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Motivation

class y=1
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GP Regression with 
variance estimates

Classification hides the 
underlying uncertainty of decisions

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5
la

be
ls

/o
ut

pu
ts

 y

O(n )2

1st dimension of the input vectors

Gaussian process (GP) inference is not available for n� 10, 000
(O(n3) for learning and O(n) for prediction)

Previous work: large-scale GP classification [4]

Goal: use the GP framework even for large-scale incremental and
active learning by using approximated GP variance estimates

Our contributions

1 Extending [4] towards efficient incremental learning with GP
(new categories, new examples).

2 Several approximations and methods able to compute the
predictive GP variance even for large-scale scenarios.

3 Evaluation of our methods with active learning scenarios.

Gaussian process inference and fast kernel calculations

Flexible Bayesian approach for regression and classification.

We use label regression for one-vs-all classification [3].

Closed form solution of the posterior p(y∗|x∗) ∼ N (µ∗, σ
2
∗)

µ∗ = k
T
∗ (K + σ2 · I)−1y

σ2∗ = k∗∗ − kT∗ (K + σ2 · I)−1k∗ + σ2 .

Fast calculation of kT∗α and Kv with HIK [2, 4, 5]:
Khik(x,x′) =

∑D
d=1min(xd, x

′
d)

Observation: kT∗α is piecewise linear

Idea: sorting xd and calculating look-up tables

Learning: Calculation of α with conjugate gradients and fast
K · v multiplications (kernel matrix is not stored explicitly)

Active learning

This paper
(ACCV 2012)

&

Predictive variance estimates

1 Represents uncertainty of the classification estimate

2 Useful for active learning and one-class classification

Efficient approximations of the predictive variance

1 Precise Uncertainty Prediction (PUP): compute k∗ and apply a
linear solver.

2 Fine Approximation of the Pred. Uncertainty (FAPU):
based on the top k eigenvalues µi and -vectors of the regularized
kernel matrix:

kT∗ (K + σ2I)−1k∗ ≥
( k∑
i=1

1

µi
ν2i +

1

µk+1

(
||k∗||2 −

k∑
i=1

ν2i

))
,

where νi is the projection on the ith eigenvector. The norm of k∗
can also be approximated efficiently.

3 Rough Approximation of the Pred. Uncertainty (RAPU):
use the FAPU method with k = 0. The quantization idea of [2]
can also be applied here (q-RAPU).

Runtime evaluation

Approach Asymptotic runtime Exact? Time

q-RAPU O(D) no 34 µs
RAPU O(D log n) no 267ms
FAPU O(D log n + kn) no 1.15s
PUP O(Dn) yes > 1min
GP-standard O(n2 + nD) yes n/a

Runtime evaluation done with 50, 050 training examples.

Active learning experiments
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Experiment with a (left fig.) synthetic checkerboard learning task
and (right fig.) parts of the ImageNet database (ILSVRC’10)

Different active learning strategies [1]:

Qµ∗ = argmin
i
|µ∗(x̂i)| Qunc = argmin

i

|µ∗(x̂i)|√
σ2 + σ2∗(x̂i)

Qσ2∗
= argmax

i
σ2∗(x̂i) QUnc+ = argmin

i

(
|µ∗(x̂i)|+

√
σ2 + σ2∗(x̂i)

)
The heuristic approaches QUnc and QUnc+ give consistent
performance boosts when compared to random selection.

Further experiments in the paper: incremental learning
and one-class classification

Conclusions

Active and incremental learning with tens of thousands of learning
examples

Estimation of the GP predictive variance with different degrees of
approximation

Visual recognition with large-scale data requires more
than classification decisions!
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