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Abstract. The following document contains supplementary derivations and em-
pirical analyses for the paper “Large-scale Active Learning with Approximations
of Expected Model Output Changes”. We provide additional information for five
aspects: (i) a detailed derivation of closed-form solutions required in Section 4 of
the main submission (Section S1), (ii) an analysis of class distributions in MS-
COCO (Section S2), (iii) further comparisons of our approximation techniques
(Section S3), (iv) additional comparisons of computation times (Section S4), and
(v) additional qualitative results on the biodiversity dataset (Section S5).

S1 Mathematical Derivation of LSR-EMOC

Derivation of the model update in Eq. (4) of the paper To derive efficient formulas
for our LSR-EMOC approach, it is necessary to consider the actual change in the model
parameters ∆wc itself which is defined as difference of the current model wc and the
updated model w′c. The model parameters are obtained by simple linear regression:

wc = C−1reg Xyc , (S1)

w′c = C′−1reg X′y′c , (S2)

where X′ and y′c denote data matrix and binary label vector after the new example x′

has been added with label y′c. Without loss of generality, we can decompose the product
of data matrix and label vector as follows:

X′y′c =Xyc + x′y′c . (S3)

This research was supported by grant DE 735/10-1 of the German Research Foundation
(DFG).

http://link.springer.com/
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Furthermore, the regularized covariance matrix1 Creg with respect to training data X is
obtained by:

Creg = XXT + σ2
nI . (S4)

With some simple linear algebra, we can derive a well-known and efficient model up-
date rule [6]:

∆wc = w′c −wc (S5)
(S1),(S2)

= C′−1reg X′y′c −C−1reg Xyc . (S6)

For the updated inverse matrix C′−1reg we can use the standard theorem of Sherman-
Morrison [7] since C′reg is a rank-one update of Creg:

(S6)
(5)
=

(
C−1reg −

C−1reg x
′x′TC−1reg

1 + x′TC−1reg x′

)
X′y′c −C−1reg Xyc (S7)

= C−1reg X
′y′c −

C−1reg x
′x′TC−1reg

1 + x′TC−1reg x′
X′y′c −C−1reg Xyc (S8)

= C−1reg (Xyc −X′y′c)−
C−1reg x

′x′TC−1reg

1 + x′TC−1reg x′
X′y′c . (S9)

Applying the decomposition of the updated training data leads to the following simpli-
fication:

(S9)
(S3)
= C−1reg x

′y′c −
C−1reg x

′x′TC−1reg (Xyc + x′y′c)

1 + x′TC−1reg x′
(S10)

= C−1reg x
′y′c −

C−1reg x
′x′TC−1reg Xyc +C−1reg x

′x′TC−1reg x
′y′c

1 + x′TC−1reg x′
. (S11)

Using the solution of model parameters in Eq. (S1) further shortens the equation:

(S11)
(S1)
= C−1reg x

′y′c −
C−1reg x

′ (x′Twc + x′TC−1reg x
′y′c
)

1 + x′TC−1reg x′
(S12)

= C−1reg x
′

(
y′c −

x′Twc + x′TC−1reg x
′y′c

1 + x′TC−1reg x′

)
(S13)

= C−1reg x
′

(
y′c
(
1 + x′TC−1reg x

′)
1 + x′TC−1reg x′

−
x′Twc + x′TC−1reg x

′y′c

1 + x′TC−1reg x′

)
(S14)

= C−1reg x
′

(
y′c + x′TC−1reg x

′y′c − x′Twc − x′TC−1reg x
′y′c

1 + x′TC−1reg x′

)
. (S15)

1 Note that Creg is actually a regularized matrix of the empirical non-central second order mo-
ments. Nonetheless we use the term regularized covariance matrix in the remainder.
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Simplifying the given equation leads to the final model update:

(S15) = C−1reg x
′
(

y′c − x′Twc

1 + x′TC−1reg x′

)
. (S16)

Efficient model output changes (Eq. (3) of the paper) The obtained efficient model
update rule can now be used to derive our LSR-EMOC criterion for a given class y′.
We start with the definition of the output change for linear models:

∆fmc (x
′, y′) =

1

|L ∪ U|
∑

xj∈L∪U

L (fmc (xj) , f
′
mc (xj)) (S17)

=
1

|L ∪ U|
∑

xj∈L∪U

1

|C|
∑
c∈C
|f ′c (xj)− fc (xj)| (S18)

=
1

|L ∪ U|
∑

xj∈L∪U

1

|C|
∑
c∈C

∣∣w′Tc xj −wT
c xj

∣∣ . (S19)

The closed-form solution for∆wc avoids the explicit computation of the updated model:

(S19)
(S5),(S16)

=
1

|L ∪ U|
∑

xj∈L∪U

1

|C|
∑
c∈C

∣∣∣∣xT
j C
−1
reg x

′
(

y′c − x′Twc

1 + x′TC−1reg x′

)∣∣∣∣ . (S20)

Some simplifications lead to the final output change for a given class y′:

(S20) =
1

|C|
∑
c∈C

∣∣∣∣ y′c − x′Twc

1 + x′TC−1reg x′

∣∣∣∣ · 1

|L ∪ U|
∑

xj∈L∪U

∣∣xT
j C
−1
reg x

′∣∣ (S21)

=
1

1 + x′TC−1reg x′
· 1

|C|
∑
c∈C

∣∣wT
c x
′ − y′c

∣∣
· 1

|L ∪ U|
∑

xj∈L∪U

∣∣xT
j C
−1
reg x

′∣∣ . (S22)

This formula allows for evaluating the EMOC criterion directly without explicitly esti-
mating model parameters for the new example (x′, y′).

By using a proper class probability, we can obtain our proposed LSR-EMOC ap-
proach. Therefore, we have to consider every class in the label space Y as possible
update and its corresponding model output change:

∆fmc (x
′) =

∑
y′∈Y

(p (y′|x′)∆fmc (x
′, y′)) . (S23)
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Fig. S1: Distribution of class frequencies in the full MS-COCO dataset including noise
data (blue). Number of examples are shown in logarithmic scale. In addition, we show
the distribution over examples drawn by our method (yellow).

Applying the derivation of the output change and simplifying the obtained equation
leads to the proposed model output change criterion:

(S23)
(S22)
=

∑
y′∈Y

(
p (y′|x′) · 1

1 + x′TC−1reg x′
· 1

|C|
∑
c∈C

∣∣wT
c x
′ − y′c

∣∣
· 1

|L ∪ U|
∑

xj∈L∪U

∣∣xT
j C
−1
reg x

′∣∣) (S24)

=
1

1 + x′TC−1reg x′
·
∑
y′∈Y

(
p (y′|x′) 1

|C|
∑
c∈C

∣∣wT
c x
′ − y′c

∣∣)

· 1

|L ∪ U|
∑

xj∈L∪U

∣∣xT
j C
−1
reg x

′∣∣ . (S25)

S2 Distribution of MS-COCO Dataset

As stated in the main paper, the MS-COCO dataset [5] is an imbalanced dataset with
an heavy tailed class distribution (see blue bar plot in Fig. S1). Fig. S1 shows a sample
class distribution after 500 queries with LSR-EMOCr-500. It can be seen that our method
selects examples of well presented classes. We further observe that the majority of the
small classes are ignored since our selection criterion does not explicitly focus on rare
class discovery.

S3 Comparison of Approximations of LSR-EMOC

Due to lack of space in the main submission, we presented only the comparison of our
approximations for one of the chosen subsets of MS-COCO [5]. Here, we present fur-
ther comparisons for the scenario with all data from MS-COCO (Fig. S2) as well as
the class-balanced subset (Fig. S3) as used in Fig. 5 of the main paper. Note that we
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Fig. S2: Comparing approximations of LSR-EMOC on MS-COCO.
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Fig. S3: Comparing approximations of LSR-EMOC on MS-COCO with balanced class
distribution.

do not contain an evaluation for LSR-EMOC without approximations on the whole
MS-COCO dataset since the required computation time was unaffordably high. As
shown on smaller datasets, our presented approximations indeed reach comparable re-
sults compared to the original method. Further evidence for the computational effi-
ciency of our proposed approximation techniques arises from the gained speedup of
approximately 5.3 on the class-balanced subset of MS-COCO (LSR-EMOC ≈ 128.7s
vs. LSR-EMOCr-100 ≈ 24.4s for a whole query selection). A more detailed analysis
regarding overall query times is presented in the next section.

S4 Runtime Comparisons

Besides the analyses presented in the main paper, we were further interested in a de-
tailed runtime comparison of our evaluated methods. To this end, we follow the experi-
ment in Section 5.1 on MS-COCO dataset (Fig. 4) and analyze the required computation
times. We simulate a real world active learning experiment by assuming that a human
annotator needs 10s to label an instance (this follows the setup presented in the supple-
mentary material of [3]). In consequence, we can investigate the classification accuracy
as a function of total time spent (including query selection and labeling). Results are
shown in Fig. S4

As can be seen, our proposed method needs longer than the competitor methods
to process all queries. This is indeed noticeable, since results are shown for a linear
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Fig. S4: Comparing runtimes considering 10s for labeling on MS-COCO.

model and the fasted of our approximation techniques. Hence, further speed-ups are
hardly expectable. However, this drawback becomes less important if the annotation
time increases. Besides this aspect, we have already seen in previous evaluations that all
competitor methods are not able to reach the accuracy level of our method. Considering
this, querying samples might be faster for other methods, but more labels are required
to achieve comparable performances. In conclusion, which method to chose depends on
whether the annotation cost or the selection time is the limiting factor in an application.

S5 Additional Qualitative Results of the Biodiversity Dataset

The main paper already contains qualitative results regarding queried images from the
biodiversity dataset (see Section 5.2). In Fig. S5, we extend this qualitative analysis and
present more selected examples for several methods. Shown is every 50th queried exam-
ple of a single run for PKNN [1], random selection, and our proposed LSR-EMOCr-100

algorithm. From the visual inspection of selected examples, we conclude that a mere
random selection can not prevent from querying noisy data (e.g., query 151 and query
351). Although PKNN does better in this aspect, it often selects redundant data (e.g.,
query 201 and query 451 as well as query 101 and query 151). We hence conclude that it
fails in learning a proper model for the biodiversity data. This incapability of learning a
model for this data could explain the dropping performance in the presented experiment
(see Section 5.2 of the main paper). In contrast to this, our proposed LSR-EMOCr-100

algorithm even tries to refine decisions for some difficult cases (e.g., query 251 versus
query 451 – note the deer in the background).
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Fig. S5: Example queries from the biodiversity dataset.
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