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Abstract. The following document gives additional details for the pa-
per Labeling examples that matter: Relevance-Based Active Learning with
Gaussian Processes. In particular, a detailed derivation of the weight
vector ᾱ for Gaussian Process Regression after adding a new example
is presented, learning curves of the conducted experiments are visual-
ized, and a qualitative evaluation is given. The information given in this
document is not necessary to understand the main paper.

S1 Update of Weight Vector α for GP Regression

Theorem 1 (Closed form update of GP regression weights α).
Let y∗ be the class label of a new example x∗. Let further K = κ(X,X) be
the kernel matrix of all training examples seen so far, k∗ = κ(X,x∗) is the
vector of kernel values between the new example and all training examples, and
k∗∗ = κ(x∗,x∗) is the self-similarity value of the new sample. In addition, we
denote with y the vector of labels for all training samples, and σ2

n indicates the
noise parameter for model regularization. Finally, let α = K−1y be the weight
vector for GP regression. Then we can compute the weight vector ᾱ after adding
x∗ to the training set as follows:
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The three factors can be interpreted as described in the main paper.

http://www.inf-cv.uni-jena.de


2
F

rey
ta

g
et

a
l.

Proof.
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Definition of α and GP variance =
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Definition of GP variance =
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Fig. 1. Active Learning on Caltech-256. Initial number of samples per class is 1 and
5, respectively.

S2 Recognition Rates of Experimental Results

In the main paper, we presented active learning gains over random sampling for
two popular image categorization datasets. Due to the lack of space, we moved
the visualization of learning curves to this supplementary material document.

S2.1 Results on Caltech-256

Active learning curves for Caltech-256 are given in Fig. 1. The maximum ac-
curacy when using all unlabeled data as additional training images is 93.81%
AUC. As in the main document, results were obtained by averaging over the
corresponding 1, 000 binary settings. Hyperparameters were optimized by max-
imizing the marginal likelihood.

S2.2 Results on ImageNet

Active learning curves for ImageNet (2010 challenge) are given in Fig. 2. The
maximum accuracy when using all unlabeled data as additional training images
is 89.2% AUC. As in the main document, results were obtained by averaging
over the corresponding 1, 000 binary settings. Hyperparameters were optimized
by maximizing the marginal likelihood.

S3 Queried Images of a Single Run on ImageNet

For a qualitative evaluation, we presented queried images of a single active learn-
ing setup in the main document. Due to the lack of space, we only included
results of Qimpact and Qσ2

∗
, and moved the remaining results to this document.

The queried images of all strategies are given in Fig. 3.
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Fig. 2. Active Learning on ImageNet. Initial number of samples per class is 1 and 5,
respectively.

Fig. 3. Queried images of GP-based active learning methods: (1) random queries, (2)
Qµ∗ , (3) Qσ2

∗
, and (4) Qunc introduced by [9] as well as our strategies (5) Qweight and

(6) Qimpact (from top to bottom). Green and blue borders indicate images of positive
and negative classes, respectively.
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