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Contribution

We provide a method based on null space projections that allows for
multi-class novelty detection with a single model using true
multi-class labels of training samples.

Problem formulation

Given: samples from a fixed number of known categories

Task: decide for each test sample whether it belongs to one of the
known categories or to a new/unseen category

Usual approach: apply one-class classification methods like
one-class SVM (treats all training samples as a single class) E

Null space methods

Illustration of null space embedding

Find transformation such that:

1 samples of same class are
mapped to same point and

2 samples of different classes are
mapped to different points

Transformed feature space is called null space

Problem: transformation only exists in small sample size case
⇒ Null Foley-Sammon transform (NFST) [2]

Solution: embedding in high dimensional feature space using
kernels! ⇒ Kernel-NFST (KNFST) [5]

For C classes, the null space has dimension C− 1
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Real null space example with three categories of the ImageNet dataset

Our novelty detection approach. . .

. . . has no method-specific parameters!

. . . does not rely on complex density estimation!

. . . clearly outperforms other methods in all our experiments!

Multi-class novelty detection

1 Compute KNFST from training data and obtain target points t

2 Project test sample x∗ into the null space to obtain t∗

3 Compute minimum distance to target points in the null space
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Calculating novelty scores in the joint null space of multiple classes

Experimental setup

Datasets: Caltech-256 and ImageNet (1,000 categories of the
ImageNet Large Scale Visual Recognition Challenge 2010)

Features: bag-of-visual-words histograms (1,000 dimensions) of
densely sampled SIFT descriptors

Kernels: histogram intersection kernel (HIK) and exponential
generalization (EXPHIK)

Results for five and ten known categories, median AUC scores over
50 (Caltech) and 100 (ImageNet) randomly selected training sets

Experimental results
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Five object categories known during training (ImageNet dataset)
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