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Contribution

We provide a method based on null space projections that allows for
multi-class novelty detection with a single model using true
multi-class labels of training samples.

Problem formulation

m Given: samples from a fixed number of known categories

m Task: decide for each test sample whether it belongs to one of the
known categories or to a new/unseen category

m Usual approach: apply one-class classification methods like
one-class SVM (treats all training samples as a single class) é

Null space methods

mFind transformation such that:

ﬁ” ............. " Flsamples of same class are
_______________________ - mapped to same point and
Q' Hsamples of different classes are
> >

mapped to different points

lllustration of null space embedding

m [ransformed feature space is called null space

m Problem: transformation only exists in small sample size case
= Null Foley-Sammon transform (NFST) [2]

m Solution: embedding in high dimensional feature space using

kernels! = Kernel-NFST (KNFST) [5]

mFor C classes, the null space has dimension C — 1
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Real null space example with three categories of the ImageNet dataset

Our novelty detection approach. ..
m... has no method-specific parameters!
m... does not rely on complex density estimation!

m... clearly outperforms other methods in all our experiments!

Multi-class novelty detection

Fl Compute KNFST from training data and obtain target points ¢
H Project test sample ™ into the null space to obtain t*

El Compute minimum distance to target points in the null space
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Calculating novelty scores in the joint null space of multiple classes
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Experimental setup

m Datasets: Caltech-256 and ImageNet (1,000 categories of the
ImageNet Large Scale Visual Recognition Challenge 2010)

m Features: bag-of-visual-words histograms (1,000 dimensions) of
densely sampled SIFT descriptors

m Kernels: histogram intersection kernel (HIK) and exponential

generalization (EXPHIK)

m Results for five and ten known categories, median AUC scores over
50 (Caltech) and 100 (ImageNet) randomly selected training sets

Experimental results
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Five object categories known during training (Caltech-256 dataset)
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