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Abstract

The following document gives additional information
with respect to the paper “Active Learning and Discov-
ery of Object Categories in the Presence of Unnameable
Instances”. Details for five aspects are presented: (i) an
additional comparison of loss functions and probability
estimates (Sect. S1), (ii) additional evaluations focusing
on labeling time rather than on number of requested la-
bels (Sect. S2), (iii) a visualization of requested samples
(Sect. S3), (iv) a visual inspection of the experiments with
best and worst results (Sect. S4), and (v) an evaluation of
statistical significance of experimental results (Sect. S5).
The provided information is not necessary to understand
the main paper, but sheds light on interesting aspects not
included therein due to the lack of space.

S1. Comparing loss functions and probability
estimates for EMOC

As mentioned in Sect. 3 of the main paper, several
choices for loss functions and multi-class classification
probabilities are possible when computing the expected
model output changes as introduced in Eq. (7). We shortly
list two choices for both aspects, and compare the resulting
performance within the active discovery scenario of object
proposals as tackled in Sect. 6.4.

Loss-functions for multi-class scenarios In our paper,
we proposed using the L1-loss on the one-vs-all classifi-
cation scores to measure the model output change denoted
with L|·|:

L|·| (f (x) , f ′ (x))) =

C∑
c=1

|fc(x)− f ′c(x)| . (S1)

This research was supported by grant DE 735/10-1 of the Ger-
man Research Foundation (DFG)
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Figure 1: Comparison of different loss functions when com-
puting EMOC scores according to Eq. (7) in the main paper.

When working in multi-class scenarios, however, an alter-
native choice would be to directly measure changes in hard
classification decisions

L0/1 (f (x) , f ′ (x)) = 1− δȳ(x),ȳ′(x) (S2)

where δ·,· is the Kronecker delta and ȳ(x) is the hard clas-
sification decision as defined in Eq. (10) in the main paper.

We tested both loss functions within our active learn-
ing and discovery framework and the results on the COCO
dataset are visualized in Figure 1. As can be seen, com-
paring continuous classification scores directly with a sim-
ple L1-loss significantly outperforms the loss working on
label changes as given in Eq. (S2). We attribute this behav-
ior to two aspects: on one hand, estimates of continuous
scores are likely more reliable compared with hard deci-
sions. Thus, we believe that changes in continuous scores
are more meaningful, especially in early stages of learn-
ing. In addition, changes in hard decisions do not reward
samples that would confirm current class estimates, which
however would potentially result in decreased classification
uncertainties.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7299063
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Figure 2: Comparison of different multi-class probabil-
ity estimates when computing EMOC scores according to
Eq. (7) in the main paper.

Multi-class classification probabilities As explained in
the main paper, we apply a Monte-Carlo sampling strategy
to compute multi-class probability estimates given the indi-
vidual class scores. A common alternative is a multi-class
logistic regression model [2]

p(y = c|x) ∝ exp(αc · fc(x) + βc) (S3)

with class-specific parameters αc and βc estimated from
training data. In contrast to [2], we used leave-one-out es-
timates to learn the parameters in Eq. (S3) [10], which pro-
vides a stable estimate compared to the estimation on a vali-
dation dataset. We compared the resulting strategy with our
sampling approach by directly evaluating the active learn-
ing and discovery performance. The results are given in
Figure 2 and only show a marginal performance difference
slightly in favor of the sampling strategy. Thus, we con-
clude that the sampling technique leads to appropriate prob-
ability estimates in our scenario.

S2. Evaluations with focus on labeling times
In the main paper, we only evaluated the number of

queries with respect to the performance. However, an as-
pect of equal importance is the total time required to process
a query [12]. In real-world applications, this time reflects
the time a human annotator needs for labeling as well as the
time the active learning approach requires to automatically
select an unlabeled example.

For each of the datasets used in our paper, we addition-
ally present here the total time passed during active learn-
ing with respect to our two performance measures (num-
ber of discovered classes and recognition rate): USPS (Fig-
ure 3), Labeled-Faces-in-the-Wild (Figure 4), and COCO
(Figure 5). Several plots are given for different assumptions
about the labeling time needed by a human annotator, rang-
ing from 1 second per annotation up to 50 seconds.

Iteration 13

All classes
discovered

after only
13 queries!

New class
discovered!

Figure 6: Visualization of query process as shown in the
supplementary video.

First of all, we observe that the expected risk minimiza-
tion strategy requires significantly more time than all other
methods, which is consistent with the observations in [11].
The plots further reveal that our methods are able to out-
perform established approaches in nearly all cases. Thus,
we obtain comparable or higher recognition and discovery
rates without dramatically increasing computation times re-
quired. We therefore conclude that the time needed by our
algorithms to select an unlabeled example pays off, which
further underlines the benefit of modeling possible rejec-
tions and integrating data density when unnameable sam-
ples are to be expected.

S3. What did we query? Visualizing active
learning

Our evaluations are mainly based on quantitative state-
ments, and we limited qualitative results to a few queried
segments shown in Figure 5 of the main paper. To further
support the understanding of the query process, we created
a short video which is part of the supplementary material1.
After a brief introduction, we visualize the t-SNE feature
space for the USPS experiment, we show queries as well
as discovered clusters, and we animate the process of active
learning and discovery. Given the video, we can again see
the benefit of our introduced EMOC method which rapidly
discovers new clusters while being unaffected by unname-
able instances.

S4. Extreme-case analysis
The experimental evaluation in Sect. 6 of the main pa-

per considers only the mean values of all evaluated test
scenarios. In the following, we will provide a more de-
tailed analysis by visualizing the best and worst scenario of
EMOCPDE+R on the COCO-dataset. Therefore, the individ-
ual scenarios are rated according to the relative improve-

1The video is also available at https://www.youtube.com/
watch?v=AEIrYqMHH74.

https://www.youtube.com/watch?v=AEIrYqMHH74
https://www.youtube.com/watch?v=AEIrYqMHH74
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(c) 50s for labeling

Figure 3: Evaluating active class discovery (top) and improving recognition accuracy with active learning (bottom). Results
are obtained on the USPS dataset [1] with labeling times ranging from 1s (left) over 10s (middle) to 50s per query. Baselines
are indicated with dotted lines, whereas our techniques are plotted solidly. See main paper for details on the experimental
setup. Best viewed in color.

ment in accuracy as described in Sect. S5. The obtained
scenarios with best and worst improvement are selected for
further analysis. In Figure 8, we show for both scenarios
exemplary images which either resulted in a drastic change
of the recognition performance or which lead to no perfor-
mance gain at all. A complete overview of all training ex-
amples as well as all queried samples in both scenarios is
additionally given in Figure 7. Besides their visual beauty,
however, we are not able to see any specific characteristics
for these images that might give reason for the performance
difference of the best and the worst run.

S5. Significance of results

The evaluations in Sect. 6 of the main paper are based on
averaging results over 100 individual runs per experiment.
We already concluded that our techniques lead to improved
learning curves, however, the statistical significance is still
unanswered. Therefore, we applied a paired students t-test
to evaluate the significance of differences in performance.
Evaluations are applied to areas under learning curves cor-

rected by the corresponding initial accuracy, thus, we com-
pare accuracy improvements of different techniques. Re-
sults given in Table 1 are conducted for the scenario of
learning with object proposals from the COCO dataset as
introduced in Sect. 6.4 using a significance level of α = 5%.
We observe that the resulting improvements in accuracy are
statistically significant with p-values smaller than 10−2.
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Figure 4: Evaluating active class discovery (top) and improving recognition accuracy with active learning (bottom). Results
are obtained on the LFW dataset [4] with labeling times ranging from 1s (left) over 10s (middle) to 50s per query. Baselines
are indicated with dotted lines, whereas our techniques are plotted solidly. See main paper for details on the experimental
setup. Best viewed in color.

GP-EMOC
Random GP-Var [7] GP-Unc [7] 1-vs-2 [6] PKNN [5] ERM [11] MC PDE

GP-EMOCPDE+R 1.4e-4 3.8e-3 2.0e-4 5.2e-6 2.3e-3 3.5e-3 4.8e-21 1.9e-4

Table 1: Evaluating statistical significance of differences in learning curves obtained on the COCO dataset. A paired student
t-test validates statistical significance. Numbers shows probabilities for pairwise equality on a significance level of α = 5%.
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Figure 5: Evaluating active class discovery (top) and improving recognition accuracy with active learning (bottom). Results
are obtained on the COCO dataset [9] with labeling times ranging from 1s (left) over 10s (middle) to 50s per query. Baselines
are indicated with dotted lines, whereas our techniques are plotted solidly. See main paper for details on the experimental
setup. Best viewed in color.
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Figure 7: A second visual inspection of the scenarios with best and worst results on COCO. We displayed all training images
(top row) and all queried samples (bottom blocks, row-wise) for both, the best (left) and worst (right) evaluated scenario of
EMOCPDE+R on COCO. Again, unsupervised object proposals obtained with [8] as well as the corresponding bounding box
for feature extraction are overlayed in red and green. Figure is best viewed in color and by zooming in.
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Figure 8: A visual analysis of active learning and discovery on COCO. We displayed learning curves for the best and worst
scenario of EMOCPDE+R. Samples which either resulted in a drastic change of the recognition performance or which lead to no
performance gain at all are additionally shown. Unsupervised object proposals obtained with [8] as well as the corresponding
bounding box for feature extraction are overlayed in red and green.


