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Diffusion Is Great, But Specificity Is Key! Alignment Aspects

What we were looking for... Distribution

= Fréchet Inception Distance (FID)!" for image quality
= Similarity between distribution of image sets 7 and I
= Lower values indicate better alignment

High-Frequency Artifacts \/\/\/\/\

= Generative models introduce distinct types of noise®
» Compute power spectrum of residuals (PR) for Z _ and I
= Frobenius norm between both spectra: lower is better

Aesthetics /@\

= Artworks exhibit f -2 distribution across frequency spectrum®
= Fit linear function in log-log space for average power spectra
» Power spectrum slope distance (PSD) between Z  and I

Modlfylng Distributions

VAE Decoder Modification Fine-Tuning Denoising U-Net Text Prompt Optimization
= Modify learnable upscaling in VAE = Direct method to influence generative image distribution = Modify condition by adding specific
encoder to reduce artifacts = Three variants of how to include text prompts: information (styles, attributes, ...)
= £ is weighted combination of three (i) Unconditional (i) Conditional (iii) Mixed (20/80) = Prompt enrichment strategy in three
loss terms: \ levels and using CFG!
o Focal Frequency @ B Diffusion Process o Level 0:
Loss (FFL)® Text Art descriptions only
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Evaluation & Results

ArtEmis Dataset!” Experimental Setup

= 80K artworks from WikiArt = SD2.18 base: VAE downsampling factor 8; 865M parameter U-Net; OpenCLIP ViT-h/14 text encoder
= Controlled shift from reqular data = 75K copyright free artworks; 75/25 train/test split; CFG scales (y): 4, 8, 12, 16; Sampling five times

ina-Tuni y=4 y=16
Rk £ Fine-Tuning |FID| PR PSD | FID| PR PSD | . y Prompt FlD\l, PR\I, PSD\L
y = p = S N < S
Baseline 75.6311030 73.9T:660 0.17:018  66.81411.12 58.4Ts2266  0.52:015 | _evel 0 83.17+008 81.20+2767 0.18+0.19
Unconditional 69.57:230 60.28:999 0.13:008 70.67+740 55.67:980 0.3610.09

4 Level T 715.22+1000 73.67:+2568 0.14+015
L evel 2 ]7.23+005 72.30:2621 0.14+0.16
0
1

4 Conditional 72.75:2143 69.06+1232 0.29:013  34.94:420 64.09:816  1.00+0.05
Mixed (20/80) 63.47:1249 73.62:1125 0.25:015 41.561284 74.39:840 0.88:0.06

Unconditional 68.49:043 53.34:857 0.13:009 56.97:761 36.071:882 0.35:012

Slope

8 anditional 73.30:21.73 62.07+1136 0.26:012 33.54:3901 53.80:796 0.82:0.07 _aye 71 . 371_1 1.84 74 551‘28.89 0 521_0.21
Mixed (20/80) 67.86:17.47 63.49:1056 0.28:012 34.77+273 57.17:834  0.79:0.07 -3
v Unconditional 68.34:00s 54.80:45 0.14:014 57.45:67 37.54:0 0.39:012 16 Leve 66.19:1098  595.69:21.97 0.47:0.19

8  Conditional  72.73:2170 62.31s1216 0.37:012 33.90:385 54.68:820 0.89:0.07
v Mixed (20/80) 67.37:17.42 63.96:11.44 0.37:013  35.261265 58.92:851  0.85:0.07

= Fine-tuning using LoRA" ranks 4 and 8
= Denoising U-Net fine-tuning is best
= [ does not further improve results IR0  respect to aesthetic (PSD)
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= Higher CFG has negative
impact on alignment with

= Style and artist info improve alignment
= No further improvement when adding
evoked emotions and human attribution
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