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Abstract. In the following, we present our chimpanzee face dataset in
detail and give additional results for age and age group prediction. Al-
though the content of this document is not essential for the main paper,
it contains additional details to support our contributions.

S1 Statistics of Our Chimpanzee Datasets

For a detailed understanding of experimental results on both datasets, it is es-
sential to analyze their statistics in advance to check for potential dataset bias.
In the following, we provide several views on the provided data of both datasets.
As in the experimental setup of the main paper, we exclude categories with less
than 5 examples for evaluation. These categories are either artifacts of incor-
rect annotations in meta-data (e.g., chimpanzees identified as “Allex” instead of
“Alex”) or contain rare individuals for which classification estimates are hardly
reliable. In consequence, we obtain all 24 categories for C-Zoo and 62 of 78
categories for C-Tai.

Statistics of Individuals The distribution of annotated faces per individual
is shown in Fig. S1. As can be seen, the C-Zoo dataset offers a moderately
balanced setting. In contrast, the C-Tai dataset is strongly heavy-tailed. Thus,
models and evaluation metrics need to consider this aspect, e.g., by reporting
averaged class-wise recognition rates instead of overall recognition rates.

Statistics of Age We further analyze the available faces within each age
group and visualize the resulting statistics in Fig. S2. First of all, we notice
tiny inconsistencies of age group labels, especially at the border between age
groups. In addition, we observe that the Sub-Adult group is rarely recorded
in the dataset C-Tai. Furthermore, the recordings in wild life (dataset C-Tai)
contain substantially more infants. Again, imbalance of distributions should be
reflected in the chosen evaluation metric.

http://link.springer.com/
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Fig. S1: Distributions of annotated faces per individual for C-Zoo (left) and
C-Tai (right).
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Fig. S2: Distributions of annotated faces within age groups for C-Zoo (left)
and C-Tai (right).

Statistics of Gender We finally analyze the distribution among male and
female individuals for both datasets. The obtained statistics are shown in Fig. S3.
It can be clearly seen that recordings of several ages are only covered by single
genders. However, both genders are widely spread over almost all ages.

S2 Age and Age Group Prediction

In addition to identification and gender classification shown in the main paper,
our approach also allows for age and age group prediction. In the following, we
present results for both tasks which are not contained in the main paper due to
the lack of space.
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Fig. S3: Distributions of annotated faces among male and female for C-Zoo
(left) and C-Tai (right).

S2.1 Evaluation of Chimpanzee Age Estimation

Setup – Data For each dataset, we divide the entire range of ages into
five equally sized age intervals. From each interval, we randomly sample 100
individuals for training. All remaining data serve for hold-out testing. As in the
remaining evaluations, we repeat the process of random sampling five times to
obtain reliable results.

Setup – Baselines As for the task of gender estimation (Sect. 6.2 in the
main paper), we are not aware of a published baseline for predicting ages of
chimpanzees. Thus, we compare our results against two straight-forward solu-
tions for the task. The simplest baseline is to always return the average age of all
chimpanzee recordings within training data (“baseline naive”). In addition, we
use our identification approach (Sect. 6.1) to predict the ID of an individual and
return its mean age within training data (“Identification + attribute query”).
Accuracy of results is measured as L2 error between predicted age and ground
truth data.

Setup – Approaches To directly estimate the age of chimpanzees reliably,
we apply Gaussian process (GP) regression models. Hence, we treat the ordinal
attribute as continuously valued which is consistent with the continuous pro-
cess of aging. For a detailed introduction to GPs, we refer to Rasmussen and
Williams [3]. An RBF-kernel serves as covariance function with shared vari-
ance across all dimensions. We did not apply automatic relevance determination
techniques due to the insufficient amount of data given the high dimensional-
ity of representations. Hyperparameters of covariance function and regularizer
are found by exhaustive five-fold cross validation (parameter ranges 1 . . . 10 and
2−7 . . . 22). We use only a single fold for training and the remaining four folds for
validation which resulted in better parameter estimates. We also experimented
with marginal likelihood optimization (which is theoretically appealing) but only
found inferior behavior. Training of GP models is done using the GPML toolbox
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Table S1: Age estimation results on C-Zoo and C-Tai. Results are averaged
over five random splits. We report L2-errors between predicted and ground truth
age. Lower is better.

Approach C-Zoo C-Tai

Baseline: naive
3-a) average age 8.73 ± 0.02 12.78 ± 0.03

Identification + attribute query
3-b) using 1-k) 2.55 ± 0.21 8.30 ± 0.46

CNN codes + GP
3-c) VGGFaces pool5 5.83 ± 0.06 8.41 ± 0.12
3-d) VGGFaces fc7 5.93 ± 0.13 8.35 ± 0.13
3-e) BVLC AlexNet pool5 4.51 ± 0.06 6.79 ± 0.08
3-f) BVLC AlexNet fc7 4.75 ± 0.17 6.61 ± 0.05

CNN codes + Pooling + GP
3-g) BVLC AlexNet pool5 + bilinear 5.13 ± 0.10 7.06 ± 0.10
3-h) BVLC AlexNet pool5 + bilinear + norm 5.03 ± 0.10 6.90 ± 0.09
3-i) BVLC AlexNet pool5 + bilinear + norm + logm 6.74 ± 0.05 9.78 ± 0.09

Cross-Dataset
3-j) using 3-f) 6.99 ± 0.03 9.88 ± 0.01

of Rasmussen and Nickisch [2]. We clipped predicted ages at zero from below to
prevent negative age estimates. As representations of face regions, we apply CNN
codes of the VGGFaces network and the Caffe BVLC reference net. The only
difference to the setup in Sect. 6.1 and Sect. 6.2 is that we do not L2-normalize
CNN activations which otherwise lowered regression accuracy considerably. Fur-
thermore, we evaluate the effect of bilinear pooling and our logm-operation.

Setup – Generalization As for gender estimation in the main paper, we are
finally interested in the generalization abilities of learned models across datasets.
Therefore, we use all data of one dataset for model training and evaluate it on
the five splits of the remaining dataset. Parameters are estimated as described
before.

Results All results are shown in Table S1. On C-Zoo, the identification base-
line remarkably outperforms all remaining approaches. Hence, we conclude that
regression seems to be substantially more difficult than identification of individ-
uals if training data of each individual is sufficiently representative. Similar to
previous experiments, we again observe that the faces network is not able to
compete with the object network. For the C-Tai dataset, we observe a slightly
different trend. Since identification is more difficult, the baseline is clearly out-
performed by direct age regression.

In total, findings for age regression seem to be inverse to the classification
tasks: CNN codes obtained from the last layer seem to work well but normaliza-
tion reduces accuracy. Similarly, bilinear pooling only results in mediocre accu-
racy and our logm operation reduces accuracy further. Hence, we conclude that
regression and identification are substantially different. In consequence, further
research needs to be done to understand involved effects.
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Table S2: Age group classification results on C-Zoo and C-Tai. Results are
averaged over five random splits. We report averaged class-wise recognition rates
(ARR in %). Higher is better.

Approach C-Zoo C-Tai

Baseline: naive
4-a) majority age group 25.00 ± 0.00 20.00 ± 0.00

Identification + attribute query
4-b) using 1-k) 94.73 ± 1.20 77.88 ± 4.09

CNN codes + SVM
4-c) VGGFaces pool5 86.10 ± 1.84 84.02 ± 1.25
4-d) VGGFaces fc7 78.78 ± 2.33 76.43 ± 1.41
4-e) BVLC AlexNet pool5 89.95 ± 1.90 85.33 ± 0.97
4-f) BVLC AlexNet fc7 86.67 ± 2.73 83.79 ± 1.48

CNN codes + Pooling + SVM
4-g) BVLC AlexNet pool5 + bilinear 92.68 ± 1.84 87.58 ± 1.06
4-h) BVLC AlexNet pool5 + bilinear + norm 93.15 ± 1.35 88.85 ± 1.49
4-i) BVLC AlexNet pool5 + bilinear + norm + logm 91.08 ± 1.29 85.33 ± 1.51

Cross-Dataset
4-j) using 4-i) 55.96 ± 1.26 49.39 ± 0.37

S2.2 Evaluation of Chimpanzee Age Group Classification

In contrast to directly predicting the age of a chimpanzee, age group classification
only distinguishes between a few categories. Details about the distribution of
these classes across both datasets were given in Section S1.

Setup – Data For each dataset, we randomly split data of each age group
into 90% for training and 10% hold-out for testing. As previously, we repeat
the process of random sampling five times to obtain reliable results. Model ac-
curacy is reported as averaged age-group-wise recognition rates to account for
imbalanced age groups.

Setup – Baselines, Approaches, and Generalization We apply the same
setup as for gender classification in Sect. 6.2. Hence, we obtain two baselines by
predicting either the most common age group (“baseline naive”) or using our
identification approach (“Identification + attribute query”). We further train
linear SVMs on CNN codes and evaluate the effect of bilinear pooling and
our logm-operation. Finally, we evaluate the generalization ability across both
datasets.

Results All results are shown in Table S2. As for the regression of age the
identification baseline leads to the best accuracy on C-Zoo. However, results with
bilinear pooling are only little behind. Hence, we conclude that the complexity
of age group classification is in between identification and age regression. For
C-Tai, where identification of individuals is more difficult, direct prediction of
age groups pays off and leads to significantly increased accuracy. Again, we
observe that VGGFaces is clearly inferior to the BVLC AlexNet. Furthermore,
bilinear pooling gives additional improvements. Regarding our logm-operation,
we do not observe noticeable benefits from the embedding in a sound (Euclidean)
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vector space. Finally, we observe that the generalization across datasets is only
partially possible. We attribute this to the different number of categories and
strong changes of data distributions.

S3 Normalization of Bilinear CNN Activations

We already noted in the main that a normalization of bilinear activations can
be beneficial when parsing it to the logm transformation to ensure numerical
stability. In the following, we outline the applied normalization technique which
has been inspired by [1]. Instructions are given as Matlab code.

1. Obtain feature map of CNN layer:
features = net.blobs( s_layer ).get_data();

2. Vectorize spatial response map:
i_channelCount = size ( features, 3);
features = reshape ( features, [],i_channelCount);

⇒ reshape responses into a (width · height)× i channelCount matrix

3. Response normalization at each location:
features = bsxfun(@times, features, 1./sqrt(sum(features,2).ˆ2));

⇒ increase comparability of activations at different locations
⇒ thereby improve the condition of the bilinear matrix

4. Second order matrix with sum pooling:
features = features’*features;

⇒ sum pooling realized as inner product

5. Apply logm transformation:
features = logm( features + f_sigma*eye( size(features) ) );

6. Take lower triangle:
features = features ( logical(tril(ones(size(features)))));

⇒ remove redundant information from symmetric matrix

7. Signed square root:
features = sign(features).*sqrt(abs(features));

⇒ similar to “power normalization” and “RootSIFT”

8. L2-normalization:
features = features / sqrt(sum(features.ˆ2));

⇒ pre-conditioning for SVM solver
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