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Abstract

The following material contains additional information to provide more insights of certain topics
covered in the associated main manuscript. Experimental details such as parameter settings and
the evaluation of the MLS approach, which are only of secondary interest for our paper, are
incorporated here. Finally, recognition rates of all methods with pre-processing techniques prior
to novelty detection are displayed.

S1. Implementation Details and Parameter Tuning Procedures

As in [1], the multi-class problem was tackled in one-vs-all fashion using a binary GP classifier
with Laplace approximation and cumulative Gaussian likelihood. As covariance function, the
extended isotropic exponential kernel

κ(x, x′) = θ2
1 exp

(
−‖x − x′‖2/(2θ2

2)
)

(1)

was used (in contrast to the kernel (5) for all other methods, which is based on a single hyperpa-
rameter). The hyparameters [θ1, θ2]T of the covariance function were estimated by maximizing
marginal likelihood using the conjugate gradient optimizer minimize with 10 iterations for each
binary one-vs-all problem. The additive noise component was set to a small value σ2

n = 0.01 to
avoid numerical instabilities.

For SVDD, different values for outlier fraction parameter ν ∈ {0, . . . , 0.9} were investi-
gated (ν = 0 meaning that the hard SVDD without slack variables is used). The Kernel KNN
description method was used with exponential kernel κ, choosing among different sizes K ∈
{1, 5, 10, 25, 50} of the nearest neighbor set of xNN . For the GMM, we followed the approach of
Schmid et al. [2] using principle component analysis (PCA) as subspace reduction method and
a full covariance matrix which is pooled over all strains. The number d of PCA components
as well as the number k of normal distributions in the model were obtained by 10-fold cross-
validation. Maximizing the average recognition rate on a 5 × 5-grid (d ∈ {10, 20, 30, 50, 80}
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and k ∈ {5, 10, 20, 30, 50}), the optimum for our dataset was found to be d = 30 and k = 30.
The MLS approach was re-implemented in Matlab and analyzed for a varying number M ∈

{10, 100, 500, 1000, 5000, 10000, 50000} of simulated classes. Because of the randomized nature
of the algorithm due to sampling, we always average over 100 runs to enable a robust perfor-
mance analysis. As in GMMs, we projected the Raman spectra onto the first d = 30 PCA
components. The latter step is also done for Parzen density estimation. Using a normal density
with diagonal covariance as kernel, Silverman’s rule of thumb [3] was used for estimating the
bandwidth parameters for each dimension independently.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Specificity

S
en

si
tiv

ity

 

 

AUC = 0.9224

Figure S1: Example for a receiver operating characteristic (ROC) curve.
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Figure S2: Novelty detection based on Maximum Likelihood with a varying number m of simulated outlier categories
(MLS). The number of samples from the class prior is a critical parameter (optimum found at m = 1000), where under-
or oversampling leads to inferior performance.

Table S1: False positives and false negatives of the best-performing novelty detection methods in the multi-class case.
As 100 runs were taken for MLS due to its randomized nature, the two runs (MLS1 and MLS2) that lead to recognition
rates equal to the median of the empirical ARR distribution are displayed.

number of wrongly classified spectra
strain #spectra OVA MLS1 MLS2 GMM SVDD GPR-V

kn
ow

n
st

ra
in

s

Bacillus sphaericus DSM28 8 0 0 0 0 8 4
Bacillus sphaericus DSM 396 7 0 1 1 0 7 5
Bacillus subtilis DSM 347 8 0 2 3 1 2 4
Escherichia coli DSM 1058 20 3 4 3 10 12 18
Escherichia coli DSM 423 7 0 1 1 0 7 6
Escherichia coli DSM 498 7 0 1 0 3 7 7
Micrococcus luteus DSM 20030 6 0 2 3 6 1 6
Micrococcus lylae DSM 20315 5 1 5 3 0 5 4
Micrococcus lylae DSM 20318 5 2 5 4 3 0 5
Staphylococcus cohnii DSM 20260 7 0 2 2 3 1 4
Staphylococcus cohnii DSM 6669 8 3 3 5 4 0 7
Staphylococcus cohnii DSM 6718 5 1 3 5 4 0 4
Staphylococcus cohnii DSM 6719 5 1 2 2 3 0 3
Staphylococcus epidermidis 195 Isolat 20 4 13 12 3 3 9
Staphylococcus epidermidis ATTC 35984 7 3 7 7 0 0 5
Staphylococcus warneri DSM 20036 5 0 0 0 0 0 3

no
ve

ls
tr

ai
ns

Escherichia coli DSM 426 24 22 13 12 16 6 1
Escherichia coli DSM 5208 26 25 13 15 12 2 0
Lactobacillus acidophilus DSM 9126 25 16 0 1 21 3 8
Micrococcus luteus DSM 3906 45 8 20 23 10 33 0
Staphylococcus hominis BCD 2684 21 5 5 2 16 16 4
Streptococcus thermophilus DSM 20617 28 16 4 2 0 2 0

3



S2. Experiments using Pre-processing Techniques

The following section includes recognition rates when pre-processing techniques (reduction
to fingerprint region, background subtraction) are employed prior to classification.

Table S2: Novelty detection results solely based on the fingerprint region 540–1800 cm−1.

(a) multi-class case

method specificity sensitivity ARR
GMM 77 (45.6%) 100 (76.9%) 61.2%
Parzen 169 (100.0%) 0 (0.0%) 50.0%
SVDD (ν = 0) 89 (52.7%) 78 (60.0%) 56.3%
Kernel KNN (K = 50) 2 (1.2%) 130 (100.0%) 50.6%
GPR-M 21 (12.4%) 124 (95.4%) 53.9%
GPR-V 155 (91.7%) 45 (34.6%) 63.2%
MLS (m = 1000) 119.75 (70.9%) 76.45 (58.8%) 64.8%

(b) one-class case

method specificity sensitivity ARR
GMM 23 (13.6%) 127 (97.7%) 55.7%
Parzen 169 (100.0%) 0 (0.0%) 50.0%
Kernel KNN (K = 10) 31 (18.3%) 119 (91.5%) 54.9%
SVDD (ν = 0) 29 (17.2%) 123 (94.6%) 55.9%
GPR-M 38 (22.5%) 119 (91.5%) 57.0%
GPR-V 27 (16.0%) 126 (96.9%) 56.4%
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Table S3: Novelty detection results using a background removal algorithm for eliminating fluorescence artefacts.

(a) multi-class case

method specificity sensitivity ARR
GMM 89 (52.7%) 128 (98.5%) 75.6%
Parzen 169 (100.0%) 0 (0.0%) 50.0%
Kernel KNN (K = 50) 3 (1.8%) 130 (100.0%) 50.9%
SVDD (ν = 0.1) 119 (70.4%) 73 (56.2%) 63.3%
GPR-M 87 (51.5%) 104 (80.0%) 65.7%
GPR-V 169 (100.0%) 2 (1.5%) 50.8%
MLS (m = 1000) 119.15 (70.5%) 74.68 (57.4%) 64.0%
OVA 54 (32.0%) 101 (77.7%) 54.3%

(b) one-class case

method specificity sensitivity ARR
GMM 59 (34.9%) 130 (100.0%) 67.5%
Parzen 169 (100.0%) 0 (0.0%) 50.0%
Kernel KNN (K = 10) 42 (24.9%) 126 (96.9%) 60.9%
SVDD (ν = 0.1) 28 (16.6%) 129 (99.2%) 57.9%
GPR-M 73 (43.2%) 108 (83.1%) 63.1%
GPR-V 130 (76.9%) 99 (76.2%) 76.5%

References
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[2] U. Schmid, P. Rösch, M. Krause, M. Harz, J. Popp, K. Baumann, Chemometr. Intell. Lab. 2009; 96, 159 .
[3] B. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall/CRC, 1986.

5


