 88.0 | 892 | 723 | 53.6 | 468 | 475 | 53.6 | 79.0
FC +01|+08|+08|+06|+20|+32|+40|+30|+60]|+11.7[+96|+75|+75]+40
AcxotBCE 996 | 988 | 985 | 986 | 940 | 951 | 931 | 93.0 | 758 | 706 | 60.5 | 59.9 | 583 | 843
GAP +£00|+£01|+£02[+£01|+£05]+03|4+04|+01|+1.0| 12 |£12][£19|+£12]+02
Aot BCE* 998 | 987 | 979 | 979 | 916 | 926 | 873 | 893 | 702 | 598 | 458 | 48.1 | 512 | 79.3
GAP +01|+03|+05|+05[+21|+15|+26|+17|+38] +£28 [+£35|+25|+40]+18
AvctBCE 998 | 99.1 | 987 | 988 | 943 | 951 | 94.1 | 938 | 766 | 655 | 60.8 | 57.7 | 57.5 | 84.0
FC +01|+01|+£02|+00|+02]+03|+04|+02|+10] £1.1 |£13|+£18|+12]+03
Arc+BCE* 998 | 989 | 98.6 | 985 | 922 | 935 | 91.0 | 90.8 | 709 | 563 | 488 | 503 | 53.5 | 80.2
FC +00|+£02|+03|+£04|+17|+08|+16|+17|+29]| £21 [+37|+44|+33]|+17
Aot CCEAIC | 995 | 989 7966 [797.7 7907 | 969 [90.1 [ 915 [ 712 | 872 | 612 | 574 | 533 [ 840
GAP +01|+£01[+02|+£02|+10[+05|+06|+06|+33] +£06 |+31|+1.6|+36]|=+10
Aot CCE4ICH | 997 | 995 | 993 | 993 | 983 | 99.2 | 97.9 | 977 | 920 | 957 | 79.0 | 78.1 | 78.7 [ 934
GAP +00|+£00[+01|£01|+02|+01|+02][+03|+12]| +£04 |[£38|+15|+18]|+06
AnctCCEHC 995 | 994 | 983 | 988 | 96.8 | 98.7 | 952 | 96.0 | 89.0 | 929 | 728 | 709 | 782 | 91.3
FC +01|+01|+02|+£01|+03|+01|+10][+03|+06]| +£08 |[£39|+26|+16]+06
At CCE4ICs | 998 | 995 | 99.3 | 994 | 987 | 994 | 983 | 982 | 957 | 969 | 83.1 | 792 | 872 | 950
FC +01|+01|+01|+01|+02|+01|+03]+02|+10] +£04 |+18|+1.1|+18]|+04
Ac ot BCE4IC | 93 | 991 [ 977 [ 983 7929 | 97.7 | 93.0 [ 944 [ 765 | 899 [ 664 | 688 | 60.8 [ 873
GAP +01|+01|+04|+02[+06[+02|+£11[+03|+08] £08 |[+12|+06|+18]+0.1
Aot BCEAIC | 998 | 996 | 994 | 995 | 987 | 992 | 982 | 98.5 | 950 | 956 | 85.1 | 845 | 838 | 951
GAP +00|+£01[+01|+£01|+01|+£01|+02]+02|+05] £04 |[£27|+£15|+09]|+04
At BCEAIC 995 | 994 | 988 | 990 | 964 | 989 | 968 | 97.1 | 888 | 934 | 80.1 | 775 | 773 | 926
FC +01[+00|+£01|+£01|+01]+01|+04|+03|+10]| £03 |£20|+£16]|x19]|=+05
AvctBCEAICs | 998 | 996 | 994 | 995 | 990 | 99.5 | 988 | 987 | 958 | 969 | 875 | 855 | 86.1 | 959
FC +01|+00|+£01|+£01][+02]+01|+02][+03|+07| £04 |£36|+12|+13]+05




TABLE S-XI: ResNet50 Ablations Accuracies (in %) and
their respective standard deviations (denoted by =) of our
ResNet50 ablations on the Occluded-COCO-Vehicles dataset.
* marks the results received after fine-tuning the network.
CCE and BCE denote the Categorical (Softmax) and Binary
Cross Entropy losses, respectively. Agap and Agc denote the
aggregation module with global average pooling and with a
convolutional layer, respectively.

Train Data MS-COCO

Occ. Area Lo L1 L2 L3 Avg
AowrtCCE | 0 | s | Lo | 4 | £ 0s
AowrceBr | 00| P | a0 | Len | 42
arerecs | 0| T | Sk | s | Lis
Apc+CCE* j?9(fl ioigo 182176 fég fi?ﬁt
AowetBCE | 50 | 202 | 205 | 406 | £ 0
AorsBCET | V| o | S | i | 4ie
ArceBCE | 0 D0 | Sos | S| 4o
actBCB | U0 | oy | 250 | Lan | 4o
rowrcerric | 01 205 | s | D | £hn
Aowrcerricr | G 120 e | | 1o
arerecnc | 0 | 20| 2| 21 | 2os
Arereirct | PG | Py | L | das | bia
AoxrtBCBHC | 0o | 203 | L6 | 07 | +06
AosrsBCBHCT | 00 | 0y | | Do | 2o
arcsseene | 201 TS L L
MrevBCBHCT | 0 | Loa | 205 | 220 | £ 07
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