Kernel Null Space Methods for Novelty Detection

Paul Bodesheim1, Alexander Freytag1, Erik Rodner1,2, Michael Kemmler1, and Joachim Denzler1
1Computer Vision Group, Friedrich Schiller University Jena, Germany
2ICSI Vision Group, UC Berkeley, California

http://www.inf-cv.uni-jena.de/novelty_detection.html

Contribution
We provide a method based on null space projections that allows for multi-class novelty detection with a single model using true multi-class labels of training samples.

Problem formulation
- Given: samples from a fixed number of known categories
- Task: decide for each test sample whether it belongs to one of the known categories or to a new/unseen category
- Usual approach: apply one-class classification methods like one-class SVM (treats all training samples as a single class)

Null space methods
- Find transformation such that:
 - samples of same class are mapped to same point and
 - samples of different classes are mapped to different points

Transformed feature space is called null space

Problem: transformation only exists in small sample size case
⇒ Null Foley-Sammon transform (NFST) \cite{2}

Solution: embedding in high dimensional feature space using kernels! ⇒ Kernel-NFST (KNFST) \cite{5}

For \(C \) classes, the null space has dimension \(C - 1 \)

Our novelty detection approach...
- ... has no method-specific parameters!
- ... does not rely on complex density estimation!
- ... clearly outperforms other methods in all our experiments!

Multi-class novelty detection
1. Compute KNFST from training data and obtain target points \(t \)
2. Project test sample \(z^* \) into the null space to obtain \(t^* \)
3. Compute minimum distance to target points in the null space

Calculating novelty scores in the joint null space of multiple classes

Experimental setup
- Datasets: Caltech-256 and ImageNet (1,000 categories of the ImageNet Large Scale Visual Recognition Challenge 2010)
- Features: bag-of-visual-words histograms (1,000 dimensions) of densely sampled SIFT descriptors
- Kernels: histogram intersection kernel (HIK) and exponential generalization (EXPHIK)
- Results: for five and ten known categories, median AUC scores over 50 (Caltech) and 100 (ImageNet) randomly selected training sets

References