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WHY DO WE NEED TO INTEGRATE PRIOR SEMANTIC KNOWLEDGE? HIERARCHY-BASED SEMANTIC EMBEDDINGS RESULTS 
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Robin (Ad.) Hummingbird Thrush Towhee Oriole Barn Swallow Oriole Flycatcher 

Robin (Ad.) Robin (Ad.) Robin (Ad.) Robin (Juv.) Robin (Juv.) Robin (Juv.) Thrush Thrush NABirds: American Robin (Adult) 
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chimpanzee chimpanzee chimpanzee chimpanzee chimpanzee bear bear shrew CIFAR-100: chimpanzee 

girl chimpanzee girl woman boy girl chimpanzee chimpanzee 
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giant panda giant panda howler monkey capuchin black bear ibex sloth bear howler monkey 

giant panda giant panda giant panda giant panda giant panda lesser  panda lesser panda lesser panda ILSVRC: giant panda 

Semantic similarity does not 
always correlate with visual 
similarity. 
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▪ Simply removing the “gorilla” class  is a sub-optimal “fix” and only works for 

classification, not for content-based image retrieval. 

▪ Better: learning a feature representation that carries semantic information. 

MEASURING SEMANTIC SIMILARITY 

   
  
  
  
   

  
   
  

  

                 
 

 
                 

 

 
 

▪ Previous works focused on learning the 

semantic similarity between classes ei-
ther from text [1] or the images them-
selves [2, 3]. 

▪ However, semantic knowledge is al-

ready available in the form of class 
taxonomies for almost all concepts of 
the world (WordNet [4], Wikispecies, 
Open Tree of Life, ...). 

▪ We use a semantic similarity measure 

derived from this graph of concepts [5]. 
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height of sub-tree rooted at 
lowest common subsumer, 
normalized by height 
of taxonomy 

Goal: learn image features whose dot 
product resembles the semantic 

similarity of their classes 

Class embeddings on the unit hyper-sphere do not need 
to be learned but can be computed explicitly by solving: 

∀1≤𝑖 ,𝑗≤𝑛 :   𝜑 𝑐𝑖 
𝑇𝜑 𝑐𝑗  = sim 𝑐𝑖 , 𝑐𝑗  

∀1≤𝑖≤𝑛 :    𝜑 𝑐𝑖  = 1
 

ℒCORR 𝑥, 𝑦 = 1  𝜓 𝑥 𝑇𝜑 𝑐𝑦  

class embedding function 

known classes 

ℒCORR+CLS 𝑥, 𝑦 

= ℒCORR 𝑥, 𝑦 + 𝜆 ⋅ ℒXENT 𝑓 𝜓 𝑥  , 𝑦  

Cosine Distance with additional classification objective 

L2-normalized CNN output additional FC layer with softmax 

▪ Semantically more consistent retrieval results. 

▪ Semantically meaningful feature space based on prior knowledge. 

▪ Straightforward training. 
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