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Abstract:

Insect monitoring using an automated deep learning pipeline has become increasingly important in understanding the crisis of
insect decline. Advanced model architectures trained with high-resolution images are essential to ensure the quality of insect local-
isation and species identification. Recent methods struggle with limited annotated data, which requires time-consuming manual
labelling for bounding boxes and domain expert-level knowledge for insect categorisation. In this paper, we present a comprehen-
sive benchmark of object detection models for this task, evaluating YOLOv9 and SSD architectures across three distinct datasets:
EU-Moths, NID-Moths, and AMI-Traps. Our experiments reveal that high-resolution inputs are a dominant factor for accurate
insect localisation, with performance improving substantially with larger image sizes. In addition, we perform cross-dataset vali-
dation to verify the generalisation capabilities of YOLOv9 on these datasets, justifying the choice of the AMI-Traps dataset as our
pre-training dataset for obtaining a robust detector. Finally, to leverage large amounts of unlabeled data, we investigate a pseudo-
labelling and paste-in data augmentation strategy. While this technique provides only modest improvements in overall detection
metrics, qualitative analysis demonstrates that it enhances model robustness, enabling the detection of insects in challenging,
low-contrast conditions where a strong baseline model would otherwise fail. In our experiments, YOLOV9 outperforms SSD on
the one-class NID-Moths and AMI-Traps datasets with average precisions of 0.951 and 0.742, respectively. On the binary-class
AMI-Traps dataset, a larger YOLOv9 model with a 1280x1280 input resolution achieves an average precision of 0.972 for the
moth category. These results indicate the importance of data-centric approaches and high-resolution imagery for building effective
automated insect monitoring systems.

1 Introduction

To understand the reason for the crisis of insect decline [6, [13] [30, /
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Hence, this data bottleneck is often the main challenge for prac- Fig. 1: Overview of our pseudo-labelling and paste-in approach

titioners to train and deploy robust Al models. Although modern
camera traps can generate vast corpora of unlabeled images, the pro-
cess of annotating images is time-consuming and expensive. Thus,
there is a noticeable imbalance between unlabeled data and available
labelled data. Therefore, our objective is to effectively leverage the
rich information source of large unlabelled data, specifically a large
fraction of the NID-Moths dataset, to improve the performance and
robustness of insect detectors without manual annotation.

A common semi-supervised learning approach involves gener-
ating pseudo-labels for unlabeled data using a model trained on a
labeled set. However, simply training on all generated pseudo-labels
can be detrimental, as it introduces noise and low-quality instances,
potentially degrading model performance. To overcome this issue,

Camera Traps, Al, and Ecology
© Yet to come

with pseudo-label generation for bounding boxes. A pre-trained
YOLOV9-E insect detector generates pseudo-labels for images from
an unlabeled dataset. The high-quality insect patches were then
filtered and pasted into images of the labelled dataset as data aug-
mentation. Lastly, we fine-tune the same YOLOV9-E model on the
augmented data, which improves the overall localisation perfor-
mance.

we propose a novel paste-in data augmentation strategy that only
leverages high-quality pseudo-labels from unlabeled camera trap
images, as shown in Fig.[T] Our approach is inspired by [10], which
incorporates additional data by pasting pseudo-labelled objects from



the unlabeled dataset to the labelled one [23]. Unlike conventional
methods, which add entire unlabeled images with potentially noisy
backgrounds to the training set, our approach first uses a robust,
pre-trained detector to generate high-quality pseudo-labels from
the unlabelled dataset. Then it selectively extracts high-confidence
insect patches and pastes them into existing labelled images. This
technique enriches the training data by increasing the number of
insect instances per image while preserving the content of the orig-
inal high-quality labelled scenes, thereby improving the robustness
of the detector.

In this paper, we demonstrate the effectiveness of this strategy and
provide a comprehensive benchmark for insect detection in images
from automated insect monitoring camera systems. Our key contri-
butions are as follows. First, we benchmark the detection models
YOLOV9 [36] and SSD [24] on three distinct insect datasets: EU-
Moths, NID-Moths [19} [20] and AMI-Traps, providing an updated
performance baseline. Second, we perform a cross-dataset validation
to quantitatively assess model generalizability, justifying our choice
of the AMI-Traps dataset for training a robust "teacher” detector for
our pseudo-labelled paste-in strategy. Finally, we introduce and eval-
uate our pseudo-labelled paste-in augmentation method. We show
that while the quantitative gains are modest, the strategy can improve
a strong YOLOVY baseline’s robustness by leveraging unlabeled
data.

2 Related Work

Deep learning in computer vision has become increasingly pop-
ular in image classification and detection tasks, as deep learning
algorithms with advanced model architectures clearly outperform
traditional methods. Using a large-scale dataset with high-quality
annotations is important for training deep learning models. Thus,
researchers and specialists across different academic fields work
together in interdisciplinary projects to improve the architecture
of computer vision models and to maintain high data quality by
verifying annotations with expert knowledge in the insect domain.

Detection, segmentation, and classification of insects are vital
in agriculture, environmental monitoring, and biodiversity assess-
ment [31]. Most of the research focuses on insect detection. For
example, SSD (Single Shot MultiBox Detector) [24] is used par-
ticularly for applications like monitoring nocturnal insects with
light-based camera traps on datasets such as EU-Moths and NID-
Moths [19} 120]], where it provides robust detection results. Another
popular architecture is the YOLO (You Only Look Once) family
of models, including YOLOv4 [3] for small insect pests [[11] and
YOLOVS [16] for a lightweight insect detection system with field
adaptation [21], which is highly effective due to its real-time capabil-
ities and decent performance to detect small insects. These models
are frequently deployed in automated monitoring trap systems, as
demonstrated in studies using YOLOVS for an optimised "Yolo-pest"
system [12]. In addition, research on developing transformer-based
models in object detection for general object detection tasks has
recently become popular, with architectures such as DINO [3§]
and its extension Mask-DINO [22] pushing the limits of detection
performance. Fine-grained distribution refinement of D-FINE [26]
improves object localisation stability.

The availability of large and diverse datasets is vital for train-
ing these deep learning models. Insect-1M and the resulting insect
foundation model [25] improve visual insect understanding and offer
large-scale annotated data. Similarly, there is the BIOSCAN-1M
insect dataset [9)]. Given that each image includes only a single
insect, these datasets are more appropriate for species classifica-
tion tasks than for evaluating insect localisation performance. In
addition, there are special datasets like the AMI dataset with a
machine learning pipeline [[14, [15]], or the Flatbug dataset utilised
with YOLOVS and sliding window inference for terrestrial arthropod
detection [29]]. Furthermore, deep learning techniques, like knowl-
edge distillation and GAN-based data augmentation from studies
on the IDADP dataset [27], address data scarcity and improve
model performance. Integrating these Al models into citizen sci-
ence tools, such as smartphone-based applications for plant disease

and insect pest detection using YOLOvV8 [3]], further improves insect
monitoring and data collection.

Despite significant improvements in automated insect detection,
the challenge of learning from limited annotated training data per-
sists, especially when ensuring high-quality annotations, which
are fundamental for training robust deep learning models. Tight
bounding-box labels that cover all insects in an image are essen-
tial for training detectors, as low-quality annotations and incomplete
sets of bounding boxes will mislead the model. Thus, annotation
expertise plays an important role for insect labelling.

3 Method
3.1  Problem Statement

Training on large datasets with high-quality annotations is necessary
to obtain robust insect detectors. Unlabeled images by far outnum-
ber labelled ones, as insect monitoring devices constantly record
new images, and it is time-consuming and simply infeasible to per-
form all annotations manually. However, we still want to exploit the
huge amount of visual information in unlabeled images by propos-
ing an augmented training set with pseudo-labels that still maintains
high quality. Instead of training on all additional images with all
generated pseudo-labels, which would also include those with high
uncertainty, low quality, and noise, we adopt a pseudo-labelling
and paste-in strategy for semi-supervised training to augment the
annotated training data with high-quality patches only.

3.2  Baseline Detector

We selected YOLOV9 [36] as our baseline architecture because it
represented a state-of-the-art object detection model at the begin-
ning of our study and provides a high-performance, easy-to-use
framework. While newer models have since been released, YOLOvV9
serves as a robust baseline to evaluate the impact of our data augmen-
tation strategy. Future work could explore the application of these
methods to more recent architectures such as YOLOv10-12 [17,132}
351

For comparison, we also explored transformer-based object detec-
tors. For instance, initial experiments with the insect detector
D-FINE [26] have demonstrated its high localisation precision.

3.3 Paste-In Strategy

For our paste-in strategy, we exploit the bounding boxes gener-
ated from the baseline detector as pseudo-labels to augment the
training data, as shown in Fig. [T} Hence, the first step consists of
pre-training a baseline insect detector on manually labelled images
only. The second step focuses on generating pseudo-labels for many
unlabeled images, specifically from the NID-Moths dataset. This is
achieved using the robust pre-trained object detector, YOLOV9-E,
which was trained on AMI-Traps images with a training resolu-
tion of 1280x1280. The detector predicts the bounding boxes and

(a) Hard-edged paste-in. (b) Smooth-edged paste-in.
Fig. 2: Examples of images from the AMI-Traps dataset with paste-
in patches extracted from the NID-Moths unlabeled dataset. Hard-
edged patches (left) preserve the original insect visual features while
bringing rectangular bias. Smooth-edge patches (right) contain less
clear edges while mostly having a smearing effect.
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their corresponding confidence scores for each image. Only pre-
dicted bounding boxes with a confidence score above a preset
threshold are retained. This confidence threshold ensures that only
high-quality and reliable pseudo-labels are generated, thereby min-
imising the introduction of noise into the training process. These
pseudo-labels, comprising bounding box coordinates and class iden-
tifications, are then systematically stored to be readily accessible
during the subsequent data loading phase of further model training
or fine-tuning.

The last two steps integrate these generated pseudo-labels directly
into the model fine-tuning process as a form of data augmentation.
During the training phase, as images are loaded, a random selec-
tion from the pseudo-labelled patches are dynamically pasted into
the current training image. To maintain the integrity of existing
ground truth annotations on the training image and prevent detri-
mental overlap, the Intersection-over-Union (IoU) ratio is calculated
between each pseudo-labelled patch and any pre-existing ground
truth bounding box. As paste-in patches will replace the area of the
original image, this calculation ensures that these patches do not
obscure or interfere with ground-truth labels, thus preserving the
quality of the training data. Naively pasting patches can introduce
strong rectangular edge artifacts, which the model might learn as fea-
tures. To mitigate this, we employ a seamless cloning technique from
the OpenCYV library [4]. This method smoothly blends the pasted
insect patches with the background of the target image, creating a
more realistic composite image and reducing edge-related biases,
as shown in Fig. P} This visualisation of the augmented images
illustrates the difference between a hard-edged and our smooth-
edged paste-in approach. The degree of this paste-in strategy is
configurable. For each training image, we pre-define the number of
unlabeled images to load and the maximum number of patches to
be pasted. During the training phase, due to a high amount of image
pre-processing time, we set these numbers to 1 and 10, respectively,
to reduce the time for pre-processing.

As the pseudo-labelled insect patches are recorded with differ-
ent devices and in other environments compared to the images of
the dataset where they will be pasted in, we explicitly force the
detector to learn more robust, background-invariant features. This
process acts as a form of domain generalisation, training the model
to recognise the intrinsic characteristics of the target insect regard-
less of the surrounding environment. This enhances the robustness
and performance of the model, as supported by our experimen-
tal results. Furthermore, smooth-edged patches produced by the
seamless cloning technique reduce background-related bias. The
line chart in Fig. 3] shows that smooth-edged patches have a grey
pixel intensity distribution more closely aligned with the AMI-Traps
backgrounds than hard-edged patches, indicating that smooth-edged
patches lead to less background-biased features.

4 Experiments

We focus on three datasets: EU-Moths [19]], NID-Moths [20], and
AMI-Traps [15]. They represent a gradient of visual and eco-
logical complexity (Section BI). To ensure a fair comparison
(Section [4.3.1)), we adopt similar input resolutions, the same train-
validation split, and one-class annotation format used in previous
work [19]. For evaluation (Section @, we report Average Preci-
sion (AP) scores using the PASCAL VOC metric [7]], as these allow
direct comparison with prior SSD results. In addition, we include the
MS COCO (Microsoft Common Objects in Context) AP5q.95 met-
ric [23]], which offers a more rigorous evaluation of insect detectors
under complex conditions. To justify our choice of the AMI-Traps
dataset as the pre-training source for our pseudo-labelled paste-in
strategy, we conduct cross-dataset validation (Section [£.3.2). We
then perform experiments using a binary-class annotation format
on the AMI-Traps dataset (Section [£.3.3)), focusing specifically on
moth detection and aiming to further enhance baseline performance
using higher input resolutions and larger model sizes. Finally, we
fine-tune a robust baseline detector on an augmented labelled dataset
using our proposed pseudo-labelled paste-in augmentation method
(Section £.3.4). The experimental results confirm that our strategy
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Fig. 3: Relative frequency of the grey pixel intensity from the
patches of 100 random images from AMI-Traps and NID-Moths,
hard-edged patches (NID-Moths) and smooth-edged patches (NID-
Moths) by using our paste-in strategy. The backgrounds of NID-
Moths images are darker and show a broader range of grey pixel
intensities compared to those in the AMI-Traps dataset. Smooth-
edged patches have a grey pixel intensity distribution more closely
aligned with the AMI-Traps backgrounds than the hard-edged
patches, indicated by the spike of the green curve in the highlighted
region.

can effectively improve the detection performance of an already
strong model.

4.1 Datasets

In the following, we provide a short overview of the three datasets
we use in our experiments, which represent unique characteristics
and challenges for insect detection in various real-world scenarios.

EU-Moths [19]: This dataset comprises 200 moth species com-
monly found in Central Europe. It features approximately 2,205
images with bounding box annotations for individual moths, making
it suitable for fine-grained moth detection and species classification.
As most images contain a single moth, this dataset is more suitable
for classification than detection. However, to benchmark the perfor-
mance of YOLOV9 and SSD on this dataset, we use the same train
and validation split as in previous research [19] and evaluate it at the
same image resolution.

NID-Moths [20]]: The NID-Moths dataset consists of images cap-
tured by an automated moth scanner prototype in Central Europe,
primarily focusing on nocturnal insects, especially moths. The
images were taken with a 24-megapixel camera. It includes more
than 27,000 images, with 818 images explicitly annotated with
bounding boxes for 9,095 insects. Compared to EU-Moths, it focuses
on moth detection, as most images contain multiple moths on a
simple, uniform white panel background under different lighting
conditions. All bounding boxes are of the same insect category. We
adopted the same split for the annotated images as in [20].

AMI-Traps [15]: It is part of the larger AMI (Automated Mon-
itoring of Insects) dataset. AMI-Traps consists of 2,893 expert-
annotated images from automated camera traps, containing 52,948
labelled insects. The image resolution is 8 megapixels. This dataset
presents more insect species compared to the NID-Moths dataset.
Although both datasets have a similar white background, the light-
ing conditions are quite different. As the annotations ranged from
family to species level for all insects on the images, we grouped them
either into a single super-category, insect, or into two sub-categories,
moth and other-insect, respectively. We do not consider bounding
boxes from the unidentifiable category. As there are no statistics
from previous research [15]], we only report our experimental results.

4.2  Evaluation Metrics

For evaluating our insect detection models, we use the following
evaluation metrics. First, we report average precision (AP) and mean
average precision (mAP) following standard protocols from object



detection of Pascal VOC [[7]. Since these metrics involve the compu-
tation of precision-recall curves, defining when a predicted bounding
box is a true positive is required. As commonly done for object
detection, we use different Intersection-over-Union (IoU) thresholds
for the overlap of predicted and ground-truth bounding boxes. In
particular, ToU thresholds 50% and 75% are used, with the latter
focusing more on tight bounding boxes, and the corresponding value
is reflected in the metrics as a subscript.

Second, we report the MS COCO benchmark metric [23]], recog-
nised for its comprehensive and nuanced assessment of detection
performance. The core metric is AP5g.95, which calculates AP on
multiple IoU thresholds ranging from 0.50 to 0.95 in increments
of 0.05. AP5q.95 provides a robust measure of localisation accu-
racy, taking into account various levels of granularity for a predicted
bounding box, including APsp and AP75 from above.

Note that we use AP metrics to report results for single classes,
which could either be one of the two classes moth or other-insect,
or when considering all insects as part of one super-category insect
and a trained detector for this single class only. We denote the latter
as one-class detection. In contrast, mAP is reported when averaging
the performance for the two classes moth and other-insect to obtain
a single value for a whole dataset.

4.3  Results

4.3.1 One-Class Detection: The YOLOV9 architecture incor-
porates downsampling layers with a cumulative factor of 32, necessi-
tating input image dimensions multiples of 32. Thus, we adopted an
input size of 320 for YOLOVY instead of 300 for SSD. For compar-
ative analysis with SSD, separate training sessions were conducted
using the compact YOLOV9 model (YOLOvV9-C). Input resolutions
were set to 320 for the EU-Moths dataset and to 320 and 512 for
the other datasets. A pre-trained backbone on the MS COCO dataset
has been used. Both detectors were trained with 100 epochs using
the SGD optimiser with a learning rate of 0.01 and a batch size
of 8. These preliminary experiments were crucial for understanding
YOLOV9’s performance in insect detection.

Our evaluation, presented in Table [I] indicates that SSD out-
performed YOLOV9 in terms of AP5g on the EU-Moths dataset.
This outcome can be attributed to the intrinsic characteristics of the
EU-Moths dataset, containing manually recorded images. It is plau-
sible that this dataset exhibits reduced variability in backgrounds,
lighting conditions, or insect poses. Due to manual image captur-
ing, the depicted insects primarily possess size and distribution for
which the simpler yet well-optimised SSD architecture is already
highly sufficient. In such scenarios, the more complex architectural
advancements of YOLOVY, while generally offering superior per-
formance in highly challenging and diverse contexts, may not yield
substantial improvements.

Furthermore, for the NID-Moths dataset, which features much
higher image resolution, different lighting conditions, and various
levels of occlusion, YOLOVY demonstrated superior performance
over SSD in both AP5q and AP75 (see Table |I[) In particular, even
with an input size of 320, YOLOV9 outperforms SSD pre-trained
with a higher input size of 512. The improvement of AP75 provides
robust evidence of the effective localisation capabilities of YOLOV9.

Table 1 Experiment results with PASCAL VOC metrics on one-class datasets.
The performance between SSD and YOLOV9 is similar on the EU-Moths
dataset. For the NID-Moths dataset, For the NID-Moths dataset, YOLOV9, with a
lower input size of 320, outperforms SSD, which has a size of 512. For the AMI-
Traps dataset, YOLOV9 outperforms SSD with the same input size and further
improves with a larger size of 512.

Model Name Dataset Input Size AP5o AP,
SSD EU-Moths 300 0.990 0.889
YOLOv9-C EU-Moths 320 0.977 0.898
SSD NID-Moths 512 0.912 0.262
YOLOvV9-C NID-Moths 320 0.920 0.478
YOLOv9-C NID-Moths 512 0.951 0.526
SSD AMI-Traps 300 0.361 0.067
YOLOv9-C AMI-Traps 320 0.552 0.221
YOLOv9-C AMI-Traps 512 0.742 0.374

As there are no quantitative experimental results for the AMI-
Traps dataset, we trained SSD with an input size of 300 on this
dataset, treating all bounding boxes as one class insect, with the same
VGG16 pre-trained backbone and hyperparameter set as in [19].
For comparison, we trained YOLOv9-C with input sizes of 320
and 512 separately with the same training hyperparameters for the
NID-Moths dataset. The performance of SSD is not satisfactory,
especially in terms of AP7s, as shown in Table m YOLOV9 out-
performs SSD in both the PASCAL VOC APsg and AP75 metrics,
showcasing its capability to deal with much more complex scenar-
ios. In addition, with a larger input size of 512, the performance of
YOLOVY improves.

Table 2 Experiment results with MS COCO metrics of different sizes of
YOLOV9 and input sizes on one-class AMI-Traps dataset. The metric scores
improve more by increasing the input resolution than by adopting a larger model
size.

Model Name Input Size AP5o AP75 AP50.95
YOLOv9-C 640 0.808 0.438 0.452
YOLOv9-C 1280 0.833 0.547 0.517
YOLOV9-E 1280 0.832 0.552 0.520

As YOLOVY achieved better performance in the AMI-Traps
dataset, we conducted training with a larger model size and input
size to push the limit of YOLOV9 further. Our experimental results
are benchmarked using standard MS COCO metrics, as shown in
Table[2] The findings consistently demonstrate that enhancing both
the model size and the input resolution leads to substantial improve-
ments in the metric scores for insect localisation. This highlights
the critical role of resolution during training, as higher resolutions
enable the neural network to effectively capture the fine details
essential for accurately detecting small insects. The slight drop in
APs5q from YOLOV9-C to YOLOV9-E can be attributed to the lim-
ited number of annotated training images for the larger number of
parameters in the extended model YOLOV9-E.

4.3.2  Cross-Dataset Validation: To investigate cross-dataset
performance, we trained YOLOV9 on different datasets, with all
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Fig. 6: The number of pseudo-labels from the NID-Moths unlabeled
dataset under different confidence thresholds. The number of moths
largely outnumbered other insects. Moreover, the number of moths
remains above 200,000, with the confidence threshold lower than
0.7.

evaluation metric scores derived from MS COCO. We initially vali-
dated YOLOV9-C on the EU-Moths dataset. The model was trained
on both the NID-Moths and AMI-Traps datasets at the same input
size of 640. Notably, the YOLOV9-C model pre-trained on the
AMI-Traps dataset demonstrates superior generalizability to the EU-
Moths dataset compared to the model trained on NID-Moths, as
shown in Fig. @] This suggests that the diverse samples within the
AMI-Traps dataset significantly contribute to enhanced cross-dataset
performance.

For the NID-Moths dataset, the experimental results with
YOLOV9-C mirror the trend observed in the EU-Moths dataset.
However, the performance of the model pre-trained on NID-Moths
is noticeably better than that on the AMI-Traps dataset, which
placed second, as shown in Fig.[4 Several factors explain this gap.
First, despite both datasets featuring insects on white panels, they
originate from different geographical regions. AMI-Traps includes
data from Northeast America, Western Europe, and Central Amer-
ica [15), while NID-Moths is merely from Germany [20]. Second,
the ground-truth bounding boxes in the NID-Moths dataset are less
tightly annotated than those in AMI-Traps, likely contributing to the
relatively lower AP75 and AP50.95 scores.

The experimental results for the AMI-Traps dataset are less satis-
factory. This is likely due to the more complex scenarios present in
AMI-Traps compared to the simpler settings of the EU-Moths and
NID-Moths datasets, as shown in Fig. f]

In conclusion, YOLOV9-C pre-trained on the AMI-Traps dataset
shows better generalizability than that on the other two datasets. For
our paste-in strategy (Section[f.3.4), the AMI-Traps dataset was used
for robust insect detector pre-training.

4.3.3  Binary-Class Detection: Given the promising results of
our YOLOV9 experiments, we expanded our training to include the
binary-class annotation of the AMI-Traps dataset (moth vs. other-
insect). We conducted training on YOLOV9-C at resolutions of 640
and 1280, and extended YOLOV9 (YOLOV9-E) at a resolution of
1280 to thoroughly evaluate performance across different model
sizes and input scales. The experimental results are shown in Table[3]
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Table 3 Experiment results with MS COCO metrics of different models
on binary-class AMI-Traps dataset. With an input resolution of 1280x1280,
YOLOV9-E gives the best overall performance among the experiments.

Model Configuration mAP;5, mAP75 mAP50.95
YOLOV9-C-640 0.823 0.512 0.496
D-FINE-L-640 0.802 0.573 0.527
YOLOv9-C-1280 0.848 0.611 0.562
YOLOV9-E-1280 0.848 0.617 0.565

Without a doubt, YOLOvV9-E-1280 shows the best overall detection
performance. This pre-trained model was then used as the "teacher"
model for generating pseudo-labels (Section ff.3.4). In addition, we
trained D-FINE-L [26] with a resolution of 640. Under the same
resolution, YOLOV9-C outperforms D-FINE-L based on the score
mAP50. For the other metrics, the localisation ability of D-FINE-
L is better, with a difference of approximately 3% for the score
mAP50.95. However, we prioritise YOLOvV9 over D-FINE, as we
place more value on finding the insect correctly in general than on
matching the insect edges tightly.

4.3.4  Pseudo-Labelling Paste-In: To leverage a large number
of unlabeled images, we employed a pseudo-labelling strategy using
our high-performing YOLOV9-E model with a resolution of 1280.
Based on the analysis of precision confidence and recall confidence
curves (see Fig. ), we decided on a confidence threshold of 0.7 to
extract pseudo-labelled patches. Under this confidence threshold, the
precision and recall for the moth class are approximately 95% and
90%, respectively. This ensures both the quality and the quantity of
the pseudo-labelled moth patches.

With a relatively high confidence threshold of 0.7 for moths, this
process yielded more than 203,309 moth patches from the unla-
beled dataset (see Fig. [6), significantly enriching our training data.
We did not paste in other-insect pseudo-labelled patches because
of the scarcity of other-insect instances. Another reason is that,
with a relatively high confidence threshold like 0.9, the precision
score decreased by approximately 10% (see the other-insect cate-
gory of the precision-confidence curve from Fig. [B)), meaning more
uncertainty that the detector would have on the other-insect cate-
gory, despite the high confidence score. Hence, we avoid another
uncertainty factor in our strategy by only using patches with a moth
annotation.

These extracted pseudo-labelled patches were then integrated into
existing AMI-Traps training images through a paste-in procedure.
This procedure carefully considered the IoU between the paste-in
bounding boxes and existing training data bounding boxes to ensure
realistic and effective augmentation. With a predefined number of
candidate images and a maximum number of patches, several paste-
in augmented images can be used for further training. To reduce the
biases introduced by the sharp edges of the patches, we adopted a
seamless cloning method from the OpenCV library to process the
patches during the paste-in phase (see Fig.[2).

To reduce the training time, we fine-tuned our baseline models
using these newly augmented paste-in images. It is important to
note that the validation set remained consistent with the one used to



Table 4 Experiment results with MS COCO metrics by applying different
fine-tuning strategies on YOLOV9-E-1280 pre-trained model on the AMI-Traps
dataset. The model fine-tuned with paste-in smooth-edged moth patches shows
the best overall performance, though it experiences a slight performance drop
on the moth category.

Model Configuration mAP;5 mAP;5 mAP50.95
baseline 0.848 0.617 0.565
fine-tune 0.844 0.615 0.564
fine-tune-paste-in-patches 0.851 0.614 0.563
fine-tune-paste-in-patches-smooth 0.852 0.617 0.567
fine-tune-pseudo-labeled-full-images 0.793 0.533 0.502

Table 5 Experiment results with MS COCO metrics by applying different
fine-tuning strategies on YOLOV9-E-1280 pre-trained model on the AMI-Traps
dataset. The model fine-tuned with paste-in smooth-edged moth patches
improves for other-insect class, though it experiences a slight performance drop
on the moth category.

Model Configuration AP5o AP;5 AP50.95
(Moth)
baseline 0.972 0.843 0.731
fine-tune 0.972 0.842 0.732
fine-tune-paste-in-patches 0.971 0.838 0.724
fine-tune-paste-in-patches-smooth 0.971 0.838 0.727
fine-tune-pseudo-labeled-full-images 0.963 0.771 0.680
(Other-Insect)
baseline 0.725 0.391 0.400
fine-tune 0.716 0.389 0.396
fine-tune-paste-in-patches 0.730 0.390 0.402
fine-tune-paste-in-patches-smooth 0.734 0.396 0.406
fine-tune-pseudo-labeled-full-images 0.624 0.296 0.324

train our baseline models, ensuring a fair comparison of performance
improvements.

To rigorously evaluate the effectiveness of our paste-in strategy,
we compare our fine-tuned model with the original baseline model
of YOLOV9-E trained on the AMI-Traps dataset. The results are
shown in Table [ and 3} To verify whether the improvement is
solely due to the addition of more pseudo-labelled patches rather
than the effect of further fine-tuning, we fine-tuned YOLOV9-E with
the same fine-tuning strategy without pasting in any of the pseudo-
labelled patches. As the baseline model is already well-trained,
further fine-tuning leads to overfitting and slightly degrades the over-
all performance. In addition, we fine-tuned YOLOV9-E on the fully
pseudo-labelled images, which shows evident performance drops
for both moth and non-moth classes compared to baseline results.
This suggests that fine-tuning on a full image dataset without low-
confidence pseudo-labels harms the model performance, as potential
insects are incorrectly treated as background. Compared to the base-
line result, the mean AP5q score for all classes improved by 0.4%
after fine-tuning with paste-in moth patches with a smoothing strat-
egy (Table [), demonstrating that our method can further improve
overall performance. However, the performance of moth detection
in Table [3] degrades slightly while the performance of other-insect
detection improves, compared to that of the baseline model, which
is counterintuitive. This outcome is because more information from
the moth category has led the model to learn more robust features,
which inversely improves the overall generalizability and then leads
to improvement over the other-insect category. From the prediction
of the baseline and fine-tuned models on the image from the NID-
Moths dataset (see Fig. [7), moths with bad lighting conditions can
be well detected, and the confidence of the other-insect instances is
relatively higher compared with the baseline model.

5 Conclusions and Future Work

In this work, we benchmarked SSD and YOLOVY for one-class
insect detection (one super-category insect) on three insect moni-
toring datasets, EU-Moths, NID-Moths and AMI-Traps, showcasing
that YOLOV9 outperforms SSD with more robust and accurate

moth 0.52

(a) Predicted bounding boxes (b) Predicted bounding boxes

from the baseline model. from the model fine-tuned with
smooth-edged paste-in moth
patches.

Fig. 7: Visualisation of predictions from YOLOvV9-E-1280 models
on an image from the NID-Moths dataset. The baseline model does
not detect the moth in the dark region (left), while the model fine-
tuned with smooth-edged paste-in moth patches can give a confident
prediction and decent localisation (right).

detection results for complex scenarios. We carried out cross-dataset
validation by training YOLOV9-C on these datasets and found that
training on the AMI-Traps dataset, which contains a wide variety
of insects, yields an insect detector that generalises better to other
datasets when compared with other training datasets. As our research
focuses on moths and YOLOVY shows decent performance, we
explored the performance of different model sizes and input image
resolutions of YOLOV9, suggesting that high-resolution images are
a key factor leading to better detection accuracy. Hence, we advise
using high-resolution cameras for automated monitoring of noctur-
nal insects to yield the best performance from robust insect detectors.
In addition, we introduced a paste-in method, demonstrated the
feasibility of augmenting training data by pasting in high-quality
pseudo-labelled moth patches, which were pseudo-labelled from
the unlabeled camera trap NID-Moths dataset. This strategy further
improved the detection performance of the YOLOV9-E pre-trained
model with a high-resolution input size of 1280x1280, ensuring a
seamless plugin during the training phase. Although the paste-in
strategy led to only marginal gain in overall mAP scores, its primary
value lies in enhancing model robustness.

However, our approach currently presents several limitations
that require further exploration. First, the quality of the candidate
pseudo-labelled patches is not perfect. Although Poisson blend-
ing reduces the hard-edge effect, it leads to the loss of features
belonging to insects. Thus, advanced segmentation models can be
explored, such as the Segment Anything Model (SAM) [18]], to gen-
erate segmented insect patches. The recently proposed flatbug model
for terrestrial arthropods might also be used for these segmenta-
tion purposes [29]. Another limitation is that the full potential of
high-resolution camera trap images has not been exploited. Even
with an input resolution of 1280x1280 for training images, fine-
grained features of the insects can still be lost due to downscaling
during processing. Future research could explore the SAHI frame-
work (Slicing Aided Hyper Inference) [[1I], which has shown promise
in maximising information from high-resolution imagery for small
object detection, as demonstrated in studies utilising YOLOVS with
sliding window inference for terrestrial arthropods [29]]. Third, rely-
ing solely on a fixed confidence threshold does not fully exploit
the features of the insects in the unlabeled dataset. Thus, the model
may overlook low-confidence insect patches that contain more com-
plex features, which are crucial for enhancing the overall detection
performance of the model. Future work could investigate more
sophisticated semi-supervised learning paradigms, such as Soft-
Teacher [37]], which are designed to learn robustly from noisy and
dynamic pseudo-labels, potentially leveraging both high- and low-
confidence predictions. Finally, the counterintuitive performance
trade-off observed between the moth and other-insect classes (see
Table [ and ) requires further investigation to fully understand
the dynamics of cross-category generalisation in this augmentation
context.
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