

since 1558

Contribution

COMPUTER SCIENCE INSTITUTE

We provide a method based on null space projections that allows for multi-class novelty detection with a single model using true multi-class labels of training samples.

Problem formulation

- **Given:** samples from a **fixed number of known categories**
- **Task:** decide for each test sample whether it belongs to one of the **known** categories **or** to a **new/unseen category**
- Usual approach: apply one-class classification methods like one-class SVM (treats all training samples as a single class) \mathbf{Z}

Null space methods

Illustration of null space embedding

Find transformation such that:

- **1** samples of **same class** are mapped to **same point** and
- 2 samples of **different classes** are mapped to **different points**
- Transformed feature space is called **null space**
- Problem: transformation only exists in small sample size case \Rightarrow Null Foley-Sammon transform (NFST) [2]
- Solution: embedding in high dimensional feature space using kernels! \Rightarrow Kernel-NFST (KNFST) [5]
- For C classes, the null space has **dimension** C 1

References

[1] Bishop: Pattern Recognition and Machine Learning. Springer, 2006. [2] Guo et al.: Null foley-sammon transform. *Pat. Recog.*, 39(11):2248–2251, 2006. [3] Kemmler et al.: One-class classification with gaussian processes. In Proc. ACCV, pp. 489–500, 2010. [4] Landgrebe et al.: Optimising two-stage recognition systems. In *Multiple Classifier Systems*, pp. 206–215, 2005. [5] Lin et al.: Kernel null foley-sammon transform. In *Proc. Int. Conf. Comput. Sci. Software Eng.*, pp. 981–984, 2008. **[6]** Schölkopf et al.: Estimating the support of a high-dimensional distribution. *Neur. Computation*, 13(7):1443–1471, 2001. [7] Tax and Duin: Support vector data description. *Machine Learning*, 54(1):45–66, 2004. [8] Tax and Duin: Growing a multi-class classifier with a reject option. *Pat. Recog. Lett.*, 29(10):1565–1570, 2008.

Kernel Null Space Methods for Novelty Detection

Paul Bodesheim¹, Alexander Freytag¹, Erik Rodner^{1,2}, Michael Kemmler¹, and Joachim Denzler¹

¹Computer Vision Group, Friedrich Schiller University Jena, Germany ²ICSI Vision Group, UC Berkeley, California

http://www.inf-cv.uni-jena.de/novelty_detection.html

Our novelty detection approach...

- has no method-specific parameters!

Multi-class novelty detection

Experimental setup

- Datasets: Caltech-256 an ImageNet Large Scale V
- Features: bag-of-visual-wo densely sampled SIFT des
- Kernels: histogram interse generalization (EXPHIK)
- Results for five and ten k 50 (Caltech) and 100 (Im

Code Available
im Denzler ¹
Friedrich Schiller University Jena
Computer Vision Group
Experimental setup
 Datasets: Caltech-256 and ImageNet (1,000 categories of the ImageNet Large Scale Visual Recognition Challenge 2010)
Features: bag-of-visual-words histograms (1,000 dimensions) of densely sampled SIFT descriptors
 Kernels: histogram intersection kernel (HIK) and exponential generalization (EXPHIK)
Results for five and ten known categories, median AUC scores over 50 (Caltech) and 100 (ImageNet) randomly selected training sets
Experimental results
90 90 90 90 90 90 90 90 90 90
Five object categories known during training (Caltech-256 dataset)
-90

e one-class cl	s classifier & HIF lassifier [4] & HIF assifiers [8] & HIF	K 💶 🛛 sing	gle one-class	class classifier s classifier [4] classifiers [8]	& EXPHIK	00	
68 58.99	59.12 60.60	53.96	55.62 56.70 59.4	19 61.30	61.59 64.02 64.07		
[1] S	SVDD $[7]/1$ SVM	[6] G	P-Mean [3]	G	P-Var [3]		
known during training (Caltech-256 dataset)							
e one-class cl	s classifier & HIF lassifier [4] & HIF assifiers [8] & HIF	K 💶 🛛 sing	gle one-class	class classifier s classifier [4] classifiers [8]	& EXPHIK	0	
66 58.17	59.01 59.68	56.45	556.75	79 57.69	60.38 60.63 57.74		
[1] S	SVDD $[7]/1$ SVM	[6] G	P-Mean [3]	G	P-Var [3]		
es known during training (ImageNet dataset)							
e one-class cl	s classifier & HIF assifier [4] & HIF	K 💶 sing	gle one-class	class classifier s classifier [4]	& EXPHIK	00	

SVDD [7]/1SVM [6] GP-Mean [3]GP-Var [3]Ten object categories known during training (ImageNet dataset)

57.81 57.81