

WHY DO WE NEED TO INTEGRATE PRIOR SEMANTIC KNOWLEDGE?

The New York Times		Semanti
GOOGLE Google Ph BY CONOR DOUGHE	otos Mistakenly Labels Black People 'Gorillas'	always o similarity
Email	Google continued to apologize Wednesday for a flaw in Google Photos, which was released to <u>great fanfare</u> in May, that led the new	
f Share	application to mistakenly label photos of black people as "gorillas." The company said it had fixed the problem and was working to	
🔰 Tweet	figure out exactly how it happened.	
Save	"We're appalled and genuinely sorry that this happened," said a Google representative in an emailed statement. "We are taking immediate action to prevent this type of result from appearing."	
More		

- Simply removing the "gorilla" class is a sub-optimal "fix" and only works for classification, not for content-based image retrieval.
- Better: learning a feature representation that carries semantic information.

MEASURING SEMANTIC SIMILARITY

- Previous works focused on learning the semantic similarity between classes either from text [1] or the images themselves [2, 3].
- However, semantic knowledge is already available in the form of class taxonomies for almost all concepts of the world (WordNet [4], Wikispecies, Open Tree of Life, ...).
- We use a semantic similarity measure derived from this graph of concepts [5].

Hierarchy-based Image Embeddings for Semantic Image Retrieval

Björn Barz and Joachim Denzler Computer Vision Group, Friedrich Schiller University Jena, Germany

ic similarity does not correlate with visual

visually simila

semantically similar

HIERARCHY-BASED SEMANTIC EMBEDDINGS

Map images onto their target class embeddings in this semantic space using a simple loss: with additional classification objective **Cosine Distance** cross-entropy loss $\mathcal{L}_{\text{CORR+CLS}}(x, y)$

 $\mathcal{L}_{\text{CORR}}(x, y) = 1 - \psi(x)^T \varphi(c_y)$

L2-normalized CNN output

Code available! github.com/cvjena/semantic-embeddings

Goal: learn image features whose dot product resembles the semantic similarity of their classes

semantically similar, though visually dissimilar

Class embeddings on the unit hyper-sphere do not need to be learned but can be computed explicitly by solving:

 $\forall_{1 \leq i,j \leq n}: \varphi(c_i)^T \varphi(c_j) = \operatorname{sim}(c_i, c_j)$ $\forall_{1 \leq i \leq n} : \|\varphi(c_i)\| = 1$ known classes class embedding function

 $= \mathcal{L}_{\text{CORR}}(x, y) + \lambda \cdot \mathcal{L}_{\text{XENT}}(f(\psi(x)), y)$

additional FC layer with softmax —

IFAR-100: chimpanze

- Straightforward training.

Semantically more consistent retrieval results. Semantically meaningful feature space based on prior knowledge.

[1] Frome, Corrado, Shlens, Bengio, Dean, Ranzato, Mikolov. "DeViSE: A Deep Visual-Semantic I

2] Wen, Zhang, Li, Qiao. "A Discriminative Feature Learning Approach for Deep Face Recognition

Sun, Wei, Ren, Ma. "Label Embedding Network: Learning Label Representation for Soft Training o Deep Networks." arXiv:1710.10393, 2017.

Fellbaum. "WordNet." Wiley Online Library, 1998.

5] Deng, Berg, Fei-Fei. "Hierarchical Semantic Indexing for Large-Scale Image Retrieval." CVPR 200