

Divergence-Based One-Class Classification Using Gaussian Processes

Computer Vision Group

Paul Bodesheim, Erik Rodner, Alexander Freytag, Joachim Denzler

Computer Vision Group, Friedrich Schiller University Jena, Germany

{Paul.Bodesheim, Erik.Rodner, Alexander.Freytag, Joachim.Denzler}@uni-jena.de http://www.inf-cv.uni-jena.de/

One-class classification (OCC)

- Given: a set of only positive training samples of a single class
- Goal: estimate a soft membership score for a test sample
- ■Why?: negative data is difficult to model or is hard to obtain

Aim of this work

Shed light on one-class classification from a completely different theoretical perspective

- Measure how strongly a new test sample would influence the current model if it was used for training
- Estimation of model change by comparing reclassification results
- Probabilistic framework based on information theory

Gaussian process regression [RW06]

 \blacksquare Continuous outputs y_c are assumed to be generated according to:

$$y_c(\mathbf{x}) = f(\mathbf{x}) + arepsilon$$
 (f ... latent function, $\ arepsilon$... noise term)

- \blacksquare Output values of unknown samples \mathbf{x}^* are predicted in a probabilistic fashion by marginalising over latent functions f
- Assumptions:
- 1 Latent functions f are drawn from a Gaussian process prior with mean function being zero and covariance function $\kappa(\cdot,\cdot)$
- **2** The noise term is normally distributed: $\varepsilon \sim \mathcal{N}(0, \sigma_n^2)$.
- \Rightarrow Predictive output value y_c^* for a new sample \mathbf{x}^* given the data \mathbf{D}^* is normally distributed as well: $y_c^* \mid \mathbf{D}^* \sim \mathcal{N}(\mu_*, \sigma_*^2)$

$$egin{aligned} \mu_* &= \mathbf{k}_*^\mathsf{T} \left(\mathbf{K} + \sigma_\mathsf{n}^2 \, \mathbf{I}
ight)^{-1} \mathbf{1} \ \sigma_*^2 &= \mathbf{k}_{**} - \mathbf{k}_*^\mathsf{T} \left(\mathbf{K} + \sigma_\mathsf{n}^2 \, \mathbf{I}
ight)^{-1} \mathbf{k}_* + \sigma_\mathsf{n}^2 \end{aligned}$$

■ Label regression for OCC [KRD10]: GP-Mean, GP-Var, GP-Pred

Divergence-based one-class classification

- Assumed label of test sample: $y^* \in \{-1, 1\}$
- Reclassification result of test sample: $Y^* \in \{-1, 1\}$
- Influence of test sample on current model via conditional mutual information:

$$I(Y^*, y^* \mid \mathbf{D}^*) = H(Y^* \mid \mathbf{D}^*) - H(Y^* \mid y^*, \mathbf{D}^*)$$

H ... Shannon entropy, $\mathbf{D}^* = (\mathbf{X}, \mathbf{y}, \mathbf{x}^*)$, \mathbf{X} ... training samples, $\mathbf{y} = \mathbf{1}$... labels, \mathbf{x}^* ... test sample

Conditional mutual information turns out to be equal to the Jensen-Shannon (JS) divergence:

$$I(Y^*, y^* \mid \mathbf{D}^*) = D_{JS}^{\pi}(\mathbf{p}_1 || \mathbf{p}_{-1})$$

$$= \pi \cdot D_{KL}(\mathbf{p}_1 || \mathbf{m}) + (1 - \pi) \cdot D_{KL}(\mathbf{p}_{-1} || \mathbf{m})$$

 $D_{\mathrm{KL}}(\cdot||\cdot)$... Kullback-Leibler divergence, $\mathbf{m}=\pi\cdot\mathbf{p}_1+(1-\pi)\cdot\mathbf{p}_{-1}$... mixture of $\mathbf{p}_1 = \mathrm{p}(Y^* \mid y^* = 1, \mathbf{D}^*)$ and $\mathbf{p}_{-1} = \mathrm{p}(Y^* \mid y^* = -1, \mathbf{D}^*)$ with prior $\pi = \mathrm{p}(y^* = 1 \mid \mathbf{D}^*)$

■ Visualisation:

Gaussian process probabilities for divergence-based OCC

■ Prior probabilities (new novelty measure **GP-Prob**):

$$\pi = p(y^* = 1 \mid \mathbf{D}^*) = p(y_c^* > 0 \mid \mathbf{D}^*) = \frac{1}{2} - \frac{1}{2} \operatorname{erf}\left(\frac{-\mu_*}{\sqrt{2\sigma_*^2}}\right)$$

■ Conditional probabilities from reclassification:

$$p(Y^* = 1 \mid y^*, \mathbf{D}^*) = p(y_c^* > 0 \mid y^*, \mathbf{D}^*)$$
$$p(Y^* = -1 \mid y^*, \mathbf{D}^*) = 1 - p(y_c^* > 0 \mid y^*, \mathbf{D}^*)$$

- Balancing in reclassification via different noise levels is optional
- ⇒ balanced or imbalanced JS divergence

Experimental Results

■ UCI datasets (best three results of each task are underlined)

	Median AUC of target class			
OCC method	Iris-Versicolour	Iris-Virginica	Sonar-Rocks	Sonar-Mines
GP-Prob	0.981	0.966	0.625	0.772
bal. JS div.	<u>0.981</u>	0.967	<u>0.618</u>	0.768
imbal. JS div.	<u>0.981</u>	<u>0.968</u>	0.624	0.773
Parzen [Bis06]	0.973	0.960	0.602	0.771
SVDD [TD04]	<u>0.986</u>	0.971	0.609	0.761
GP-Mean [KRD10]	<u>0.983</u>	0.974	0.613	0.756
GP-Var [KRD10]	0.979	0.964	0.608	0.770
GP-Pred [KRD10]	0.980	0.968	0.618	0.776

ImageNet (Visual Object Recognition)

Conclusions

- New one-class classification framework based on information theory
- Gaussian process probabilities are suitable for this framework
- Results comparable to state-of-the-art

References

- BISHOP, Christopher M.:
- Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 2006
- FILIPPONE, Maurizio; SANGUINETTI, Guido:
- Information theoretic novelty detection. In: Pattern Recognition 43 (2010), Nr. 3, S. 805–814
- KEMMLER, Michael; RODNER, Erik; DENZLER, Joachim:
- One-Class Classification with Gaussian Processes. In: ACCV, 2010, S. 489–500
- ${
 m RASMUSSEN}$, Carl E.; WILLIAMS, Christopher K. I.: Gaussian Processes for Machine Learning. The MIT Press, 2006
- TAX, David M. J.; DUIN, Robert P. W.:
- Support Vector Data Description. In: Machine Learning 54 (2004), Nr. 1, S. 45–66