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Abstract

Transferring the recent advancements in deep
learning into scientific disciplines is hin-
dered by the lack of the required large-scale
datasets for training. We argue that in these
knowledge-rich domains, the established body
of scientific theory provides reliable inductive
biases in the form of governing physical laws.
We address the ill-posed inverse problem of
recovering Raman spectra from noisy Coher-
ent Anti-Stokes Raman Scattering (CARS)
measurements, as the true Raman signal here
is suppressed by a dominating non-resonant
background. We propose RamPINN, a model
that learns to recover Raman spectra from
given CARS spectra. Our core methodolog-
ical contribution is a physics-informed neu-
ral network that utilizes a dual-decoder ar-
chitecture to disentangle resonant and non-
resonant signals. This is done by enforcing
the Kramers-Kronig causality relations via a
differentiable Hilbert transform loss on the
resonant and a smoothness prior on the non-
resonant part of the signal. Trained entirely
on synthetic data, RamPINN demonstrates
strong zero-shot generalization to real-world
experimental data, explicitly closing this gap
and significantly outperforming existing base-
lines. Furthermore, we show that training
with these physics-based losses alone, without
access to any ground-truth Raman spectra,
still yields competitive results. This work
highlights a broader concept: formal scien-
tific rules can act as a potent inductive bias,
enabling robust, self-supervised learning in
data-limited scientific domains. 1

1Code and data will be made available upon publication.

1 INTRODUCTION

Deep learning models require large datasets of paired
inputs and ground-truth outputs to outperform algo-
rithmic approaches. This paradigm is exaggerated in
scientific disciplines where acquiring ground-truth data
is experimentally expensive. Vibrational spectroscopy
exemplifies this challenge (Ember et al. 2017; Ichimura
et al. 2014; Zoladek et al. 2011; Schultz et al. 2024).
While Raman spectroscopy provides high-fidelity molec-
ular fingerprints (Raman et al. 1928), its long acquisi-
tion times limit its usage in in-situ applications (Muro
et al. 2015). A high-speed alternative, Coherent Anti-
Stokes Raman Scattering (CARS), produces spectra
distorted by a non-resonant background (NRB) (Li
et al. 2020; Polli et al. 2018). The NRB interferes
coherently with the Raman signal, distorting spectral
shapes and obscuring features, making its removal a
challenging ill-posed inverse problem (He et al. 2022).

Our approach disentangles the Raman signal from the
NRB, enforcing physical constraints on each compo-
nent. We constrain the recovered Raman signal to
satisfy the Kramers-Kronig (KK) relations (Kramers
1928; de Laer Kronig 1926; Lucarini et al. 2005), while
modeling the NRB as a smooth component (Junjuri
et al. 2024; Konorov et al. 2011). These physics-based
priors, embedded into the learning objective, provide
sufficient supervision to recover the true Raman spec-
trum from a single CARS measurement.

Traditional solvers (Lucarini et al. 2005; Härkönen et al.
2023; Camp 2022) face a circular dependency: applying
the Kramers-Kronig relations requires an estimate of
the non-resonant background, which itself is an un-
known. A neural network resolves this dependency by
disentangling the measured spectrum into its Raman
and NRB components. The network is guided by a
composite loss function that enforces the respective
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physical priors on each component. This reliance on
physical laws, rather than paired data, enables training
exclusively on synthetically generated spectra. We eval-
uate the model’s zero-shot generalization on a public
benchmark of six chemically diverse molecules. This ex-
perimental setup simulates the data-scarce conditions
common in this domain and validates the practical
utility of our physics-informed approach.

We adapt the Physics-Informed Neural Network (PINN)
paradigm (Karniadakis et al. 2021) from its typical ap-
plication with differential equations (Takamoto et al.
2023; Moseley et al. 2021; Haghighat et al. 2021; Cai
et al. 2021; Jin et al. 2022; Cho et al. 2023; Krish-
napriyan et al. 2021; Maddu et al. 2022; Vemuri et
al. 2025; Stein et al. 2024) to a new class of physical
priors: the Hilbert transform-based Kramers-Kronig
(KK) relations and a smoothness regularity condition.
Therefore, we introduce RamPINN, a network featur-
ing a physics-architecture co-design. Its dual-decoder
structure explicitly disentangles the resonant Raman
signal from the non-resonant background, a separation
that is essential for enforcing the distinct physical prior
on each respective component.

Our contributions are threefold: (i) We propose a
RamPINN: A model for solving the ill-posed inverse
problem of recovering Raman spectra by embedding
known physics (the Kramers-Kronig relations and
smoothness prior) as a differentiable, self-supervisory
loss term. (ii) We demonstrate the robustness of this
framework by showing it achieves state-of-the-art ze-
ro-shot generalization. Trained solely on synthetic data,
our method successfully transfers to a benchmark of
six diverse, real-world molecules, outperforming meth-
ods that rely on purely data-driven learning. (iii) We
demonstrate the efficacy of the physical priors as a
supervisory signal, showing that a variant of our model
trained without ground truth Raman data remains
competitive with fully supervised data-driven baselines.

2 RELATED WORK

Physics-informed Learning constrains neural net-
work training by including known physics in the loss
function (Lagaris et al. 1998). This idea was formal-
ized by (Raissi et al. 2019; Karniadakis et al. 2021;
Cuomo et al. 2022), who introduced Physics-Informed
Neural Networks (PINNs), where differential equations
guide the learning process. PINNs are used to solve
PDEs and ODEs (Eivazi et al. 2022; Lin et al. 2021;
Vemuri et al. 2025; Vemuri et al. 2023; Cho et al. 2023).
For inverse problems, PINNs learn system parameters
while enforcing physical equations and are used in geo-
physics, structural mechanics, and other fields (Vemuri

et al. 2024; Rasht-Behesht et al. 2022; Stein et al. 2024;
Difonzo et al. 2024). Beyond differential equations,
domain-specific rules are integrated into the loss func-
tion for medical image registration (Wan et al. 2023)
or geometry encoding (Gropp et al. 2020).

Deep Learning for Spectroscopy is applied to
denoising (Tkachenko et al. 2013), background correc-
tion (Ling et al. 1985), and Raman peak extraction (Luo
et al. 2021). Several works focused on recovering Ra-
man spectra from corresponding CARS spectra. Spec-
Net (Valensise et al. 2020) introduced a CNN trained
on synthetic CARS-Raman pairs to perform NRB re-
moval, while VECTOR (Wang et al. 2021) used a deep
autoencoder for end-to-end signal reconstruction. Fur-
ther work regularizes the process via fingerprint weights
and the CH-stretching region (Muddiman et al. 2023).
Generative approaches (GAN and CNN+GRU) were
tested for NRB removal (Vernuccio et al. 2024; Luo
et al. 2024). Recurrent models (LSTM (Houhou et al.
2020), Bi-LSTM (Junjuri et al. 2023)) were explored
to model spectral dependencies.

Recent works utilize physical models to embed approx-
imations of the Kramers-Kronig (KK) relations (Liu
et al. 2009b), which have been improved via learned
Hilbert Kernels (Camp 2022; Camp et al. 2020). In
signal extraction, methods based on wavelet trans-
form (Härkönen et al. 2023; Saghi et al. 2022) or in-
tegrated measured instrument response functions into
spectral reconstruction (Muddiman et al. 2021) were
also used. However, these approaches are either limited
to precomputed kernel operators or require knowledge
specific to the measurement system.

In contrast, we formulate a novel physics-informed
learning framework for CARS-to-Raman mapping. We
compose a loss that explicitly enforces KK-consistency
via a differentiable Hilbert transform and regularizes
the non-resonant background using a smoothness prior.
Therefore, the model disentangles resonant Raman
features from background artifacts, not only based on
data, but with given rules. This is a novel deep-learning
approach for CARS spectroscopy that leverages KK
physics and NRB priors as part of a learnable loss
formulation for supervised and self-supervised training.

3 THEORY

We apply physics-informed learning (Raissi et al. 2019;
Karniadakis et al. 2021) to map Coherent Anti-Stokes
Raman Scattering (CARS) to Raman spectra (Raman
et al. 1928). By embedding the problem’s underlying
physical laws, we improve model accuracy and robust-
ness, particularly under data scarcity.
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Figure 1: RamPINN Architecture. Our architecture builds upon recent advancements (Wang et al. 2021;
Valensise et al. 2020; Vaswani et al. 2017; Ronneberger et al. 2015), with a key modification: a dual-branch decoder
for reconstructing Raman and non-resonant background (NRB) signals. We incorporate physical constraints via
losses LKK and Lsmooth on the predicted signals. Note that the encoder and decoder have identical dimensions
(outlined in Section D), but are depicted here with different scales for clarity.

3.1 Physics-Informed Learning

Physics-informed learning is a paradigm that com-
bines physical laws and neural networks, incorporat-
ing domain-specific knowledge into the learning pro-
cess (Raissi et al. 2019; Karniadakis et al. 2021; Lagaris
et al. 1997). This paradigm trains neural networks to
satisfy the underlying physical equations governing a
problem task while minimizing the data-driven loss
function. These describe functional or differential rela-
tionships between input and output.

Let x be the input signal, ŷ be the prediction, and fθ
be the neural network with trainable parameters θ. A
physical model expresses a constraint D:

D(ŷ, x) = 0 , x ∈ Ω , (1)

where D is a known operator, such as a differential
or integral transform within a domain Ω (Raissi et al.
2019). The physics-informed loss penalizes deviations
from this constraint:

Lphy =
1

|Ω|

∫
Ω

|D(fθ(x), u(x), x)|2 dx . (2)

In general this is combined with a data-driven loss term
Ldata (e.g., MSE) in a weighted objective:

Ltotal = λdata · Ldata + λphy · Lphy . (3)

The physical constraint becomes part of the model’s in-
ductive bias, whose effect is controlled by the weighting
parameter λphy (Vemuri et al. 2023; McClenny et al.
2023; Maddu et al. 2022; Wang et al. 2022).

3.2 CARS-to-Raman Spectra Mapping

This work aims to recover the Raman spectrum from
a measured CARS signal. While spontaneous Ra-

man spectroscopy directly captures molecular vibra-
tions (Raman et al. 1928), it is limited by long acquisi-
tion times (Li et al. 2020; He et al. 2022). CARS is a
faster alternative using non-linear optical interactions
to excite molecular vibrations more efficiently (He et
al. 2022; Cheng et al. 2004). However, the measured
CARS signal is not a clean Raman readout as it con-
tains both resonant and non-resonant components that
interfere nonlinearly. A more detailed discussion of this
physical phenomenon is given in Section A.

The CARS intensity ICARS(ω), as a function of
wavenumber ω, is related to the third-order non-linear
susceptibility χ(3)(ω) by:

ICARS(ω) ∝
∣∣∣χ(3)(ω)

∣∣∣2 = |χR(ω) + χNRB|2 , (4)

where χR(ω) is the complex-valued resonant component
encoding molecular vibrational information, and χNRB

is the real-valued non-resonant background (NRB),
which is typically smooth and broad in real-world mea-
surements (Junjuri et al. 2024; Konorov et al. 2011).
While the NRB amplifies signal strength, it also dis-
torts spectral shape, making Raman reconstruction
from CARS a challenging problem.

To constrain this ill-posed problem, we leverage two
well-established physical priors. First, the resonant
susceptibility χR satisfies the Kramers-Kronig (KK)
relation (Lucarini et al. 2005; Kramers 1928; de Laer
Kronig 1926), which links its real and imaginary parts
through causality in linear response theory (Wang et al.
2021; Junjuri et al. 2023). This is further explained in
Section B. Specifically,

χR(ω) = ℜ[χR(ω)]±ℑ[(χR(ω))] (5)

and
ℜ[χR(ω)] = H(ℑ[χR(ω)]) , (6)
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where H(·) is the Hilbert transform (Graf 2010).
The imaginary part carries the true Raman spec-
trum (Müller et al. 2007). This relation provides a
consistency constraint between what we want to re-
cover (ℑ(χR)) and what we estimate from the observed
signal (the real part ℜ(χR)).

Second, NRB is characteristically smooth and lacks
sharp peaks in real-world measurements (Junjuri et al.
2024; Konorov et al. 2011). This motivates a regular-
ization term penalizing high curvature in the estimated
background. These constraints directly integrate phys-
ical principles into the learning objective: one loss
term promotes Kramers-Kronig (KK) consistency in
the predicted Raman spectrum, while the other enforces
smoothness in the NRB estimate (Junjuri et al. 2023;
Vernuccio et al. 2024). Consequently, our approach
is both data-driven and physics-grounded. This inte-
gration of physical priors fundamentally distinguishes
RamPINN from previous, purely data-driven methods.

4 RamPINN - METHODOLOGY

A CARS spectrum is represented as a function x(ω),
where ω denotes the wavenumber, and the function
value represents the measured relative intensity at that
wavenumber. Similarly, the corresponding Raman spec-
trum and non-resonant background (NRB) are given
by yraman(ω) and yNRB(ω), respectively.

The wavenumber (ω) is fixed across all samples during
training and inference. We simplify notation by drop-
ping the explicit dependence on ω, and refer to the
spectra as vectors: x, yraman, and yNRB. All spectra
are normalized, as we are concerned with relative spec-
tral shapes (signatures) rather than absolute intensity
values, following (Junjuri et al. 2021).

We aim to learn a mapping from the CARS spectrum to
its underlying Raman and NRB components. A neural
network fθ, parameterized by θ, takes the normalized
CARS spectrum x as input and reconstructs the Raman
(ŷraman) and NRB (ŷNRB) spectra tuple:

fθ(x) = (ŷraman, ŷNRB) . (7)

We aim to design a learning framework that enforces
this decomposition in a way that respects the known
physics of the CARS process. In the following sections,
we describe how we achieve this using physics-informed
loss functions based on the Kramers-Kronig relations
and the smooth, peak-free nature of the NRB.

4.1 Model Architecture

Physics-informed learning is architecture-agnostic, yet
recent advancements motivate our components (Valen-
sise et al. 2020; Wang et al. 2021; Vaswani et al. 2017;
Ronneberger et al. 2015). We use a 1D Convolutional
U-Net (Ronneberger et al. 2015) tailored for spectral
signal decomposition, shown in Figure 1. The model
takes raw CARS spectra as input and outputs two
components: the resonant Raman signal and the non-
resonant background (NRB). The network employs a
shared encoder and a dual-branch decoder for disentan-
glement, which are trained jointly under the physics-
informed objective in Equation (10).

The encoder consists of four convolutional blocks with
average pooling to preserve smooth signal features, pro-
gressively reducing temporal resolution while increasing
feature depth. A self-attention block (Vaswani et al.
2017) captures long-range dependencies in the spectral
domain, necessary for resolving overlapping peaks.

A dual-branch decoder reconstructs the Raman sig-
nal and NRB. Each branch comprises four upsampling
blocks, a final convolution, and a sigmoid activation.
To avoid checkerboard artifacts, we use upsampling fol-
lowed by a one-dimensional convolutional layer rather
than transposed convolutions (Höck et al. 2022; Büch-
ner et al. 2023; Büchner et al. 2025; Kwarciak et al.
2024). Skip connections at each level concatenate en-
coder features with the corresponding decoder inputs,
helping preserve fine-grained spectral structure through-
out reconstruction.

Overall, this architecture is designed to decompose
the input spectrum into physically meaningful compo-
nents while maintaining flexibility for both supervised
and physics-guided training. In Section D, we detail
each component of the RamPINN model architecture.
We also discuss the selection of our chosen backbone,
comprising a U-Net (Ronneberger et al. 2015) with
self-attention (Vaswani et al. 2017), over other existing
backbone architectures.

4.2 Optimization

Let x be the measured CARS spectrum, and the goal is
to predict ŷ = (ŷraman, ŷNRB), the Raman-resonant and
non-resonant components, respectively, using a neural
network fθ(x). The Kramers-Kronig (KK) relations
govern the underlying physical relationship (Lucarini et
al. 2005; Kramers 1928; de Laer Kronig 1926; Guenther
et al. 2004). A detailed description of Raman spec-
troscopy and Kramers-Kronig relationships is provided
in Sections A and B, respectively.



Sai Karthikeya Vemuri, Adithya Ashok Chalain Valapil, Tim Büchner, Joachim Denzler

Kramers-Kronig Regularization. Causality in op-
tical response implies that the Raman component must
be consistent with the imaginary part of the Hilbert
transform of the residual signal (Liu et al. 2009a; Lu-
carini et al. 2005). After subtracting the NRB, the
residual signal should follow:

LKK = |ŷraman −ℑ (H(x− ŷNRB))|2 . (8)

Here, H(·) denotes the differentiable Hilbert transform,
which produces the analytic signal whose imaginary
part corresponds to the KK-paired component. A
complete formulation is provided in Section F.

NRB Regularization. The NRB is smooth and
broad (Konorov et al. 2011; Junjuri et al. 2021; Wang
et al. 2021). We enforce this behavior by regularizing
the derivative of the predicted NRB signal, penalizing
rapid changes (Puleio et al. 2023; Rosca et al. 2020):

Lsmooth = |∇ŷNRB|2 . (9)

Optimization Term. The loss is a weighted sum of
a data fidelity term and the physics-based regularizers:

Ltotal = λdataLdata+λKKLKK+λsmoothLsmooth . (10)

4.3 Implementation

We train RamPINN to learn the mapping from CARS
spectra to their corresponding Raman and NRB com-
ponents. The training algorithm, including the differ-
entiable Hilbert transform for computing the Kramers-
Kronig loss, is outlined in Section F.

Otherwise, we use standard deep learning training prac-
tices - Adam optimizer (Kingma et al. 2014) with a
learning rate of 10−3 and early stopping based on
validation loss. All models are implemented in Py-
Torch (Paszke 2019) with mini-batch training, gradient
clipping, and loss normalization where appropriate.
We fix the values of the regularization terms (obtained
by an initial hyperparameter search) for RamPINN:
λsmooth = 10, λdata = 10, and λKK = 1.

5 EXPERIMENTS AND RESULTS

We examine whether including physical knowledge dur-
ing training enhances performance compared to data-
driven baselines. Therefore, we compare RamPINN,
supervised and self-supervised (by setting λdata = 0),
against state-of-the-art deep learning CARS-to-Raman
approaches: SpecNet (Valensise et al. 2020), VEC-
TOR (Wang et al. 2021), LSTM (Houhou et al. 2020),
BiLSTM (Junjuri et al. 2023), GAN (Vernuccio et al.

2024), and CNN-GRU (Vernuccio et al. 2024). We
follow their recommended training procedures. More
details for these models are provided in Section E. All
models have a comparable capacity, ensuring that any
observed improvement can be attributed to the training
methodology, specifically, the integration of physics-
based constraints, rather than differences in model
size. We also include traditional non-deep learning
approaches for comparison: TDKK (Liu et al. 2009a),
LeDHT (Camp 2022), and IWT (Härkönen et al. 2023).

Due to the limited availability of real paired CARS and
Raman spectra, we focus on synthetic training data.
Our synthetic dataset mimics typical experimental con-
ditions, described in Section C. We use 2000 synthetic
samples, split into 1000 for training and 1000 for testing.
All models are trained and evaluated (with an NVIDIA
GTX 1080) on this common dataset and additionally
tested on six public real-world examples for zero-shot
signal extraction performance evaluation (Vernuccio
et al. 2022a).

We evaluate performance using mean squared error
(MSE) and Peak Signal-to-Noise ratio (PSNR (dB))
between predicted and ground truth spectra. To en-
sure robustness, we report results over 10 independent
training runs. Quantitative results are given in Table 1.
Beyond MSE/PSNR, we also report peak-aware met-
rics that assess whether the predicted spectra recover
the correct peaks, how well their positions align, and
how accurately their magnitudes are reproduced. Com-
plete definitions and results (F1 for peak detection,
normalized mean location error, and relative intensity
error) are provided in Section J.

The supervised RamPINN outperforms all baselines by
a large margin, achieving the lowest MSE and highest
PSNR on the test set. This demonstrates the benefit
of incorporating known physics into the learning pro-
cess. Notably, the self-supervised RamPINN variant
(λdata = 0) remains competitive, outperforming most
data-driven baselines that rely on ground truth data.
This supports our hypothesis that leveraging physical
knowledge improves performance, even with limited or
no reconstruction regularization. This demonstrates
that physical priors can effectively replace experimen-
tally expensive paired data, enabling high-fidelity spec-
tral recovery in data-limited settings.

The qualitative results for the top three performing
models (RamPINN (supervised), BiLSTM (Junjuri et
al. 2023), and CNN-GRU (Vernuccio et al. 2024)), as
shown in Figure 2, further support these findings. Vi-
sually, RamPINN accurately reconstructs the Raman
spectra from three synthetic CARS, especially recov-
ering smaller peaks that the other models often miss.
The Section G provides more differences and examples.
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Figure 2: Qualitative Comparison of Raman Signal Extraction. We visualize the Raman reconstruction
of RamPINN, BiLSTM, and CNN-GRU on three synthetic samples (a-c). RamPINN outperforms the other
methods, both qualitatively and quantitatively, as shown by the error values and lines (best viewed digitally). We
provide additional plots in Section G.

Although synthetic results are encouraging, zero-shot
performance on real-world data is crucial for gauging
practical applicability.

5.1 Zero-shot Evaluation on Real-world
Samples

To evaluate how well our models generalize beyond syn-
thetic data, we conduct a zero-shot test: models trained
entirely on synthetic spectra are applied directly to real
CARS measurements, without any fine-tuning or adap-
tation. We use six publicly available samples, Acetone,
DMSO, Ethanol, Isopropanol, Methanol, and Toluene
with paired CARS and Raman spectra from (Vernuccio
et al. 2022a; Vernuccio et al. 2022b).

We compare RamPINN predictions (supervised and
self-supervised variants) with other baseline deep learn-
ing models against the ground-truth Raman spectra.
For each model, we report the best-performing version.
The goal is to assess how well each model handles real
experimental signals without domain-specific calibra-
tion. Results are summarized in Table 2, with one
representative prediction of Toluene shown in Figure 3.
We can observe here that RamPINN reconstructs all
peaks with accurate shape and intensity at correct lo-
cations. This is also seen for other samples for which
qualitative visualizations are included in Section G.

These results indicate that sufficient synthetic data
with self-supervision translates well to real-world appli-
cations. RamPINN consistently outperforms all purely
data-driven baselines, demonstrating that embedding
physical constraints leads to better generalization on
real-world data. Notably, even the self-supervised
RamPINN, trained without ground truth spectra, still
generates competitive reconstructions, rivaling super-
vised baselines. This highlights the strength of physics-
informed training, especially in settings where ground
truth data are scarce or unavailable.

6 ABLATION STUDIES

We conduct ablations to assess the key parts of our
method. Specifically, we: (1)Quantify the impact of our
physics-informed KK loss and smoothness prior. (2)An-
alyze performance in relation to the amount of training
data. (3)Test the model’s robustness to violations of the
non-resonant background (NRB) smoothness assump-
tion. These studies probe the method’s limitations and
validate its suitability for practical application.

6.1 Effect of the Physics Loss Term

One of our contributions is the incorporation of the
Kramers-Kronig (KK) loss (LKK), which isolates and
quantifies its effect compared to purely data-driven
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Table 1: Quantitative Comparison of Raman Re-
construction Methods. MSE and PSNR are com-
puted between the predicted and ground truth Raman
spectra on the test set. Lower MSE and higher PSNR
indicate better performance. The top three models are
ranked gold , silver , and bronze , respectively,
based on MSE values (when two MSEs are the same,
we use PSNR). All deep learning results are given over
10 independent runs. Traditional methods (denoted
with †) estimate a single deterministic spectrum for
comparison and require an NRB estimate.

Method MSE ↓ PSNR (dB) ↑
TDKK† 0.0283 15.48
LeDHT† 0.0814 10.91
IWT† 0.0139 18.75

SpecNet 0.0064 ± 0.0003 21.91 ± 0.21
VECTOR 0.0205 ± 0.0002 16.88 ± 0.04
LSTM 0.0732 ± 0.1169 19.30 ± 8.77
BiLSTM 0.0007 ± 0.0002 31.57 ± 1.29
GAN 0.0088 ± 0.0118 22.74 ± 3.74
CNN-GRU 0.0019 ± 0.0004 27.38 ± 0.97

RamPINN 0.0006 ± 0.0001 33.83 ± 0.13
RamPINN (Self-sup) 0.0053 ± 0.0003 22.79 ± 0.28

approaches. Specifically, we vary the weight of the
physics-based KK loss term, denoted by λKK, from
zero to one in ten equidistant intervals.

As shown in Figure 4a, when λKK = 0, the model re-
duces to a data-driven approach without any physics
constraint, and it shows weaker performance. As the
value of λKK increases, the influence of physics dur-
ing training increases, leading to better performance.
Hence, we quantify how much the KK loss LKK con-
tributes to model performance.

6.2 Effect of Data

While we show that the Kramers-Kronig (KK) loss
enhances standard data fidelity terms, it is crucial to
test scaling the training data. To study this, we freeze
the test set and vary the number of training samples
from 0 to 1000, keeping all other settings constant.
This setup ensures systematic evaluation of the impact
of supervision concerning generalization. Performance
improves with more training data, as shown in Fig-
ure 4b. However, even in the fully self-supervised case,
where RamPINN is trained without any data signal,
the model recovers meaningful Raman spectra from
CARS inputs. While not matching the accuracy of
supervised models, these self-supervised predictions
remain competitive, underscoring the strength of the
physics-informed loss as an inductive bias. We also
observe diminishing returns with increasing data, sug-
gesting that either the synthetic data lacks sufficient

CARS

Raman

VECTOR
MSE: 0.0045
PSNR: 23.51

BiLSTM
MSE: 0.0051
PSNR: 22.94

CNN-GRU
MSE: 0.0060
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MSE: 0.0011
PSNR: 29.53
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Figure 3: Zero-shot Raman Spectra Extraction –
Toluene. Looking at input CARS, ground truth Ra-
man, and reconstructions from baseline methods (VEC-
TOR, BiLSTM, CNN-GRU), our RamPINN approach
provides a more accurate zero-shot Raman spectra re-
covery, achieving the lowest MSE and highest PSNR.

diversity or the model has reached its representational
capacity. The results show that the problem can be
addressed effectively with limited supervision.

6.3 Effect of Smoothness

We ablated the influence of λsmooth. This prior proves
crucial for disentangling the signal, as it correctly pre-
vents the NRB decoder from fitting sharp Raman peaks
on the synthetic data. While the KK-loss has a larger
impact, the smoothness prior consistently improves
performance as shown in Figure 4c.

6.4 Additional Robustness Studies

A key question is how robust RamPINN is to real-world
experimental complexities, such as non-linearitiTo test
these failure modes, we and artifacts. We conducted
robustness studies, presented in full in Section I. We
evaluated the model’s performance against increasingly
non-linear NRB shapes and in the presence of sharp,
peak-like artifacts designed to simulate instrumental
noise. Our results consistently show that the model
exhibits graceful degradation rather than catastrophic
failure. RamPINN effectively learns to attribute non-
physical artifacts to the NRB component, preserving
the fidelity of the Raman reconstruction even under
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Table 2: Real-world Zero-shot Evaluation. Zero-shot evaluation results on six real-world CARS samples
(Acetone, DMSO, Ethanol, Isopropanol, Methanol, Toluene) (Vernuccio et al. 2022a; Vernuccio et al. 2022b).
RamPINN shows strong performance, consistently achieving the lowest Mean Squared Error (MSE) and highest
Peak Signal-to-Noise Ratio (PSNR) across all samples, outperforming the baseline methods. The self-supervised
RamPINN variant (Self-sup) also notably surpasses many baselines. The top three models are ranked gold ,
silver , and bronze , respectively, based on MSE values (when two MSEs are the same, we use PSNR).

Acetone DMSO Ethanol Isopropanol Methanol Toluene

MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑ MSE ↓ PSNR ↑
TDKK 0.0283 15.48 0.0098 20.04 0.0140 18.30 0.0192 17.15 0.0064 22.06 0.0064 31.92
LeDHT 0.2663 5.74 0.0157 18.01 0.0351 14.53 0.0607 12.16 0.0315 15.01 0.1129 9.47
IWT 0.0078 21.02 0.0083 20.07 0.0149 18.26 0.0182 17.39 0.0031 24.97 0.0061 22.97

SpecNet 0.0108 19.65 0.0046 23.42 0.0036 24.43 0.0169 17.73 0.0041 23.88 0.0061 22.12
VECTOR 0.0041 23.88 0.0051 22.96 0.0033 24.84 0.0105 19.78 0.0039 24.12 0.0045 23.51
LSTM 0.0122 19.12 0.0101 19.95 0.0131 18.83 0.0165 17.82 0.0555 12.56 0.0075 21.25
BiLSTM 0.0043 23.67 0.0046 23.39 0.0041 23.92 0.0100 20.00 0.0037 24.30 0.0051 22.94
GAN 0.0035 24.53 0.0044 23.57 0.0046 23.38 0.0153 18.16 0.0037 24.27 0.0031 25.05
CNN-GRU 0.0105 19.80 0.0044 23.58 0.0033 24.85 0.0169 17.72 0.0037 24.32 0.0060 22.24

RamPINN 0.0011 29.69 0.0013 28.98 0.0008 30.87 0.0026 25.80 0.0010 30.14 0.0011 29.53
RamPINN (Self-sup) 0.0053 22.79 0.0076 21.20 0.0099 20.02 0.0035 24.56 0.0114 19.43 0.0026 25.90
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Figure 4: Ablation Study Quantifying the Effects of Individual Loss Terms on Test MSE. We observe
that scaling our physics-based Kramers-Kronig regularization term, LKK, steadily decreases the test MSE with
increasing influence. We also see similar effects with increasing the amount of training data (LData) and the
smoothness constraint imposed on NRB (Lsmooth).

significant assumption violations.

7 LIMITATIONS & FUTURE WORK

Our work operates under the scientific constraint of
data scarcity, using physical priors to enable zero-shot
generalization from synthetic data. This framing natu-
rally informs the primary avenues for future research.

Future work could explore adapting RamPINN for cases
where it could learn from a large corpus of unpaired
real-world CARS spectra while being fine-tuned on
only partially available Raman spectra.

A natural extension of this work would be to design flex-
ible background models, for example, using a learned
function before capturing more complex NRB struc-
tures. Similarly, the current architecture assumes a
fixed spectral resolution. Future work could address
this by incorporating principles from Neural Opera-
tors (Kovachki et al. 2021), resulting in a resolution-

agnostic model that can adapt to data from different
experimental setups without requiring retraining.

8 CONCLUSION

In this work, we introduce RamPINN, a physics-
informed neural network for reconstructing Raman
spectra from CARS signals. By incorporating physical
principles, specifically the Kramers-Kronig relations
and NRB smoothness, as physics-based loss terms into
the learning process, we demonstrate that RamPINN
significantly enhances performance over purely data-
driven baselines. While supervised training naturally
yields the best results, the strong inductive bias induced
by the physics terms provides competitive recovery even
in the fully self-supervised setting.

Beyond spectroscopy, this work highlights a broader
opportunity: many scientific domains possess deep,
well-established knowledge that can be formally inte-
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grated into machine learning. Rather than replacing
domain understanding, combining physical principles
with modern learning methods offers a practical and
interpretable path forward, especially in scientific set-
tings where data is scarce or synthetic.

Sutton’s "bitter lesson" suggests that, given enough
data and computing power, learning outperforms in-
ductive hand-crafted biases (Sutton 2019). However,
in science-driven fields, data is often limited, and the
inductive biases we embed are not heuristic approxi-
mations, but grounded in physical law. In these cases,
physics-informed learning is not a compromise, but a
necessary and principled foundation for generalization.
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Supplementary Material

A Raman Spectroscopy and CARS

Raman spectroscopy is a non-destructive chemical analysis technique which is used for chemical analysis especially
in medical applications. When light interacts with matter, the inelastic scattering in molecules can be observed
as a unique spectrum for a molecule. It provides a fingerprint spectra that helps molecular identification. This
provides the chemical structure, orientation, concentration etc. of a substance. This spectrum describes different
vibrational, rotational, and other transitions in the molecule. The main drawback is that the acquisition time
in Spontaneous Raman (SR) measurement is very high. A faster approach called coherent anti-Stokes Raman
scattering(CARS) was introduced, but it had the drawback of possessing a non-resonant background(NRB). To
be specific, the NRB originates from electronic contributions to the third-order nonlinear susceptibility (χ(3)) as
seen in Equation 11 of Appendix B. This NRB noise is usually broad and featureless as it does not depend on
specific vibrational modes but rather on electronic responses of the sample, and this distorts the output spectra.

B Kramers-Kroning Principle

The Kramers-Kroning relations or KK relations are mathematical relations that connects real and imaginary
parts of any complex function that is analytic in the upper half-plane.

In CARS, the NRB originates from electronic contributions to the third-order nonlinear susceptibility (χ(3)) (Lu-
carini et al. 2005; Kramers 1928; de Laer Kronig 1926; Guenther et al. 2004):

ICARS(ω) ∝
∣∣∣χ(3)(ω)

∣∣∣2 I2puIs , (11)

where Ipu and Is are the pump and stokes laser intensity, respectively. The non-linear susceptibility includes the
Raman resonant part χr and the non-resonant part χnr, corresponding to electronic contributions and NRB,
respectively. The non-resonant part is frequency independent. Excluding the third order in susceptibility notation,
this is expressed as:

|χ(ω)|2 = |χr(ω) + χnr|2 = |χr(ω)|2 + 2χnrℜ[χr(ω)] + |χnr|2 . (12)

The non-resonant part arises due to the measurement setup, and the resonant part can be mathematically
expressed as:

χr(ω) =
∑
r

Ar

Ωr − (ωpu − ωs)− iγr
(13)

where (ωpu−ωs) is the difference in pump and stokes frequency and Ar, Ωr and γr are the amplitude, vibrational
frequency and bandwidth of rth Raman mode respectively. We can relate the real and imaginary parts in
Equation 13 as:

χr(ω) = |χr(ω)| eiϕ(ω) . (14)

As IRaman ≈ ℑ[χr(ω)], we need to estimate the phase term (Rinia et al. 2006). From Equation 11 and Equation 12,
the CARS measurement only has information on the squared modulus of susceptibility ICARS ≈ |χ(ω)|2. To
approximate NRB, a reference spectrum with Raman inactive substance with susceptibility χnr(ω) is measured and
applied such that χr(ω) = χ/χnr. Now let’s represent the normalized intensity as S(ω). The phase information
can be obtained from this using the Kramers-Kronig relations. It connects the real and imaginary parts as:

ℜ[χr(ω)] =
1

π
P
∫ ∞

−∞

ℑ[χr(ω
′)]

ω′ − ω
dω′ and

ℑ[χr(ω)] =
1

π
P
∫ ∞

−∞

ℜ[χr(ω
′)]

ω′ − ω
dω′ .

(15)
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Here, the P represents the Cauchy principal value used to handle improper integrals with singularities by avoiding
the singularity through a limiting process. Using the KK relation(Smith 1977), we can deduce the phase as:

φ(ω) =
1

π
P
∫ ∞

−∞

ln(
√
S(ω′))

ω′ − ω
dω′ . (16)

Hilbert transform is a specific type of KK relation that applies to real-valued signals. For a real-valued function
x(t):

H{x(t)} = 1

π
P
∫ ∞

−∞

x(t′)

t′ − t
dt′ . (17)

Therefore, the discrete Hilbert transform on ln(
√
S(ω)) will give the phase.

C Synthetic Data Generation

To train RamPINN, we generate synthetic CARS spectra by simulating both the resonant Raman signal and the
non-resonant background (NRB). This synthetic dataset is constructed to closely mimic realistic spectral profiles
observed in practical CARS experiments. Below, we describe the components and procedure used.

Resonant Raman Signal. Raman-active modes are modeled as Lorentzian-shaped peaks, following the
standard formulation for the third-order nonlinear susceptibility as in Equation 13. In implementation, the
Raman susceptibility χ(3) is constructed as:

χ(3)
r (ω) =

N∑
r=1

Ar

Ωr − ω − iγr
, (18)

where:

• N ∼ U{1, 25} is number of peaks varied per sample,

• Ar ∈ U(0.01, 1.0) is the amplitude (randomized),

• Ωr ∈ U(0, 1) is the normalized resonance frequency,

• γr ∈ U(0.001, 0.02) is the linewidth,

• ω is the normalized Raman shift ranging 1000 points over [0, 1].

The real and imaginary parts of χ(3) are retained to compute the CARS intensity and use in the Kramers-Kronig
loss. The signal is normalized such that the maximum absolute value of χ(3) is 1.

Multiple such Lorentzian peaks are summed to construct a complete Raman spectrum. The real and imaginary
parts of χ(3) are retained to compute the CARS intensity and use in the Kramers-Kronig loss.

Non-Resonant Background (NRB). To simulate the NRB, we use two classes of functions commonly
observed in experimental setups: Sigmoid-based and polynomial-shaped backgrounds. Each spectrum is randomly
assigned one of these forms.

Sigmoid-Based NRB. The sigmoid NRB is generated using the following function, where we use a product of
two sigmoids to better capture smooth peak-shaped NRB profiles:

χ
(3)
nrb(ω) =

1

1 + e−b1(ω−c1)
· 1

1 + eb2(ω−c2)
, (19)

where:

• b1, b2 ∼ N (10, 5) (steepness),
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• c1, c2 ∼ N (0.2, 0.3) and N (0.7, 0.3) respectively (centers).

This form captures the smooth, sigmoidal nature of NRB often observed in real data, as suggested in prior
studies (Junjuri et al. 2022).

Polynomial-Based NRB. Alternatively, NRB is modeled as a smooth polynomial function:

χ
(3)
nrb(ω) = aω4 + bω3 + cω2 + dω + e , (20)

with randomly sampled coefficients:

a, c ∼ U(−1, 1), b, d, e ∼ U(−10, 10) . (21)

These coefficients produce a range of smooth background shapes, consistent with observations from experimental
NRB profiles.

CARS Spectrum Generation. The final CARS spectrum is computed as:

ICARS(ω) ∝
∣∣∣χ(3)

r (ω) + χnrb

∣∣∣2 , (22)

where χnrb is treated as real-valued, either polynomial or sigmoid in form, depending on the random draw. The
total spectrum is normalized to ensure that learning focuses on the spectral shape rather than absolute intensity.
A random noise ∼ U(0.0005, 0.003) is also added to simulate high frequency disturbances.

D RamPINN Model Architecture

The RamPINN model utilizes a 1D U-Net-like (Ronneberger et al. 2015) architecture adapted for spectral
data processing. It takes a single-channel 1D CARS spectrum as input and outputs two separate 1D spectra
corresponding to the estimated resonant Raman component and the Non-Resonant Background (NRB) component.
The architecture consists of an encoder path, a bottleneck, and two parallel decoder paths. We implement the
model in PyTorch (Paszke 2019).

Encoder. The encoder comprises four stages. Each stage consists of a ConvBlock1D module followed by an
AvgPool1d operation with a kernel size of 2 (effectively downsampling by a factor of 2). The ConvBlock1D module
contains a 1D Convolution (nn.Conv1d) with a kernel size of 5 and padding of 2 (maintaining sequence length
within the block), followed by BatchNorm1d and a ReLU activation. The number of channels increases through
the encoder: 1(input)→ 64→ 128→ 256→ 512.

Bottleneck. The bottleneck connects the encoder and decoder paths at the lowest spatial resolution (highest
feature abstraction). It consists of a ConvBlock1D, followed by a SelfAttention1D module, and another
ConvBlock1D. The self-attention mechanism (SelfAttention1D) employs standard scaled dot-product attention,
allowing the model to capture long-range dependencies within the compressed spectral representation (512
channels).

Decoders. Two identical, parallel decoder branches are used to reconstruct the resonant and NRB compo-
nents separately. Each decoder consists of four stages, mirroring the encoder structure. Each stage uses an
UpBlock1D module, which first performs linear upsampling (nn.Upsample with scale factor=2), followed by
a 1D Convolution (kernel size 5, padding 2), BatchNorm1d, and ReLU. Skip connections are implemented by
concatenating (torch.cat) the output of each decoder stage with the feature map from the corresponding encoder
stage (after interpolating the decoder feature map to match the encoder feature map’s spatial dimension using
F.interpolate). The channel dimensions decrease through the decoder: 512→ 256→ 128→ 64→ 32.

Output Layers. Each decoder branch terminates with a final 1D Convolution (nn.Conv1d with kernel size 1)
projecting the 32-channel feature map to a single channel. This output is passed through a Sigmoid activation
function, scaling the predicted values between 0 and 1. Finally, both the resonant and NRB outputs are interpolated
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(F.interpolate with mode=’linear’) back to the original input sequence length to ensure compatibility with the
ground truth spectra during training and evaluation.

This dual-decoder architecture with shared encoder and bottleneck allows the model to learn common features
relevant to both components while dedicating specific pathways for reconstructing the distinct resonant and NRB
signals, potentially leveraging shared information from the CARS input effectively.

D.1 Architecture Selection

RamPINN model mostly focus on physics loss but an optimal architecture is also trivial for performance. From
Table 3 we see that the U-Net architecture outperforms all other forms of backends, and that the attention block
positively impacts the fidelity of the reconstructed signal (PSNR).

RamPINN Architecture Supervised Self-Supervised

U-Net w/ Attention (Ours) 0.0006 (33.83) 0.0053 (22.79)
U-Net w/o Attention 0.0007 (31.56) 0.0058 (22.59)
ResNet 0.0016 (27.90) 0.0078 (21.06)
AutoEncoder 0.0025 (25.96) 0.0071 (21.47)
Fourier Neural Operator 0.0040 (23.97) 0.0135 (18.86)

Table 3: Comparison of different RamPINN backend architectures under supervised and self-supervised training.

E Baseline Implementations

To benchmark the performance of RamPINN, we implemented several state-of-the-art deep learning models from
literature for CARS-to-Raman signal reconstruction.

E.1 SpecNet Model

SpecNet (Valensise et al. 2020) employs a CNN trained on synthetic CARS data to extract the imaginary part of
the third-order susceptibility, corresponding to the Raman signal. While SpecNet performs well on synthetic
datasets, its sensitivity to noise limits its applicability to real-world data, especially in scenarios with weak Raman
peaks. Nonetheless, it provides a valuable benchmark for assessing the impact of noise on model performance.
We trained the provided SpecNet till 10 epochs with a learning rate of 0.001, batch size 256 and loss metric as
mean square error.

E.2 LSTM Model

(Houhou et al. 2020) introduced LSTM networks to process CARS spectra. Being a type of recurrent neural
network, the LSTM layers model sequential dependencies across the spectrum. We trained the provided LSTM
network till 30 epochs with a learning rate of 0.005, batch size 10 and loss metric as mean absolute error.

E.3 VECTOR: Very Deep Convolutional Autoencoder Model

The VECTOR model (Wang et al. 2021), is a deep convolutional autoencoder designed to retrieve Raman-like
spectra from CARS measurements without requiring NRB reference data. The architecture comprises an encoder-
decoder structure with skip connections to preserve essential spectral features. Trained on simulated noisy CARS
spectra, VECTOR effectively learns to denoise and reconstruct the underlying Raman signal using a customized
loss function consisting L1 penalty terms. Its performance surpasses earlier models like SpecNet and LSTM. We
trained the provided VECTOR network till 40 epochs with a learning rate of 0.0001 and batch size 10.

E.4 BiLSTM Model

Building upon the LSTM approach, a Bi-LSTM architecture (Junjuri et al. 2023) for NRB removal in CARS
spectra is explored. The BiLSTM processes the spectral data in both forward and backward directions, capturing
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comprehensive contextual information. This model exhibited superior performance in reconstructing Raman
signals, particularly in regions with overlapping peaks or complex NRB structures. We trained the provided
Bi-LSTM network till 10 epochs with a learning rate of 0.005, batch size 10 and loss metric as mean squared error.

E.5 GAN Model

A GAN model (Vernuccio et al. 2024) to extract Raman signals from CARS spectra in an adversarial fashion.
The generator in the network has an encoder-decoder architecture with skip connections, and the discriminator is
a CNN. We trained the provided GAN model for 1000 epochs with a learning rate of 0.0001 and batch size 8.
A customized loss function was employed, utilizing a weighted Huber loss function based on whether peaks are
classified as true-positive, false-positive, true-negative, or false-negative, as specified by the authors, for a chosen
threshold.

E.6 CNN+GRU Hybrid Model

In the same paper (Vernuccio et al. 2024) proposed a CNN+GRU model that combines a set of convolutional
layers and bidirectional gated recurrent units (GRU). This combination of these models helps to capture long-term
dependencies in data. We trained the provided CNN+GRU network till 50 epochs with a learning rate of 0.0005,
batch size 256, and loss metric as Huber loss.

E.7 TDKK Method

Time-Domain Kramers-Kronig (TDKK) (Liu et al. 2009b) is a traditional algorithm for NRB removal in broadband
CARS microscopy, utilizing phase retrieval techniques. While effective, it requires additional NRB measurement
with a buffer sample, and estimations of hyperparameters are necessary.

E.8 LeDHT Method

A learned-matrix representation of the discrete Hilbert transform (LeDHT) method (Camp 2022) introduces a
learned matrix approach to the discrete Hilbert transform, enhancing the accuracy of Raman signal extraction
by addressing distortions caused by NRB interference. It is computationally efficient and significantly enhances
the performance of traditional phase retrieval techniques, such as the Kramers–Kronig relation. The approach
involves training a matrix that approximates the Hilbert transform, which is then applied to new spectra via
matrix multiplication.

E.9 IWT Method

IWP (Härkönen et al. 2023) introduces an approach that utilizes wavelet-based decomposition to model and
correct additive or multiplicative spectral background errors. This method is implemented in MATLAB and can
also be applied in an unsupervised setting, with the drawback of incomplete phase removal.
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E.10 Model Card Overview

We provide a short overview of model parameters and differences for all baseline models and our proposed
RamPINN architecture. The values are provided in Table 4. We estimate model size using each framework’s
built-in parameter-counting tools.

SpecNet VECTOR BiLSTM LSTM CNN+GRU GAN RamPINN (Ours)

# Parameters 6.0M 111.8M 51.4k 3.9k 84.0k 6.2M 6.8M

Architecture CNN AE BiLSTM LSTM CNN +
BiGRU

Gen (AE)
Disc (CNN)

AE +
Attention

Loss Function L2 L1 L2 L1 Huber Adversarial Physics-
Informed

Framework TensorFlow PyTorch TensorFlow TensorFlow TensorFlow PyTorch PyTorch

Table 4: Comparison of model parameters, architectures, and loss functions. "AE" denotes Autoencoder; "Gen"
Generator; "Disc" Discriminator.
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F Kramers–Kronig Implementation

Proposition 1 (Kramers–Kronig Consistency from Residual Decomposition). Let x be the measured CARS
spectrum, which consists of both a real-valued non-resonant background χ

(3)
NRB and a complex-valued resonant term

χ
(3)
res. That is,

x = χ
(3)
NRB + χ(3)

res . (23)

Assume that χ(3)
NRB is a smooth, real-valued function and that χ(3)

res is causal and analytic in the upper-half complex
frequency plane.

Then, if a neural network predicts an estimate yNRB of the non-resonant background, the residual

r = x− yNRB (24)

can be treated as the real part of an analytic signal r+iH(r), where H denotes the Hilbert transform. The imaginary
part ℑ(H(r)) yields the KK-paired signal, corresponding to the Raman-resonant response χ

(3)
res. Therefore, enforcing

the following loss
LKK = ∥yres −ℑ(H(x− yNRB))∥2 (25)

is equivalent to enforcing the Kramers-Kronig causal consistency between the predicted resonant component and
the residual signal derived from the CARS spectrum.

Physical Intuition. The KK relations originate from causality in linear response theory: for any physical
system, the imaginary (absorptive) part of the susceptibility is determined by the real (dispersive) part via the
Hilbert transform. In the context of CARS spectroscopy, the measured signal combines a broadband non-resonant
background (NRB) and a sharp resonant term. The NRB contributes primarily to the real part of the susceptibility.
By estimating and removing the NRB, we isolate a residual that, under ideal conditions, should behave as the
real part of a causal analytic signal. The imaginary part of this analytic continuation, obtained via the Hilbert
transform, corresponds to the true Raman signature. The KK loss thus enforces this structure by minimizing the
discrepancy between the predicted Raman component and the imaginary part of the analytic residual.

F.1 RamPINN Optimization Algorithm

Require: CARS spectra x, optional Raman labels ytrue, learning rate η, number of iterations T
Ensure: Trained network yθ(x) = (yres, yNRB)
1: for t = 1 to T do
2: Sample mini-batch x
3: (yres, yNRB)← yθ(x)
4: r ← x− yNRB
5: Hilbert Transform:
6: Rf ← FFT(r)
7: Construct Hf

8: R̃f ← Rf ·Hf

9: z ← IFFT(R̃f )

10: y
(KK)
res ← ℑ(z)

11: LKK ← ∥yres − y
(KK)
res ∥2

12: Lsmooth ← ∥∇yNRB∥2
13: if ytrue is available then
14: LMSE ← ∥yres − ytrue∥2
15: else
16: LMSE ← 0
17: end if
18: Ltotal ← λKK · LKK + λsmooth · Lsmooth + λdata · LMSE
19: θ ← θ − η · ∇θLtotal
20: end for
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G Additional Synthetic Samples
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Figure 5: Additional qualitative comparison of Raman reconstruction.
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Figure 6: Additional qualitative comparison of Raman reconstruction.
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Figure 7: Additional qualitative comparison of Raman reconstruction.
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H Additional Real-World Samples
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Figure 9: Real-world sample – Acetone.
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Figure 10: Real-world sample – DMSO.
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Figure 11: Real-world sample – Ethanol.
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Figure 12: Real-world sample – Methanol.
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Figure 13: Real-world sample – Toluene.
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Figure 14: Real-world sample – Isopropanol.



Sai Karthikeya Vemuri, Adithya Ashok Chalain Valapil, Tim Büchner, Joachim Denzler

I Robustness Studies

Our physics-informed objective is guided by the prior that the non-resonant background (NRB) is a smooth,
peak-free component. While this is a common and valid approximation, real-world experimental conditions can
introduce complexities. Therefore, we conducted two targeted experiments to assess the robustness of RamPINN
when these core assumptions are violated.

Robustness to Increased Non-Linearity. To test the model’s ability to handle more complex background
shapes, we evaluated its performance on synthetic data with increasingly non-linear NRB profiles. We generated
these by increasing the maximum polynomial degree used in the simulation (see Appendix C for details).
Figure 15a shows that the model’s performance exhibits graceful degradation. Even with highly complex, non-
linear backgrounds, the reconstruction error remains low, demonstrating that the model is not brittle and can
robustly handle a wide range of smooth background shapes. This indicates that the smoothness prior acts as a
robust inductive bias, guiding the model to prefer smoother solutions rather than forcing it to fit only simple ones.

Robustness to Peak-like Artifacts. To simulate sharp instrumental artifacts or other features that violate
the peak-free assumption, we injected a varying number of random Gaussian peaks into the input CARS spectra.
These peaks, intentionally distinct from the Lorentzian shapes of true Raman signals, had randomly sampled
heights. The results, presented in Figure 15b, show that RamPINN is remarkably resilient to such structured
artifacts. The model effectively learns to attribute these sharp, non-physical features to the NRB component,
thereby preserving the fidelity of the reconstructed Raman signal. This demonstrates the efficacy of our physics-
architecture co-design: the network learns that physically-inconsistent features are best explained by the NRB
decoder, allowing it to isolate the true Raman signal even in the presence of strong, peak-like interference.
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(a) Robustness to increasing non-linearity in NRB.

1 3 5 7 9
Number of injected peaks

0.05

0.10

0.15

0.20

0.25

M
SE

1e−2

(b) Robustness to random peaks injected into CARS.

Figure 15: Robustness of RamPINN.
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J Additional Metrics

MSE and PSNR summarize pointwise differences and are useful for broad comparisons, but they do not reflect
spectroscopic goals. In Raman spectra tasks, what matters is whether the peaks are present, where they are, and
how strong they are. Two typical failure modes illustrate the gap:

1. A small wavenumber shift of a narrow peak can be chemically significant yet only slightly affect MSE;

2. Smooth background deviations can inflate MSE while the peak set (locations and intensities) is essentially
correct.

Setting and detection. All spectra are normalized in intensity. Positions are evaluated on a normalized
axis x = i/(L− 1) ∈ [0, 1]. We detect peaks with scipy.signal.find_peaks on an optionally smoothed signal,
using absolute (scale-free) thresholds under normalization: minimum height hmin ∈ [0, 1], minimum prominence
pmin ∈ [0, 1], and a minimum separation δ ∈ (0, 1] expressed as a fraction of the signal length. Predicted and true
peaks are matched one-to-one by nearest neighbor within tolerance τ in normalized units: a match if |x̂− x| ≤ τ .
Therefore, alongside MSE/PSNR (main paper), we report peak-aware metrics that directly target detection,
localization, and intensity fidelity.

Detection Metrics We count TP (predicted peaks matched within τ), FP (unmatched predicted peaks), and
FN (unmatched true peaks), and compute

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (26)

F1 =
2PrecisionRecall

Precision + Recall
. (27)

This measures whether we found the right peaks.

Given N spectra, we provide (a) macro averages: mean ± std across spectra for each metric (ignoring NaNs for
spectra with no matches in location/intensity metrics); (b) micro F1: sum TP,FP,FN over all spectra first, then
compute Precision, Recall, and F1 from these totals.

Defaults Parameters. Unless stated otherwise, we fix τ = 0.01, pmin = 0.02, hmin = 0, δ = 0.01, and a
Savitzky–Golay window of 11. We keep pmin, hmin, δ fixed across methods for fairness, and vary only τ if needed
to account for sampling density.

Table 5: Detection Metrics (Macro and Micro) for the Test Synthetic Dataset. Higher is better (↑).
Values are mean ± std over spectra; best per column in bold. We observe that RamPINN outperforms in these
metrics, demonstrating that it not only retrieves the Raman spectrum effectively but also accurately identifies
the peaks.

Method Macro Precision ↑ Macro Recall ↑ Macro F1 ↑ Micro Precision ↑ Micro Recall ↑ Micro F1 ↑
RamPINN 0.983 ± 0.082 0.972 ± 0.092 0.960 ± 0.091 0.986 0.972 0.962
RamPINN(self-sup) 0.925 ± 0.189 0.743 ± 0.225 0.797 ± 0.192 0.917 0.710 0.800
BiLSTM 0.852 ± 0.174 0.972 ± 0.092 0.896 ± 0.129 0.878 0.962 0.923
CNN-GRU 0.852 ± 0.174 0.945 ± 0.116 0.896 ± 0.129 0.878 0.940 0.923
SpecNet 0.260 ± 0.142 0.813 ± 0.196 0.370 ± 0.158 0.241 0.789 0.369
VECTOR 0.114 ± 0.150 0.131 ± 0.179 0.106 ± 0.120 0.116 0.127 0.121
GAN 0.029 ± 0.115 0.020 ± 0.077 0.020 ± 0.068 0.092 0.020 0.032

Mean Location Error (Normalized). Over matched pairs (x̂j , xj),

MLEnorm =
1

TP

TP∑
j=1

|x̂j − xj | ∈ [0, 1] , (28)

reported as NaN if TP = 0. This measures how well peak positions align.
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Relative Intensity Error. Let A denote the per-peak amplitude. For each match,

rj =
|Âj −Aj |

max
(
|Aj |, ε

) . (29)

We report the mean and median of {rj}; NaN if TP = 0. This measures how well peak magnitudes are recovered.

Table 6: Localization and intensity errors on test synthetic data. Lower is better (↓). Values are mean ±
std; best per column in bold. We demonstrate that RamPINN outperforms classical methods in these metrics,
indicating that RamPINN effectively aligns peak positions and magnitudes.

Method Mean loc. err. (norm) ↓ Rel. int. err. (mean) ↓ Rel. int. err. (median) ↓ Pooled RIE (mean) ↓ Pooled RIE (median) ↓
RamPINN 0.0004 ± 0.0004 0.399 ± 0.254 0.329 ± 0.181 0.429 0.309
RamPINN(self-sup) 0.0009 ± 0.0008 0.449 ± 0.167 0.447 ± 0.196 0.455 0.453

BiLSTM 0.0004 ± 0.0004 0.674 ± 0.319 0.650 ± 0.319 0.705 0.641
CNN-GRU 0.0020 ± 0.0011 0.674 ± 0.319 0.650 ± 0.319 0.705 0.641
SpecNet 0.0006 ± 0.0004 0.599 ± 0.336 0.581 ± 0.341 0.599 0.525
VECTOR 0.0049 ± 0.0026 2.238 ± 3.733 2.122 ± 3.643 2.271 0.812
GAN 0.0046 ± 0.0024 0.857 ± 1.075 0.859 ± 1.075 0.824 0.816

Zero-shot Evaluation on Real Molecules. We applied our detection-focused metrics—precision, recall, F1,
relative intensity error (mean; ↓), and mean location error (normalized; ↓)—to six real-world molecules (acetone,
DMSO, ethanol, methanol, toluene, isopropanol); see Tables Tables 7 to 12. These metrics directly assess whether
a model finds the right peaks and aligns them at the right locations with the right intensities, complementing
global reconstruction scores like MSE/PSNR.

Takeaway. Not only does RamPINN reconstruct signals well (MSE/PSNR), it also identifies chemically
plausible peaks and preserves their alignment and relative intensities under zero-shot distribution shift. This
consistency across detection and alignment metrics evidences the strength of our physics-integrated approach.

Table 7: Acetone: per-model metrics. Arrows indicate direction; best per column in bold.

Method Precision ↑ Recall ↑ F1 ↑ Rel. Int. Err. (mean) ↓ Mean Loc. Err. (norm) ↓
RamPINN 0.748 0.875 0.778 0.251 0.0009
RamPINN(self-sup) 0.489 0.875 0.538 0.600 0.0026

BiLSTM 0.417 0.625 0.500 0.332 0.0040
CNN-GRU 0.545 0.750 0.632 0.394 0.0036
VECTOR 0.750 0.750 0.750 1.137 0.0036
SpecNet 0.500 0.750 0.600 0.393 0.0036
GAN 0.133 0.500 0.211 0.631 0.0031
LSTM 0.364 0.500 0.421 0.535 0.0038

Table 8: DMSO: per-model metrics. Arrows indicate direction; best per column in bold.

Method Precision ↑ Recall ↑ F1 ↑ Rel. Int. Err. (mean) ↓ Mean Loc. Err. (norm) ↓
RamPINN 1.000 1.000 1.000 0.093 0.0009
RamPINN(self-sup) 1.000 0.571 0.727 0.141 0.0038

BiLSTM 0.800 0.571 0.667 0.541 0.0031
CNN-GRU 0.667 0.571 0.615 0.615 0.0034
VECTOR 0.600 0.429 0.500 0.751 0.0005
SpecNet 0.571 0.571 0.571 0.615 0.0034
GAN 0.033 0.143 0.054 0.090 0.0031
LSTM 0.400 0.571 0.471 2.065 0.0031
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Table 9: Ethanol: per-model metrics. Arrows indicate direction; best per column in bold.

Method Precision ↑ Recall ↑ F1 ↑ Rel. Int. Err. (mean) ↓ Mean Loc. Err. (norm) ↓
RamPINN 1.000 1.000 1.000 0.120 0.0003
RamPINN(self-sup) 1.000 1.000 1.000 0.502 0.0005

BiLSTM 0.625 0.833 0.714 0.407 0.0009
CNN-GRU 0.667 1.000 0.800 0.229 0.0010
VECTOR 0.714 0.833 0.769 0.278 0.0006
SpecNet 0.667 1.000 0.800 0.229 0.0010
GAN 0.095 1.000 0.174 0.725 0.0036
LSTM 0.455 0.833 0.588 0.563 0.0052

Table 10: Methanol: per-model metrics. Arrows indicate direction; best per column in bold.

Method Precision ↑ Recall ↑ F1 ↑ Rel. Int. Err. (mean) ↓ Mean Loc. Err. (norm) ↓
RamPINN 0.500 0.667 0.571 0.032 0.0000
RamPINN(self-sup) 0.333 0.667 0.444 0.185 0.0023

BiLSTM 0.125 0.333 0.182 0.024 0.0000
CNN-GRU 0.200 0.667 0.308 0.054 0.0023
VECTOR 0.400 0.667 0.500 0.161 0.0023
SpecNet 0.200 0.667 0.308 0.054 0.0023
GAN 0.020 0.333 0.037 0.935 0.0046
LSTM 0.250 0.667 0.364 0.369 0.0069

Table 11: Toluene: per-model metrics. Arrows indicate direction; best per column in bold.

Method Precision ↑ Recall ↑ F1 ↑ Rel. Int. Err. (mean) ↓ Mean Loc. Err. (norm) ↓
RamPINN 1.000 0.827 0.842 0.283 0.0002
RamPINN(self-sup) 0.857 0.545 0.667 0.330 0.0020

BiLSTM 0.875 0.636 0.737 0.549 0.0020
CNN-GRU 0.889 0.727 0.800 0.568 0.0023
VECTOR 1.000 0.636 0.778 0.470 0.0024
SpecNet 0.800 0.727 0.762 0.565 0.0023
GAN 0.159 0.909 0.270 1.008 0.0050
LSTM 0.667 0.727 0.696 0.487 0.0059

Table 12: Isopropanol: per-model metrics. Arrows indicate direction; best per column in bold.

Method Precision ↑ Recall ↑ F1 ↑ Rel. Int. Err. (mean) ↓ Mean Loc. Err. (norm) ↓
RamPINN 1.000 0.667 0.800 0.159 0.0000
RamPINN(self-sup) 0.375 0.667 0.480 0.397 0.0008

BiLSTM 0.500 0.444 0.471 0.445 0.0046
CNN-GRU 0.600 0.667 0.632 0.956 0.0036
VECTOR 0.833 0.556 0.667 0.283 0.0034
SpecNet 0.545 0.667 0.600 0.957 0.0036
GAN 0.125 0.556 0.204 0.899 0.0061
LSTM 0.444 0.444 0.444 1.524 0.0042


	INTRODUCTION
	RELATED WORK
	THEORY
	Physics-Informed Learning
	CARS-to-Raman Spectra Mapping

	RamPINN - METHODOLOGY
	Model Architecture
	Optimization
	Implementation

	EXPERIMENTS AND RESULTS
	Zero-shot Evaluation on Real-world Samples

	ABLATION STUDIES
	Effect of the Physics Loss Term
	Effect of Data
	Effect of Smoothness
	Additional Robustness Studies

	LIMITATIONS & FUTURE WORK
	CONCLUSION
	Raman Spectroscopy and CARS
	Kramers-Kroning Principle
	Synthetic Data Generation
	RamPINN Model Architecture
	Architecture Selection

	Baseline Implementations
	SpecNet Model
	LSTM Model
	VECTOR: Very Deep Convolutional Autoencoder Model
	BiLSTM Model
	GAN Model
	CNN+GRU Hybrid Model
	TDKK Method
	LeDHT Method
	IWT Method
	Model Card Overview

	Kramers–Kronig Implementation
	RamPINN Optimization Algorithm

	Additional Synthetic Samples
	Additional Real-World Samples
	Robustness Studies
	Additional Metrics

