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Motivation and method Expected model output changes
Active learning: automatically select examples x’ € $( that shall be labeled by an marginalization over marginalization over
/
annotator, i.e., assigned output value vy’ € ), and are likely to increase the active learning score yet unknown label y unknown future examples
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Main idea:

select examples that likely change future outputs ot the model

f(x)sf (x;x",y))

loss function measuring output of the model
the differences of model outputs when (x’,9") is added
e.g., L(z,2") = |z — 2] as a training example
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other active learning What kind of examples would you like to label, examples that change future classification decisions
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strategies (often a generalization) or examples with no impact at all? %)
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