

Seeing through bag-of-visual-word glasses: towards understanding quantization effects in feature extraction methods

Alexander Freytag, Johannes Rühle, Paul Bodesheim, Erik Rodner, and Joachim Denzler

Live experiment at the poster!

Computer Vision Group, Friedrich Schiller University of Jena Ernst-Abbe-Platz 2, 07743 Jena, Germany

http://www.inf-cv.uni-jena.de/

Online experiment: http://goo.gl/Vffr9y

Motivation and goal

- Understand quantization effects in bag-of-words models.
- Measure the loss of visual information for image categorization with respect to the quantization level.

Comparing human and machine performance (15 scenes dataset)

Method details

- 1 Extract local feature descriptors (histograms of oriented gradients, HOG) of the grayscale image from patches on a dense grid
- ② Cluster descriptors to compute visual codebook, e.g., with k-means
- 3 Quantization of each descriptor with codebooks of different sizes
- Feature inversion technique proposed by Vondrick et al. (ICCV, 2013) to obtain grayscale patches from histogram descriptors (see project page: http://web.mit.edu/vondrick/ihog/)
- © Replace original image patches by inverted descriptors

Conclusions

- Humans perform worse than machine learning approaches when being restricted to visual information present in quantized local features rather than seeing the original input images.
- Early stages of local feature extraction seem to be most crucial for achieving human performance on original images.
- Large codebook sizes in the order of thousands of prototypes are essential not only for good machine learning performance, but more interestingly, also for human image understanding.