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Abstract. The following document gives additional information with
respect to the paper Selecting influential examples: Active Learning with
Ezxpected Model Output Changes. Details for five aspects are presented:
(i) reasons and experimental validation for choosing label regression
(Sect. , (ii) experimental setup for visualizing active learning, which
led to Fig. 2 in the main submission (Sect. [S2), (iii) an in-depth com-
parison of active learning techniques with respect to desired properties
(Sect. [S3), (iv) detailed information regarding the experimental setup
used in the main submission (Sect.[S4)), and (v) a visualization of queried
images for several one-vs-all tasks on Caltech256 (Sect. . The provided
information is not necessary to understand the main paper.

S1 Why Did You Choose Label Regression?

Classification with GP models is often done with approximate inference meth-
ods like Laplace approximation or expectation propagation [6], which allow for
noise models theoretically more suitable for classification. In our case, we used
label regression [5], which applies GP regression directly to discrete classification
labels. This technique is very much related to least-squares SVM and a common
classification strategy [5/4]. Furthermore, we also evaluated the performance of
label regression compared to Laplace approximation and expectation propaga-
tion. In particular, we learned classification models for all 100 binary ImageNet
tasks also used in the previous experiments of the main paper (30 training exam-
ples used for each category) with all three methods. The approximate inference
methods (using the classification model in Eq. (8)) performed significantly worse
with 83.29% AUC (Laplace) and 83.09% AUC (EP) than label regression with
85.55% AUC (t-test, p < 107Y). This performance gap is even more severe with
less training examples. However, it should be emphasized again that our EMOC
strategy introduced in the main paper can be applied in general also to these ap-
proximate inference methods but without the efficient model updates presented
in Sect. 4 of the submission.
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S2 Experimental Setup for Visually Inspecting Active
Learning

As described in the main paper, we have been interested in understanding ad-
vantages and disadvantages of state-of-the-art active learning techniques on a
fundamental level. Therefore, we designed a controlled setup offering several
burdens each technique is focused with:

Small labeling budget: compared to the overall number of unlabeled sam-
ples (120 samples to choose from), we restricted the labeling budget to only
9 points to get an impression of what the different techniques focus on most.
— Existence of outliers: we added 9 outliers clearly far off the main sample
distribution to evaluate the resistance to outliers of every technique.
Initially unknown clusters: in order to inspect the ability of discovering
relevant new clusters in feature space, we added 2 initially unknown clusters
to the unlabeled pool.

— Sub-optimal initial decision boundaries: since the initial decision bound-
ary is far from being optimal, we can visually check whether a technique aims
for improving especially the current boundary to make decisions in known
regions more reliable.

In order to easily visualize the process of active learning, we restricted the
feature space to two dimensions represented by x and y coordinates. An RBF-
kernel serves as ad-hoc choice for measuring sample similarity. In the following
visualizations, data already labeled is indicated with white diamonds and white
crosses for samples of positive and negative class, respectively. Unlabeled data is
plotted in white dots and thickness of dots corresponds to their score obtained by
the active learning criterion currently inspected (thickest dots are preferred). For
every iteration and method, the unlabeled sample to be queried next is colored in
magenta. Current classification scores for the entire input space are color coded,
with red colors and blue colors indicating tendency to the positive and negative
class, respectively. correspond to regions where estimations for both
classes are currently on par. Together with the source code developed, we will
make the data and evaluation protocol publically available upon acceptance.

S3 Summary of Findings

We applied several state-of-the-art strategies for active learning from different
general techniques to the 2D problem introduced before (see Sect. (2) in the main
submission for an overview of related work on active learning and details of the
strategies used here). A brief summary of our findings is depicted in Table

In the following, we outline detailed observations we made regarding every
analyzed technique. Results are visualized in Fig. |2/ and close-up inspections of
the actual region of interest in feature space are shown in Fig. 3| respectively.
Note that we excluded visual results for passive learning (random queries) due
to its non-deterministic behavior.
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Table 1. Results of visually analyzing active learning techniques with respect to desired
properties.

Resistant Discovers  Improves deci- Confirmable on

Strategy to outliers new clusters sion boundary real-world data
Random v
Predictive variance [4] ) v
Classification uncertainty [4] (v) v
Model change [2] v v v
Reduction of classif. error [7] v v v

EMOC strategy (Ours) v v v v

Predictive variance [4] — misled by outliers By design, querying samples
being maximally distant from all previously known data is a purely explorative
strategy. This clearly reflects in the samples chosen (first row in Fig. , which are
by no means related to the actual problem of interest. We therefore conclude that
this strategy is useful in scenarios, where the available data is known to contain
no outliers, and a rapid coverage of all possible inputs is needed. However, for
at least slightly disturbed data collections, focusing on yet unexplored regions in
feature space might waste expensive labeling budget as can be easily seen in the
points picked, and consequently can perform even worse than passive learning
(random selection, see also Sect. 6.1 in the main submission)

Classification uncertainty [4] — surprisingly misled by outliers too  Al-
though looking for samples with highest classification uncertainty intuitively
seems to look for decision boundaries, the picked samples for the 2D experiment
are in fact the same as chosen by (GP-var). While being counter-intuitive on first
sight, the current model naturally has no accessible information for outliers, and
it consequently focuses on first treating those regions, too. In other words, un-
explored regions in space can be seen as 'a huge decision boundary’ due to the
zero mean prior. Note that this effect can also happen for different classification
models, e.g., SVMs as used by [g].

Model change [2] — a focus possibly too strong on current decision
boundaries For the previous two strategies, we did not had to investigate
the close-up visualizations at all, since queried samples had been far away from
initial training data, thereby only visible in Fig.[2] In contrast, the model change
criterion results in samples close to initially known regions, as can be seen in
Fig. |3} third row. Here, we clearly observe two properties: (i) the strategy seems
to be incapable of finding new clusters of data, and (ii) it prefers samples surpris-
ingly similar to labeled ones (e.g., see Iter. 2 and Iter. 3). Frankly, this observa-
tion took us by surprise, since [2] introduced the method as “implicit balancing
between exploration and exploitation”, and their theoretical derivation was con-
firmed by experiments both on artificial and on real-world data. However, at
least for the 2D setup, we noticed the balancing to be heavily biased towards
exploitation.
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Reduction of classif. error [7] — a fair balance of exploration and ex-
ploitation From Fig. [2] it is evident that empirical risk minimization seems
not to be tricked by outliers at all. Furthermore, we can see a well-balanced
behavior of exploring new clusters (e.g., Iter. 1, Iter. 2, and Iter. 3 in Fig.
row 4) and improving current decision boundaries (e.g., Iter. 4 and Tter. 5). For
the designed 2D example, this strategy seems to perfectly offer all abilities one
might desire for an active learning criterion. This is the more remarkable, since
we could not confirm this observation on real-world data (see Sect. 6.1 in the
main submission). We believe this origins from real-world class distributions be-
ing far more complex, leading to bad initial label estimates, followed by bad
empirical risk estimates. In direct consequence, we argue that heading for “de-
cisions turning for the better“ is often too ambitious, since "the better“ can be
wrongly estimated too easily, especially with only few labeled data available.

EMOC strategy (Ours) — the best of both worlds and confirmable on
real-world data Similar to the results of empirical risk minimization, looking
for expected model output changes turns out to be resistant to outliers (row 5
in Fig. , and perfectly discovers new relevant clusters in data while simultane-
ously improves current decision boundaries (row 5 in Fig. [3). Furthermore, our
technique circumvents real-world problems of [7] by looking for ”decisions turn-
ing“ — without being too picky about the ”for the better* aspect (see Sect. 6.1
in the main submission).

S4 Experimental Setup for Main Submission

Datasets Experimental results presented in the main submission (see Sect. 6)
are obtained on the two established dataset Caltech-256 [3] and ImageNet [I].

Sampling of Classes and Samples For the majority of experiments, 100
sets of 10 classes have been drawn uniformly from the available classes. With
every set, 10 random partitions were created for reliable results. Thus, for Ima-
geNet, the official train set was used to uniformly sample 1 training image per
class, and 99 remaining samples per class where used as unlabeled examples. The
separate test set was used to obtain 50 samples per class for accuracy evaluation.
On Caltech-256, we split data per class into 1 sample for training, 30 hold-out
samples for testing, and the remaining samples Thus, 1 sample per class was
picked for training, 30 additional samples served as hold-out set for testing, and
all remaining samples were collected in an unlabeled pool.

Features Image representations were based on publicly available bag-of-visual-
words features of ILSVRC 2010, resulting in 1000 dimensional L1-normalized
histograms.

Kernel Function A histogram intersection kernel served as similarity mea-
sure, since its superior results in previous works over standard kernels on his-
tograms, e.g., RBF-kernels. In addition, no hyperparameter optimization needs
to be done.
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Fig. 1. Images picked in 1-vs-all experiments on Caltech-256. Top: given are the first
20 queries made by our FastEMOC technique for airplane as positive class. Bottom:
Some interesting queries made by our FastEMOC technique for several classes.

Model Regularization For model regularization, the noise level was set to
02 = 0.1 in all our experiments. We also tested with initial optimization or
optimization after 5 or 10 queries, but found no superior behavior with respect
to recognition rates.

Accuracy Determination Since we are interested in active learning of class
detectors, all scenarios are binary ones. Thus, we evaluated accuracy after ev-
ery query using the area under ROC curves, to be independent of threshold
determination.

One-vs-all-Experiments (Fig. 4 in main submission) We additionally
conducted 1-vs-all experiments as suggested during the process of reviewing,
following the evaluation setup of [4]. Therefore, all classes of Caltech-256, which
have already been present in Caltech-101, served ones as positive class, and all
remaining 255 classes as negatives. The picked class IDs are [15, 20, 22, 36, 52,
57, 63, 64, 66, 91, 100, 102, 114, 121, 123, 127, 129 134, 140, 145, 172, 179, 201,
204, 230, 235, 240, 251, 252, 253]. For every of the 30 resulting 1-vs-all settings,
we followed the exact setup of [4], and we started with 1 example per class for
training ( 1 positive, 255 negatives). Additional 10 samples per class served as
held-out test set. Every binary task for randomly initialized for 10 and results
are averaged. Gain in accuracy over passive learning (random) is plotted after a
total of 20 queries.
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S5 Visualizing Queried Images of One-vs-all Tasks

Finally, we visualize images actively selected by our FastEMOC technique for
some of the aforementioned one-vs-all scenarios. More precisely, we plotted the
first 20 queries for a one-vs-all task on Caltech256’s airplane category in the top
part of Fig. [Il As can be seen, our strategy nicely balances querying positive
and negative samples, and especially refining class boundaries with mixed-up
categories (e.g., zebra, speed boat, and american flag). In the bottom part of
Fig. [1] we additionally plotted query results which we found interesting during
writing the paper, e.g., an owl, which was queried during a task with brains as
positive class, or a soccer ball, which likely was queried to better differentiate
between compact buddhas and visually similar round objects.
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Fig. 2. Inspecting active learning on a 2D toy example. The figure is best viewed in color and by zooming in. See text above for further
explanations.
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Fig. 3. Close-up inspections of active learning visualizations presented in Fig. 2] Shown here is the bottom right corner, where the data
being problem relevant is located. The figure is best viewed in color and by zooming in. See text above for further explanations.
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