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Abstract

Implicit Neural Representation (INR) has emerged as a
powerful tool for encoding discrete signals into continu-
ous, differentiable functions using neural networks. How-
ever, these models often have an unfortunate reliance
on monolithic architectures to represent high-dimensional
data, leading to prohibitive computational costs as dimen-
sionality grows. We propose F-INR, a framework that
reformulates INR learning through functional tensor de-
composition, breaking down high-dimensional tasks into
lightweight, axis-speci�c sub-networks. Each sub-network
learns a low-dimensional data component (e.g., spatial or
temporal). Then, we combine these components via ten-
sor operations, reducing forward pass complexity while im-
proving accuracy through specialized learning. F-INR is
modular and, therefore, architecture-agnostic, compatible
with MLPs, SIREN, WIRE, or other state-of-the-art INR ar-
chitecture. It is also decomposition-agnostic, supporting
CP, TT, and Tucker modes with user-de�ned rank for speed-
accuracy control. In our experiments, F-INR trains100�
faster than existing approaches on video tasks while achiev-
ing higher �delity (+3 :4 dB PSNR). Similar gains hold for
image compression, physics simulations, and 3D geometry
reconstruction. Through this, F-INR offers a new scalable,
�exible solution for high-dimensional signal modeling.

1. Introduction

Implicit Neural Representations (INRs) are continuous,
functional representations of discrete signals such as im-
ages [60, 61, 76], videos [4, 7, 17, 80], 3D scenes [5, 22,
42, 43], and geometries [35, 47]. Implemented via neural
networks, these methods map discrete structured data into
a continuous function space, facilitating smooth interpola-
tion. This general nature promotes progress in architectural
design and practical applications [42, 47, 53, 57].

Continuous parametrization offers several advantages
over discrete, grid-based representations. These include
higher memory ef�ciency, the ability to be de�ned over an
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Figure 1.Ef�cient INRs via Functional Tensor Decomposition:
INR models use a single large network to predict one value (batch
of values) at a time. Our approach decomposes the function into
smaller networks, enabling full prediction in a single step with
con�gurable tensor decomposition modes and compression ranks.

unbounded domain, and resolution invariance [13]. Speci�-
cally, this approach captures �ne-grained details, where res-
olution is determined by the network's capacity and expres-
siveness rather than the grid [57]. Additionally, the differen-
tiability of these representations plays a key role in comput-
ing gradients and higher-order derivatives using automatic
differentiation, relevant for inverse modeling [55, 56, 67].

Another form for representing multi-dimensional data is
tensor decomposition, commonly used in signal and image
processing and analysis [2, 3, 29, 30, 58, 63, 70, 79]. It
models high-dimensional signals as combinations of low-
rank, low-dimensional components. Yet, these are con�ned
to discrete grid settings, limiting their applicability.

Both INR and tensor decomposition have their respec-
tive advantages, and a combination of these could ef�-
ciently represent complex data. Thus, we proposeF-INR,
an INR reformulation that leverages the strengths of ten-
sor decompositions. F-INR uses dedicated univariate neu-
ral networks to learn a variably separated form of INR, re-
taining the bene�ts of continuous representations by facili-
tating low-dimensional components. A general illustration
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of this setup is provided in Figure1. In this study, we
focus on combining neural networks with three tensor de-
composition techniques, speci�cally CP [20], TT [45], and
Tucker [64]. We establish versatility across various INR
experiments, including image and video encoding, shape
representation via SDFs, and physics simulation encoding
for super-resolution. F-INR outperforms classical INRs
in training speed (up to100� ), task-speci�c metrics, and
qualitative results. This indicates that improvements can be
achieved beyond network architectural modi�cations.

To summarize, our main contributions are fourfold: 1)
A novel reformulation of INRs through functional tensor
decompositions, providing a new perspective on continu-
ous signal representation. 2) The F-INR framework, which
utilizes three speci�c decomposition modes combined with
existing network architectures, offers �exible and ef�cient
modeling. 3) An empirical demonstration of F-INRs strong
performance in key INR applications. 4) Open-sourcing our
framework to promote the research area of F-INR1.

2. Related Work

Implicit Neural Representation (INR) evolved through
several stages. First ideas introduced explicit coordi-
nate mechanisms like positional encoding [42] and ran-
dom Fourier feature mappings [62] to improve the MLP
representation capacity. Subsequent works focused on ac-
tivation functions and model architectures: SIREN intro-
duced sinusoidal activations [57], WIRE the Gabor wavelet
activations [53], and InstantNGP the hash-based encod-
ing [43]. Notably, these strongly enhanced the INR ex-
pressiveness. Recent work is application driven, e.g., data
compression [13, 17, 61], computer vision [1, 4, 9, 15, 47],
graphics [35, 42, 44, 55, 56, 77], and robotics [6, 33, 54].
Tensor decompositionrepresents high-dimensional data
as compositions of smaller factors. Classical decomposi-
tions forms split data into mode-wise components [20, 29,
30, 45, 64]. Early works applied �xed functional bases
(e.g., Gaussian, Fourier, or Chebyshev expansions) to rep-
resent each factor in a continuous domain [18, 27, 76], but
these have limited expressiveness. Recent approaches use
neural networks as learnable functional bases, combining
deep learning with tensor factorization to overcome this.
For example, some methods replace hand-crafted compo-
nents (Tucker factors or PCA/SVD vectors) with neural net-
works [8, 10, 24, 52]. In physics-informed learning, ten-
sor decomposition was used to solve PDEs by splitting the
solution into lower-dimensional neural components. This
yielded faster training and higher accuracy [11, 26, 66, 68].
However, to our knowledge, no prior work uni�es INRs
with functional tensor decomposition in a general way.
Tensor decompositions for INR recently emerged as a

1Link redacted for peer-review.

combination of low-rank tensor factorization with INR-
speci�c applications, such as NeRFs [42]. Works like Ten-
soRF factorized the radiance �elds into compact low-rank
components [5, 22]. This resulted in fast and memory-
ef�cient view synthesis, an effective but domain-speci�c
solution. Moreover, MLPs are not used to learn the com-
ponents of tensor decomposition directly but only for fea-
ture decoding. Similarly, CoordX employed split MLPs
for each coordinate dimension and low-rank representa-
tion [34]. They were fused in the deeper layers, omitting
different decomposition modes. Using MLPs to represent
low-rank tensor functions (instead of �xed bases) was pro-
posed in works like [38, 39, 69]. They represent multidi-
mensional data continuously, achieving state-of-the-art im-
age in-painting and point cloud up-sampling [38, 39, 69].
F-INR uni�es and generalizes prior methods into a single,
modular paradigm. Akin to CoordX [34], separated MLPs
handle dedicated input dimensions, leveraging smaller sub-
networks for ef�ciency. It incorporates the low-rank struc-
ture found in LRTFR [22] or TensoRF [5], reducing re-
dundancy while retaining expressiveness [11, 66]. Unlike
these approaches, F-INR is unconstrained to a speci�c ten-
sor factorization or application domain. It inherently sup-
ports several decomposition modes and ranks adaptable to
the task data structure. As F-INR is backend-agnostic, it
bene�ts from advances in architectures such as SIREN [57]
or Fourier features [62] and makes structured INR repre-
sentations more modular, scalable, ef�cient, and versatile
for many tasks.

3. Functional Tensor Decomposition for INRs

Real-world signals, such as images or videos, must be
stored as a discrete grid of values. These discretized sig-
nals, which ared-dimensional andc-variate, face limita-
tions in resolution and memory. Neural networks offer a
solution by modeling a continuous version of these signals,
known as Implicit Neural Representations (INR), which are
both resolution-independent and memory-ef�cient. Thus,
an INR task is a function� : Rd 7! Rc, here estimated
by a neural network� � : Rd 7! Rc, mapping a coordinate
vectorx = ( x1; : : : ; xd) 2 Rd to ac-variate output signal.

We instead propose to reformulate the problem approx-
imation as a tensor product ofd smaller neural networks:

�( x) �
dO

i =1

� i (x i ; � i ); (1)

where� i (�) denotes a univariate neural network for thei -th
dimension with learnable parameters� i . Each network pro-
duces a tensor of a particularrankto restore the original sig-
nal via classical tensor decompositionmodes[20, 45, 64],
denoted as
 . The decomposition tensors have continuous
functions as basis [68], and the approach is considered func-
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Figure 2. Tensor diagrams for three decompositions(a)-(c):
This schematic [29, 48] describes each circle as a component, and
spokes determine its dimension. The spokes connectivity shows
how the decomposition is carried out and how to obtain the origi-
nal tensor. In F-INR, each component is learned by an individual
neural network. More visualizations and mathematical formula-
tions are provided in the supplementary.

tional tensor decomposition. Hence, our reformulation in-
troduces the idea of functional-INRs (F-INR).

Notably, this approach is model-agnostic, and any state-
of-the-art INR architecture can be abackend, inheriting its
advantages implicitly [42, 53, 57, 62]. Two more hyper-
parameters comprise our approach:modeandrank. Mode
refers to the type of the tensor decomposition used. In this
study, we consider three establishedmodesin tensor theory:
1. Canonic-Polyadic Decomposition (CP) [20] involves

decomposing thed-dimensional tensor intod-factor ma-
trices ofrank R, visualized in the Figure2a.

2. Tensor-Train Decomposition (TT) [45] involves a train
of d-connected chains (trains) of low-rank tensors,
shown in Figure2b.

3. Tucker Decomposition [64] like CP, uses factor matri-
ces to decompose a tensor. Still, it also includes a smaller
core tensorC that captures the interactions between the
components of each mode, shown in Figure2c.

The next selectable parameter isrank, which speci�es the
decomposition's rank and determines the expressiveness
and complexity a model can learn. This combination of
backends, modes, and ranks offers precise control over
complexity, compression, and performance concerning the
speci�c application requirements.

3.1. Advantages

F-INR mitigates the curse of dimensionality by employ-
ing an effective separation of variables approach, which en-
ables the ef�cient representation of high-dimensional func-
tions [16, 21, 78]. Recent works have demonstrated that
multiple neural networks connected through tensor decom-
position forms are universal approximations [11, 26, 68].
Even if an exact, separable solution does not exist, a suf�-
ciently large rank can approximate the solution, leveraging

the universal approximation power of neural networks [68].
Previous studies [16, 21, 49] have shown that the number of
parameters required for function approximation grows ex-
ponentially with the dimensionality, hindering neural net-
works' ability to learn high-dimensional functions.

This is mitigated in F-INR, which adopts a divide-and-
conquer approach, where each neural network learns a low-
dimensional function, aggregating these functions to recon-
struct the full high-dimensional function. Another bene�t
of our method is that a case trained on points along a grid
(N d) requires onlyN �d data points during the forward pass.
This leads to signi�cant speedups, as evident in the com-
plexity of the forward pass for each mode; for the example
of d = 3 , see Table1.

Decomposition Complexity Description

- O(m2ln 3) Single neural net-
work with n3 inputs

CP [20] O(m2lnr + n2r 2) Three networks for
n � r factor matrices

Tensor-Train [45] O(m2lnr 2 + n2r 2) Two n � r factors,
oner � n � r core

Tucker [64] O(m2lnr + rn 3) Threen � r factors,
oner � r � r core

Table 1. Forward pass complexity: We assume a grid ofn �
n � n, i.e., n3 data points, and tabulate the computations for a
neural network (m features,l layers). Note thatr � m2 l and the
sequence of the operations are given in the supplementary.

4. Experiments

We evaluate the performance of functional tensor decom-
position (FTD) methods in enhancing computational ef-
�ciency and accuracy for implicit neural representation
(INR) problems in diverse applications. We investigate the
impact of key parameters on F-INR in our experiments to
demonstrate the generalizability of our approach:
1. Backend: The neural network architecture learning the

decomposed components.
2. Mode: The speci�c tensor decomposition technique.
3. Rank: The rank of the decomposed tensor components.

We select a standard ReLU-based MLP [41], with and
without Positional Encoding (PE) [42]. Further, we use
SIREN [57], which utilizes periodic activations with spe-
cialized initialization, and WIRE [53], which incorporates a
custom Gabor wavelet activation. These backends are rec-
ognized as the best-performing approaches across a wide
range of INR applications.

The test three tensor decomposition modes concern-
ing their applicability to different INR problem tasks:
Canonical-Polyadic (CP) [20], Tensor-Train (TT) [45], and
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Figure 3.F-INR for Image encoding: The visualizations of Image encoding are shown here, along with PSNR (dB) values in the inset.
All the �rst-row images do not use any decompositions, and the second row is the F-INRs for images for different backends and ranks.
Combinations with the highest PSNR are presented here. Additional results are in the supplementary.

Tucker [64]. Across all our experiments, we assess the per-
formance of different combination modes and backends at
various ranks. Evaluation metrics include domain-speci�c
measures such as the Peak Signal To Noise ratio (PSNR)
for encoded images and videos with uncompressed orig-
inal recordings. L 2 error between ground truth and pre-
diction for physics simulations and Intersection-over-Union
(IoU) for geometry learning using signed distance functions
(SDFs). Additionally, we provide the training times for
each experiment.

We compare results to baseline versions of the same
backend without tensor decomposition, using consistent hy-
perparameters to ensure that any observed improvements
are due to the functional tensor decompositions. We use a
standard MLP architecture with three layers, each with256
features, and train for50; 000 iterations using Adam [28]
for ten independent runs unless otherwise speci�ed.

We present key results in this section, with additional ab-
lation studies across different ranks, modes, and backends
available in the supplementary material. Training times
were measured on an NVIDIA GTX 1080, demonstrating
that F-INRs achieve fast and computationally ef�cient for-
mulations even on modest hardware and do not need to rely
on adapted and customized hardware kernels [43].

4.1. Image and Video Encoding

We begin by demonstrating the application of F-INR to en-
code an image. Images are second-order tensors; a simple

matrix decomposition mode suf�ces. Instead of utilizing a
single neural network to represent the entire image, we train
two univariate neural networks, each responsible for one
spatial dimension, to learn smaller patches. Their matrix
product reconstructs the original image. In a conventional
INR setup, an image is represented as:

� � (x; y) = ( r; g; b) ; (2)

where� � denotes the network,(x; y) are pixel coordinates,
and(r; g; b) represent the pixel color values. By contrast,
we learn the image as:

� 1(x; � 1) 
 � 2(y; � 2) = ( r; g; b) ; (3)

where� operator denotes matrix multiplication. Here,x
andy are image coordinates; the output is the pixel color.

We choose a publicly available image of a cat featur-
ing intricate details such as a �nely patterned scarf and
whiskers. The encoded images and their respective PSNR
(in dB) values demonstrate that F-INR-based representa-
tions achieve superior PSNR for identical backend archi-
tectures while offering a 100x speedup in computational
ef�ciency. Ground truth and encoded images are depicted
in Figure3. Detailed numerical results can be found in Ta-
ble 2. We also include LIIF [76], which encodes an image
using neighbor information of pixels as a baseline. Also,
DeepTensor [52] is similar to using a ReLU backend. Fur-
ther, we also employed hash-based encoding [43] as an ad-
ditional backend. Please note that we did not rely on custom
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Figure 4. Encoding video with nuanced facial features [80] (publicly available) using F-INR: The mean PSNR (dB) and model
are shown in the �rst column; training time is in the last. SIREN [57] and ReLU [41] with positional encoding [42] outperform their
baseline, capturing facial details and maintaining temporal consistency, while WIRE [53] performs worse. The best performance (�fth
row) was achieved using a combination of hash [43] and positional encoding for spatial and frame dimensions, respectively, highlighting
the modularity of F-INR. Additional results are in the supplementary.

Backend Rank PSNR (dB) (" ) SSIM (" ) Time (s)

IN
R

ReLU - 25.72� 0.31 0.73� 0.01 5066
ReLU+PE [42] - 31.53� 0.19 0.82� 0.01 5920
ReLU+Hash [43] - 33.88� 0.14 0.92� 0.01 2100
WIRE [53] - 32.09� 0.21 0.86� 0.01 5290
SIREN [57] - 30.90� 0.19 0.78� 0.00 5280
LIIF [ 76] - 33.96� 0.14 0.91� 0.03 6147
DeepTensor [52] - 26.92� 0.31 0.78� 0.01 122

F
-I

N
R

WIRE 128 32.63� 0.38 0.88� 0.00 61
WIRE 256 33.94� 0.38 0.89� 0.00 86
WIRE 316 34.19� 0.12 0.90� 0.00 101
ReLU+PE 128 33.90� 0.28 0.91� 0.00 82
ReLU+PE 256 34.27� 0.37 0.92� 0.00 108
ReLU+PE 316 34.55� 0.31 0.93� 0.01 123
ReLU+Hash 256 35.61� 0.14 0.93� 0.01 76
ReLU+Hash 316 35.91� 0.11 0.93� 0.01 85

Table 2. Results for Image encoding using F-INR: We show
PSNRandSSIMvalues for F-INRs image encoding. We observe
that F-INR models train faster and yield better results.

CUDA kernels for hash encoding [43], ensuring fair com-
parison in run-times, but the implementation details follow

the original algorithm [43]. We apply our image encoding
framework to tasks such as single image super-resolution
and image denoising. This demonstrates how F-INRs are
in�uenced by the strong architectural properties of back-
ends and how we improve upon their baseline implementa-
tions, as detailed in the supplementary material.

We extend our experiments to video encoding, follow-
ing the previous approach but with a temporal component.
Speci�cally, the representation is:

� 1(x; � 1) 
 � 2(y; � 2) 
 � 3(t; � 3) = ( r; g; b); (4)

where t denotes the temporal dimension (frame index).
We employ all speci�ed tensor decomposition modes for
this task. We use a256 � 256 resolution video of a per-
son [80], comprising 300 frames with varying facial ex-
pressions and head movements visualized in Figure4. The
modular nature of F-INR allows for �exible integration of
different encoding strategies and network backends, opti-
mizing task performance. Unlike a single monolithic neu-
ral network, which is constrained to a �xed encoding or ar-
chitecture, F-INR enables a plug-and-play approach, where
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Figure 5. We compare the performance of our method with two 3D scan reconstructions from [12, 14, 31, 65]. The time taken for training
and mean IoU are reported in the inset box. All models were obtained from SDF using the marching cubes algorithm with Laplacian
smoothing to reduce artifacts [37]. We compare our results to the ground truth SDF, the worst and best-performing baseline methods, and
the best-decomposed version. Notably, a rank that is too low (r = 16) does not yield a successful reconstruction.

different encodings can be tailored to speci�c dimensions.
This adaptability is exempli�ed here. The best perfor-
mance was achieved using hash encoding for spatial net-
works � 1; � 2 and Fourier features for the temporal net-
work � 3, leveraging the strengths of each encoding for
their respective domains. We do not include existing neural
network-based video compression algorithms like NeRVs
or COIN++ [7, 13, 40]. They relate to frame-wise learn-
ing of videos and subsequent neural network quantization.
Quantitative results are provided in the supplementary.

4.2. Signed Distance Functions for Geometries

A Signed Distance Function (SDF) is a continuous function
that assigns a value to every point in 3D space relative to
the nearest surface point. While learning SDFs from point
clouds and solving the Eikonal PDE has seen signi�cant
success [47, 53, 57], the use of voxel grids for SDF learn-
ing remains a relatively underexplored area. Voxel grids
offer a structured and dense representation, making them
particularly well-suited for applications that require spatial
coherence and ef�cient 3D convolutions [36, 74, 75]

We leverage F-INR to solve the Eikonal PDE and learn
geometric representations directly from voxel grid-based
SDF data, building on the foundational formulations of [15,

46, 47, 57]. Our loss function is de�ned as:

L SDF =
Z



k5 	 ( x; y; z; �) � 1k dxdydz (5)

+
Z






 	 ( x; y; z; �) � 	̂( x; y; z)



 dxdydz

+
Z


 < 
 0



 	 ( x; y; z; �) � 	̂( x; y; z)



 dxdydz;

where
 represents the spatial domain in which the SDF	
is learned. The loss function consists of three terms. The
�rst term enforces the Eikonal PDE constraint. The second
term minimizes the discrepancy between the predicted SDF
values	 and ground truth valueŝ	 across the domain
 .
The third term prioritizes data points near the surface within
a speci�ed threshold
 < 
 0. Following [59], we truncate
SDF values beyond a threshold of0:1.

To evaluate the performance of F-INRs on geometries,
we use models from the Stanford 3D Scan Repository [12,
14, 31, 65]. We select a subset of objects with intricate
geometries and varying levels of detail, providing a ro-
bust testbed for assessing the accuracy and ef�ciency of our
SDF-based approach. The experiments utilize the same un-
derlying model architectures, baseline con�gurations, and
decomposition ranks described in the broader experimental
section. We did not use hash encoding for this task as it
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Figure 6. IoU vs. Rank for all the modes of tensor decomposi-
tion for the backend ReLU + Positional Encoding of learning SDF
of Lucy. Tensor-Train outperforms the other two modes, while
Tucker mode degrades performance for larger ranks. In contrast,
TT mode exhibits stable performance with increasing rank

lacks global differentiability, making it unsuitable for appli-
cations requiring well-behaved gradients [23, 43].

As visualized in Figure5, F-INR produces more de-
tailed and accurate representations of objects. The results
are obtained using the same marching cube algorithm set-
tings for all learned SDF voxel grids [37]. An overview
of the raw learned SDF results and further comparison with
other methods like DeepSDF [47] and IGR [15] are given in
the supplementary material. To compare different modes,
we varied the ranks and modes for Lucy SDF, using the
best-performing backend, as shown in Figure6. The results
show that Tensor-Train outperforms both in stability and ac-
curacy metrics, attributed to its connecting structure [45].
Interestingly, Tucker mode worsens with increasing rank,
attributed to its large core, which forms a bottleneck as ex-
plained in [29, 45, 70]. We also observe that the effect of
rank is signi�cant for TT mode, with performance improv-
ing up to rank 64 and remaining constant after that. Addi-
tional results for all the backends, modes, and geometries
are in the supplementary.

4.3. Super Resolution of Simulations

High-�delity simulations are computationally intensive and
often limited by the resolution of traditional numeri-
cal methods. While Physics-Informed Neural Networks
(PINNs) [50, 68] are a promising alternative, they, too, face
scalability challenges when increasing the number of collo-
cation points or handling complex simulations [32, 71, 72].
Therefore, a trade-off between two approaches is helpful:
Coarse simulations are more accessible for numerical meth-
ods, and INRs can learn a resolution-free form using PINN
loss. Our method, F-INR, is trained using low-resolution
data and a physics-informed loss function. We validate this

Figure 7. Visualizations of vorticity for F-INR- TT WIRE Rank
128 at time steps0:0 (start),0:5 (middle), and1:0 (end). The �rst
column is the ground truth vorticity, and the second is the pre-
dicted high-�delity vorticity trained from coarse data and underly-
ing Navier-Stokes PDE. The last column is the absolute pointwise
error between ground truth and prediction. We see high alignment
between the ground truth and predictions without employing time
marching schemes [32].

approach on a decaying turbulent �ow simulation using a
dataset with �ne details of vortices dissipating. We evaluate
performance based on theL 2 error between the true high-
resolution ground truth and our predicted high-resolution
outputs. The partial differential equation (PDE) for the sim-
ulation is the vorticity form of the incompressible Navier-
Stokes [73] equations, expressed as:

@t ! + u � r ! = � � !; x 2 
 ; t 2 � ;
r u = 0 ; x 2 
 ; t 2 � ;

! (x; 0) = ! 0(x); x 2 
 ;
(6)

whereu denotes the velocity �eld,! = r � u is the vor-
ticity, ! 0 represents the initial vorticity, and� = 0 :01 is the
viscosity coef�cient. The spatial domain is
 2 [0; 2� ]2,
and the temporal domain is� 2 [0; 1].

The original dataset has a resolution of101� 128� 128.
We train our F-INR models using a lower resolution of10�
64 � 64 corresponding to approximately 40-fold sparsity.
Our loss function is de�ned as:

L = L Coarse+ L Phy : (7)

WhereL Coarsecorresponds to the loss calculated on the
coarse simulation data, andL Phy is the physics-informed

7



Backend Mode Rank L 2 Error Train
(hh:mm)

ReLU+PE [42] - - 0.097� 0.009 20:30
WIRE [53] - - 0.073� 0.004 20:25
SIREN [57] - - 0.184� 0.010 20:24
Modi�edPINN [72] - - 0.074� 0.008 28:40
CausalPINN [73] - - 0.070� 0.011 33:12
MFF Net [25] - - 0.048� 0.003 35:18
PhySR [51] - - 0.038� 0.020 27:05

WIRE TT 64 0.034� 0.004 00:59
WIRE TT 128 0.036� 0.002 01:08
WIRE TT 256 0.033� 0.002 01:40
WIRE Tucker 128 0.037� 0.003 01:28
WIRE Tucker 256 0.035� 0.004 02:01
ReLU+PE TT 64 0.033� 0.001 00:51
ReLU+PE TT 128 0.030� 0.002 01:12
ReLU+PE TT 256 0.030� 0.002 01:59
ReLU+PE Tucker 64 0.039� 0.005 00:45
ReLU+PE Tucker 128 0.032� 0.004 01:34
ReLU+PE Tucker 256 0.032� 0.005 02:03

Table 3. Comparison ofL 2 Errors for F-INRs and baseline imple-
mentations for super-resolution of decaying vorticity simulation
using Navier Stokes equation. We tabulate only top-performing
settings with an averageL 2 Error of less than 0.04 here, all out-
performing the baseline implementations (remaining in the supple-
mentary material). F-INRs consistently outperforms, having lesser
L 2 error and convergence time.

loss term enforcing the PDE constraint from Equation (6).
Notably, we do not require techniques such as time march-
ing [32], which divides the domain into smaller temporal
intervals as we learn the solution across the entire domain.

In addition to the sparse data, we sample200points per
dimension for collocation to compute the physics-informed
loss. TheL 2 errors for our results are presented in Table3.
We compare our results against architectures such as Mod-
i�ed PINNs [72] and CausalPINNs [73], designed to en-
hance the original PINN formulation and can be directly
applied for super-resolution task. We also compare our
approach against MeshFreeFlowNet [25] and PhySR [51],
architectures speci�cally developed for super-resolution of
simulations. Our �ndings reveal that F-INR consistently
delivers faster and better solutions. We also would like to
emphasize that this work is the �rst to demonstrate the ap-
plicability of WIRE [53] in physics simulation scenarios. A
representative solution is visualized in Figure7, which com-
pares predicted vorticity after training by F-INR with mode
TT, backend WIRE, and Rank 128 with ground truth high
�delity data. Only selected best performing F-INR results
are shown here. The ablations of various ranks, backends,
and sparsity levels are provided in the supplementary.

5. Limitations and Future Directions

While F-INR offers several advantages, it is currently lim-
ited to structured data formats, making it challenging to
apply to unstructured scenarios such as point clouds or
ray-marching [42]. Unlike structured grids, unstructured
data requires application-speci�c modi�cations, often in-
creasing computational complexity [5, 38]. Adapting our
framework in such settings would require mapping individ-
ual data points with additional tensor components, reducing
forward pass ef�ciency. While promising, this direction de-
mands further research to balance ef�ciency and represen-
tation quality, which we leave for the future.

Another interesting direction is exploring more ex-
pressive tensor decompositions, such as tensor rings
or topology-aware tensor networks [29, 30] to enhance
compression-accuracy trade-offs. Exploring adaptive rank
selection techniques to enable automatic complexity con-
trol is also interesting. Additionally, integrating tensor de-
composition with CUDA-based optimizations, as seen in
InstantNGP [43], could further accelerate inference while
preserving structured representation bene�ts.

Finally, our work remains largely empirical. While de-
composed neural networks are effective universal approx-
imators [11, 19, 26, 68], deeper theoretical insights are
needed to understand better how tensor decomposition in-
�uences expressivity and ef�ciency in coordinate-based im-
plicit neural representations.

6. Conclusions

We introduce Functional Tensor Decomposition-based Im-
plicit Neural Representations (F-INR), a framework that
uni�es tensor decomposition with implicit neural repre-
sentations for ef�cient high-dimensional function model-
ing. By leveraging univariate neural networks to learn low-
dimensional components, F-INR mitigates the curse of di-
mensionality and accelerates training.

A key advantage of F-INR is its modularity. Unlike
monolithic INRs, it seamlessly integrates various tensor
decompositions (CP, TT, Tucker) and neural architectures
(ReLU with positional encoding, hash encoding, SIREN,
WIRE). This �exibility allows easy adaptation to new de-
composition strategies and network backends.

Our experiments demonstrate signi�cant improvements
in training speed (up to 100� ) and accuracy across tasks,
including image and video encoding, PDE-based super-
resolution, and SDF-based geometry encoding. While cur-
rently limited to structured data, extending F-INR to un-
structured settings is a promising direction. This work
lays the foundation for further advances in scalable high-
dimensional function learning by bridging tensor decompo-
sition with implicit neural representations.
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A. Modes and Backends

Here, we provide more information on the modes and back-
ends used for formulating the F-INR.

A.1. Modes

An INR problem (dimension� 3) can be reformulated as an
equivalent F-INR-problem using three modes of functional
tensor decompositions. There are even more modes like
Higher-Order SVD, Tucker2, Hierarchical Tucker, Tensor
Ring, Block Tensor forms [8, 22]. However, in this study,
we con�ne ourselves to the three most common and widely
used modes: Canonic Polyadic, Tensor-Train, and Tucker
decomposition forms. We refer to works like [8, 22] for
comprehensive information about tensor decompositions.

Let � 2 RI 1 � I 2 � ::: � I N denote anN -mode tensor of or-
der N , whereI n represents the dimensionality along the

�-

�;

�<

�=

Figure 8. Classical INR of shapeX � Y � Z . A single neural
network predicts all the entries.

n-th mode. The objective of tensor decomposition is to ap-
proximate� by a structured decomposition that minimizes
the number of parameters while preserving the data's essen-
tial features. Each decomposition represents� in terms of
factor matrices, vectors, or core tensors, enabling compact
and often interpretable representations. We use the symbol
� to indicate an approximation.

A classical INR is visualized in Figure8. For simplicity,
we visualize three-dimensional INR of original dimensions
X � Y � Z and can be extended similarly to any arbitrary
dimension. To estimate the forward pass complexity, we
assumeX = Y = Z = n the neural network is ofm
features andl layers, and then3 points are trained as a single
batch. Considering the complexity of the multiplication of
two layers ofm features ism2, the complexity of a forward
pass for a classical INR (m features,l layers) isO(m2ln 3)
[10].

A.1.1. Canonical Polyadic (CP) Decomposition

The Canonical Polyadic (CP) decomposition [5], also
known as PARAFAC or CANDECOMP, approximates a
tensor as a sum of rank-one tensors. Speci�cally, for an
N -mode tensor� 2 RI 1 � I 2 � ::: � I N , the CP decomposition
can be formulated as:

� �
RX

r =1

� (1)
r � � (2)

r � : : : � � (N )
r ; (8)

where� (n )
r 2 RI n (n 2 [1; N ]) represents the factor vec-

tor associated with then-th mode for componentr , andR
is the rank of the decomposition. Here,� denotes the outer
product, and the CP decomposition is a sum ofR outer
products.

An F-INR in CP mode is visualized in Figure9. For
simplicity, we visualize three-dimensional INR of original
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Figure 9. F-INR in CP mode for INR of shapeX � Y � Z . Three
individual neural networks predict the factor matrix of rankr for
each corresponding dimension. The shape of the matrix/tensor is
provided below.

dimensionsX � Y � Z and can be extended similarly to
any arbitrary dimension.

In this case, the estimation of forward pass complexity
is done in two steps. First, the complexity of forward pass
until the factor matrices and then multiplying them together
to reconstruct the original tensor. Following the previous
case, the �rst step of three neural networks to output factor
matrix of shapen � r will be O(3m2lnr ) = O(m2lnr ).
The next step is to multiply these three-factor matrices of
shapen � r . We multiply the �rst two matrices to get an
intermediate tensor of shapen � n � r and then multiply
this intermediate tensor with the �nal factor matrix to get
the �nal n � n � n. So, the complexity of this operation is
O(n2r 2). Combining them both will give the complexity of
the forward pass of F-INR in CP mode as:

O(m2lnr + n2r 2) : (9)

A.1.2. Tensor Train (TT) Decomposition

The Tensor Train (TT) [13] decomposition represents a
tensor as a sequence of lower-dimensional tensors (often
called “cores”) linked together in a chain. This decom-
position is particularly effective for higher-order tensors
due to its sequential structure, which reduces memory re-
quirements. The TT decomposition of anN -mode tensor
X 2 RI 1 � I 2 � ::: � I N can be expressed as:

� �
R 1X

r 1 =1

R 2X

r 2 =1

� � �
R N � 1X

r N � 1 =1

� (1)
i 1 ;r 1

� (2)
i 2 ;r 1 ;r 2

: : : � (N )
i N ;r N � 1

;

(10)
where each� (n ) represents a core tensor associated with

the n-th mode. Here,Rn denotes the TT rank between
modesn and n + 1 , and � (1) through� (N ) are the core
tensors. In this work, we con�ne to the case whereR1 =
R2 = ::: = Rn
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Figure 10. F-INR in TT mode for INR of shapeX � Y � Z .
Three individual neural networks predict thecoresof rank r for
each corresponding dimension. The shape of the matrix/tensor is
provided below.

Similar to the previous case, we estimate the forward
pass complexity in two steps. In the �rst step of the forward
pass of neural networks to predict the tensor cores, there is
a three-dimensional tensor of shaper � n � r . Therefore
the complexity of this step isO(m2lnr 2).

In the next step, these cores of shapesn� r , r � n� r , and
n � r are multiplied to get the originaln � n � n. Therefore,
the complexity of this step will beO(n2r 2). Combining
these two, the total complexity of F-INR in TT mode will
be:

O(m2lnr 2 + n2r 2) : (11)

A.1.3. Tucker Decomposition

The Tucker decomposition [20] is a generalization of the
CP decomposition that represents the tensor using a core
tensor and multiple factor matrices, providing a �exible
way to capture interactions across modes. For a tensor
� 2 RI 1 � I 2 � ::: � I N , the Tucker decomposition is de�ned
as:

� � C � 1 � (1) � 2 � (2) : : : � N � (N ) ; (12)

whereC 2 RR 1 � R 2 � ::: � R N is the core tensor,� (n ) 2
RI n � R n are the factor matrices for each mode, and� n de-
notes the mode-n tensor-matrix product.

The �rst step of tucker mode is the same as CP. There-
fore, the complexity of the �rst step in this case will be the
same as CP:O(m2lnr ). The second case involves the mul-
tiplication of three-factor matrices of shapesn � r with a
core of shaper � r � r , to get the original tensor of shape
n � n � n. This step involvesn3 computations, each taking
O(r ) multiplications, therefore having a total complexity of
O(n3r ). Therefore, the forward pass complexity of an F-
INR in Tucker mode is:

O(m2lnr + n3r ) : (13)
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Figure 11. F-INR in Tucker mode for INR of shapeX � Y � Z . C
is the tucker-core tensor. Three individual neural networks predict
the factor matricesof rank r for each corresponding dimension.
The shape of the matrix/tensor is provided below.

A.2. Backends

As explained, each tensor component of a particular mode
for a F-INR-setup is learned using a parameterized MLP.
This MLP is what we refer to as the backend. This
backend can also be any neural network, but we stick
to SOTA architectures of ReLU with Positional Encod-
ing [11], SIREN [18] and WIRE [17]. This is because they
are not application-speci�c and are proven to apply to a
wide range of INR-related problems. Moreover, this study
aims not to focus on a particular application of INR but on
a novel way to formulate the problem by leveraging Ten-
sor decompositions. Nevertheless, any architecture can be
used as a backend similarly depending on the application
at hand. Here, we explain the backends used in this study
and (informally) the impact of F-INR reformulation on the
backends.

A.2.1. ReLU MLP with Positional Encoding

Using Fourier features as positional encoding to improve
the learning capabilities of ReLU-based MLPs was intro-
duced in [11, 19]. The inputs� are passed through the map-
ping

 (� ) = [ cos(2�B� ); sin (2�B� )]T ; (14)

whereB is a random Gaussian matrix whose entries are
randomly drawn from GaussianN (0; � 2), this term,� , re-
ferred to as frequency, determines the frequency of the ma-
trix B . The impact of F-INR, or in general, using uni-
variate neural networks becomes prevalent because higher-
dimensional inputs need broader frequency coverage to cap-
ture complex spatial patterns; otherwise, some features may
be poorly represented. In other words, univariate neural net-
works and, by extension, F-INR-models have more repre-
sentational capacity for the same spectral coverage. The
same explanation applies to the other backends. In this
work, we also tested for different frequencies of� . We show
the� value as a suf�x for all the architectures. For example,

ReLU100 means that� = 100. This usage of different� is
why some results differ from other implementations.

A.2.2. SIREN

Introduced by [18], SIRENs use periodic sinusoidal acti-
vation functions facilitated by a principled weight initial-
ization scheme, where the weightswi are drawn from the
uniform distributionU(�

p
6=n;+

p
6=n). This initializa-

tion ensures that the input to each sine activation is normally
distributed with a standard deviation of 1 [18].

Finally, SIREN has the �rst layer of activations as
sin (! 0wi x + bi ), where! 0 = 30, to ensure periodicity[18].
In our implementations, we use the same prescribed! and
initialization of weights.

A.2.3. WIRE

The Gabor wavelet activation function was introduced
in [17] as a direct extension and generalization of SIREN
and Gaussian non-linearity. The wavelet activation offers
localization property in a Gaussian/Radial basis activation
function and the frequency property offered by positional
encoding [11] and SIREN [18]. The complex form of a Ga-
bor wavelet is written as

 (x; !; s ) = ej!x e�j sx j2
; (15)

where! is the parameter controlling the frequency ands
controlling the scale (localization) of the wavelet activation.
These two are hyperparameters, giving rise to a lot of com-
binations. The authors suggested that the activation func-
tion itself is robust in performance and initialization over
a large set of combinations of these hyperparameters and
suggest using the combination of! = 30; s = 30, which
we use in this paper for all the experiments unless and until
speci�ed otherwise.

A.2.4. Hash Encoding

Hash encoding was introduced in Instant Neural Graphics
Primitives [12] as an ef�cient encoding mechanism for spa-
tially varying inputs. Unlike dense grid-based feature rep-
resentations, hash encoding provides a memory-ef�cient al-
ternative by mapping input coordinates to a compact set of
feature vectors stored in a hash table. This encoding mech-
anism is particularly bene�cial for high-resolution func-
tion approximation, as it enables fast feature retrieval while
maintaining a lightweight memory footprint.

The fundamental operation of hash encoding, follow-
ing [12], is de�ned as follows. Given an input coordinate
x 2 Rd, the space is partitioned intoL resolution levels,
where each level corresponds to a grid of resolution:

Rl = R0 � � l ; l = 0 ; 1; : : : ; L � 1 ; (16)

whereR0 is the base resolution,� is the per-level scale
factor, andL is the total number of levels.
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For each levell , the input coordinate is mapped to a dis-
crete grid cell index:

i � l = bRl xc : (17)

Rather than storing a dense grid, a hash function is ap-
plied to map grid coordinates to a �xed-size hash table of
sizeT:

h(i l ) =
� X

j = 1 d il; jp j

�
mod T ; (18)

wherepj are large prime numbers used to reduce hash
collisions. The retrieved feature vectorf l is then interpo-
lated using trilinear interpolation:

f (x) =
X

c 2 0; 1dwc � fh (h(i l + c)) ; (19)

wherewc are interpolation weights based on the distance
from x to the grid corners.

The �nal multi-resolution encoding is obtained by con-
catenating the interpolated features from all levels:

f (x) =
L � 1M

l =0

f l : (20)

This encoding scheme enables neural networks to ef�-
ciently learn high-dimensional functions with signi�cantly
reduced computational and memory overhead. We only em-
ploy hash encoding for video and image encoding tasks
because of the presence of gradient-based operations in
the remaining tasks, which hinders the usage of the global
hash grid due to non-differentiability and artifact genera-
tion [6, 12]. There are effective ways to implement hash
encoding for PDEs and Eikonal geometry solving [6], but
we leave this extension to the future.

B. Image Encoding

B.1. Architecture

There are two neural networks for each dimension,x and
y, and the outputs of these neural networks are of shapes
x � r andy � r , respectively, which are multiplied to get
the original image. Please note that we do not consider the
channel a dimension because it is not continuous. Instead,
we consider the channel as a variable, which means each
point in the space has three associated RGB values. Both
neural networks are taken to be two layers with 256 neurons
each for all the backends. The frequency(� ) of positional
encoding is tested for both 10 and 100 for the ReLU MLPs,
which, along with the baseline version, are represented as
ReLU0, ReLU10, and ReLU100, the integer representing
the frequencies of positional encoding. All the backends
are two layers of 256 neurons. For baselines, we use four
layers with 256 neurons each.
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Figure 12. We display how F-INRs and baseline models com-
pare regarding speed and PSNR value for the image encoding task.
This is a visualization of Table4. The circle radius describes
the compression rate compared to the baseline. Models with a
rank of 16 are similar to the worst baseline method, indicating
that such models cannot fully represent the image data. The �rst
major quality improvements can be seen at rank 128, where the
ReLU100 models outperform the baseline while having a roughly
75x speedup. The performance is shown by hash encoding, fol-
lowed by ReLU100 and WIRE models.

Each model is trained for 50,000 iterations using the
Adam optimizer with default parameters to learn the image
of a cat with a resolution of 560� 720.

B.2. Results

Here, we provide the PSNRs for all the models for varying
ranks and the baselines in Figure12and Table4.

We use such visualizations of quantitative results to sim-
plify the information given in the tables. In the visualiza-
tion, the green shaded region indicates that the model out-
performed the best-performing baseline, while the red re-
gion means it performed worse than the worst-performing
baseline. We provide such visualizations for all the ex-
periments. The trend is this: As the rank increases, the
PSNR increases, and the representation capacity increases.
This comes along with a slight increase in computation
time. Larger ranks even outperform the baselines, having
the same backend neural network, all while still having a
100x speedup. This proves the effectiveness of F-INRs. We
also �nd some interesting patterns in the speedups. The
highest speedup is achieved for Hash encoding, owing to
using 1D hash tables instead of 2D. Also, for positional en-
coding, the time increases with increasing frequencies be-
cause of an increase in the size of the encoded input for
higher frequencies.
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Backend Rank PSNR (dB) SSIM Time (s)

ReLU0 - 25.72� 0.31 0.73 � 0.01 5066
ReLU10 - 30.15� 0.19 0.78 � 0.00 5618
ReLU100 - 31.53� 0.18 0.81 � 0.00 5920
SIREN - 30.90� 0.19 0.78 � 0.00 5280
WIRE - 32.09� 0.20 0.85 � 0.00 5290
ReLU+Hash - 33.88� 0.14 0.92 � 0.01 2100

ReLU0 16 24.34� 0.53 0.70 � 0.00 55
ReLU0 32 25.89� 0.20 0.74 � 0.00 56
ReLU0 64 26.76� 0.18 0.77 � 0.00 58
ReLU0 128 26.68� 0.23 0.77 � 0.00 78
ReLU0 256 26.81� 0.35 0.78 � 0.01 104
ReLU0 316 26.92� 0.31 0.78 � 0.00 121

ReLU10 16 24.68� 0.16 0.71 � 0.00 56
ReLU10 32 27.24� 0.28 0.76 � 0.00 58
ReLU10 64 29.65� 0.21 0.82 � 0.00 61
ReLU10 128 30.54� 0.49 0.86 � 0.01 80
ReLU10 256 30.86� 0.49 0.84 � 0.02 106

ReLU100 16 24.70� 0.19 0.71 � 0.00 55
ReLU100 32 27.36� 0.20 0.77 � 0.00 57
ReLU100 64 30.52� 0.18 0.84 � 0.00 63
ReLU100 128 33.89� 0.28 0.90 � 0.00 82
ReLU100 256 34.26� 0.37 0.92 � 0.00 108
ReLU100 316 34.55� 0.31 0.92 � 0.00 123

SIREN 16 26.24� 0.15 0.69 � 0.00 45
SIREN 32 27.08� 0.23 0.73 � 0.00 47
SIREN 64 28.03� 0.22 0.77 � 0.00 54
SIREN 128 30.87� 0.47 0.78 � 0.00 65
SIREN 256 31.14� 0.29 0.84 � 0.00 86
SIREN 316 31.85� 0.17 0.85 � 0.00 90

WIRE 16 26.59� 0.15 0.70 � 0.00 46
WIRE 32 29.93� 0.24 0.75 � 0.00 41
WIRE 64 30.16� 0.29 0.82 � 0.00 43
WIRE 128 32.63� 0.38 0.88 � 0.00 61
WIRE 256 33.94� 0.38 0.89 � 0.00 86
WIRE 316 34.19� 0.11 0.89 � 0.00 101

ReLU + Hash 16 24.66� 0.47 0.71 � 0.03 23
ReLU + Hash 32 27.12� 0.42 0.75 � 0.03 26
ReLU + Hash 64 29.25� 0.40 0.79 � 0.02 33
ReLU + Hash 128 32.43� 0.41 0.87 � 0.01 41
ReLU + Hash 256 35.61� 0.14 0.93 � 0.01 76
ReLU + Hash 316 35.91� 0.11 0.93 � 0.01 85

Table 4. PSNR and SSIM values for more combinations of ranks
and backends. Rank - means the implementation is the baseline
INR for a full pixel-coordinate batch. The times are calculated for
complete 50000 iterations for all the runs. We see that F-INR gives
faster, better results for the same backend for a large enough rank.
The top three performing models based on PSNRs are highlighted
here. We also observe a strong correlation between the PSNR and
SSIM values.

C. Video Encoding

C.1. Architecture

This is similar to image encoding with an added dimension
of frames. From the results of image encoding, we employ

Figure 13. We visualize PSNR values given in the Table5. Here,
different markers are assigned for each mode, and different colors
are assigned for each backend. We only use rank� 64 and three
backends, WIRE, SIREN, and ReLU100. Many con�gurations
surpass the baseline implementation (above green), and of all the
modes, TT has consistently the best results.

only ReLU100 (i.e., P.E with� = 100), along with SIREN
and WIRE. Here, three modes are employed, and depending
on the mode, the neural network learns the corresponding
component of rankr . For TT, we used the frame dimen-
sion for this three-dimensional component since there is a
component with three dimensions (a connector).

We train for 50000 epochs with Adam optimizer with de-
fault settings. All the backends are 256 neurons with three
layers. We use �ve layers with 256 neurons each for base-
lines and take the batch size to �ll the GPU memory. For
F-INRs we take the full batch size.

C.2. Results

The open source video of the face of the girl, the results for
various ranks and backends are given in Figure13 and Ta-
ble 5. Our results indicate that the proposed method yields
faster and more accurate results for the same backend when
the rank is suf�ciently large. Notably, the top three mod-
els in terms of PSNR are highlighted in the table. We omit
Hash encoding because of its poor performance when used
for all the neural networks as the backend. However, the
best performance is achieved when the neural network for
frame dimension has a Positional Encoding and neural net-
works for spatial networks have hash encoding. We con-
ducted additional experiments for this speci�c combination
for rank 256 to show how the modularity of F-INRs allows
for getting better solutions. Furthermore, our experiments
reveal that the WIRE backend exhibits suboptimal perfor-
mance for the video encoding task under default parame-
ters, whereas the TT mode achieves the best results. This
poor performance of WIRE may be remedied by decreasing
the scale parameter. We provide the videos together in MP4
format with the supplementary material.
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Backend Mode Rank PSNR (dB) SSIM Time (s)

ReLU100 - - 77.82� 0.18 0.93 13327
SIREN - - 78.74� 0.19 0.95 12735
WIRE - - 71.38� 0.22 0.75 12923
ReLU + Hash - - 71.82� 0.23 0.74 8243

CP 64 73.38� 0.03 0.79 110
CP 128 75.21� 0.15 0.83 152
CP 256 77.07� 0.33 0.86 208
TT 64 78.92� 0.32 0.91 126

ReLU100 TT 128 80.74� 0.17 0.93 221
TT 256 82.55� 0.63 0.95 420
Tucker 64 76.20� 0.81 0.85 161
Tucker 128 77.48� 0.81 0.88 355
Tucker 256 79.23� 0.83 0.91 479

CP 64 74.08� 0.20 0.80 111
CP 128 76.74� 0.14 0.85 153
CP 256 79.10� 0.16 0.89 208
TT 64 80.96� 0.31 0.93 129

SIREN TT 128 86.46� 0.19 0.97 220
TT 256 88.28� 0.19 0.98 301
Tucker 64 79.11� 0.18 0.90 137
Tucker 128 80.98� 0.27 0.93 222
Tucker 256 75.37� 0.52 0.90 380

CP 64 73.32� 1.45 0.78 1063
CP 128 74.89� 0.81 0.82 148
CP 256 75.97� 0.85 0.84 203
TT 64 76.09� 0.83 0.85 122

WIRE TT 128 75.77� 1.88 0.84 187
TT 256 75.17� 1.81 0.83 296
Tucker 64 71.69� 1.96 0.74 182
Tucker 128 71.19� 1.88 0.73 247
Tucker 256 71.57� 2.05 0.74 374

ReLU100 +Hash CP 256 80.4� 0.20 0.92 186
ReLU100 + Hash TT 256 89.2� 0.13 0.98 385
ReLU100 + Hash Tucker 256 80.35� 2.63 0.74 427

Table 5. Mean PSNR and SSIM values across all the encoded
video frames and ground truth for more combinations of ranks and
backends. The times are calculated for complete 50000 iterations
for all the runs. We see that F-INR s gives faster, better results
for the same backend for a large enough rank. The top three per-
forming models based on PSNRs are highlighted here. The WIRE
backend performs poorly with the video encoding task (for the de-
fault parameters), and TT mode performs the best. The �nal row
contains a combination of hash and positional encoding, yielding
better results. This table is visualized for speedup comparisons
(without combinations of PE and Hash) in Figure13.

D. Single Image Super Resolution and Denois-
ing

Single Image Super-Resolution (SISR) and image denois-
ing are fundamental tasks in implicit neural representations
(INRs), closely related to those explored in WIRE [17].
These tasks test the ability of an INR model to reconstruct
�ne details and �lter out unwanted noise, with the backend
architecture playing a dominant role in determining perfor-
mance. At the same time, tensor decomposition primarily
contributes to computational ef�ciency.
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Figure 14. Evolution of Rank vs. PSNR for different backends for
Single Image Super-resolution task. We observe WIRE performs
best and is robust to rank. SIREN degrades performance with in-
creased rank.

We use a standard butter�y image for the super-
resolution task and induce a 4× sparsity by sub-sampling
pixels before training, following the same setup as in [17].
The original dimensions of image are 1356 x 2040, while
the downsampled image is:339� 510The F-INR model is
trained on this sparse representation for backends and ranks
until 316. At inference, the learned function is evaluated
at the original resolution, producing a reconstructed high-
resolution image. The reconstruction is then quantitatively
compared to the ground truth.

Our experiments show that the choice of backend archi-
tecture is the most signi�cant factor affecting performance.
The decomposition method does not inherently improve re-
construction quality but accelerates training and inference.
Notably, WIRE emerges as the best-performing backend,
aligning with observations from its baseline implementa-
tion. In contrast, hash encoding and large positional encod-
ings introduce artifacts as they struggle to generalize from
sparse training data, leading to aliasing effects and unde-
sired high-frequency components [6, 12, 19].

Interestingly, rank has minimal impact on super-
resolution performance. Since the task primarily requires
the model to interpolate missing pixel values rather than
compressing or �ltering data, increasing rank does not sig-
ni�cantly alter results. This highlights the backend's impor-
tance over decomposition choices in super-resolution tasks.
The visualizations and the evolution of PSNR values over
different ranks and backends are provided in Figure14 and
Figure15.

For the denoising task, we introduce shot Gaussian noise
to the original image of a parrot (1356� 2040) and train
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Ground Truth Baseline WIRE WIRE-Rank 316

WIRE-Rank256 ReLU+PE-Rank 316 SIREN-Rank 316

Figure 15. Single Image Super-Resolution using F-INR. Here, we
observe that qualitatively F-INR performs the same as baseline
WIRE. Therefore, F-INR preserves the inherent quality salient to
WIRE architecture, forming better priors. Image taken from [17].
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Figure 16. Rank vs PSNR for denoising task for various backends
of F-INR. We observe that the wire is robust and almost rank-
independent. In contrast, SIREN and ReLU, with PE, have a de-
terioration with increasing rank, which might be due to over�tting
of the noisy image.

the F-INR model to reconstruct the clean version, follow-
ing [17]. The performance is evaluated by comparing the
denoised output to the ground truth, assessing whether the
INR learns to remove noise effectively while preserving
structural details. The plot for comparing various Ranks
and backends is given in Figure16, and the visualizations
are provided in Figure17.

Unlike super-resolution, where rank is negligible, rank
selection is critical for denoising. A rank that is too high
negatively impacts performance, as an excessively expres-
sive model over�ts the noise rather than learning the un-
derlying clean structure. Lower-rank decompositions act
as a natural regularizer, preventing the model from captur-
ing high-frequency noise and improving denoising perfor-
mance.

Ground Truth Noisy WIRE-Rank 1356

WIRE-Rank 1024 Baseline WIRE SIREN-Rank 768

Figure 17. Visualizations for the denoising task of a parrot. Image
taken from [17]. F-INR with WIRE backend retains the robust-
ness of WIRE, emphasizing the in�uence of backend for the task-
speci�c performance of F-INRs.

As in the super-resolution task, WIRE remains the most
effective backend, producing cleaner reconstructions. Hash
encoding and large positional encodings again lead to un-
desirable artifacts, reinforcing the importance of selecting a
backend suited for structured image tasks.

E. Super Resolution of simulations

Super-resolution setup is: We have sparse, discrete obser-
vations, and we train an INR with these sparse observations
and physics-informed loss [15] to get a continuous, differ-
entiable simulation encoded in the neural network model.
As the main paper discusses, this has similarities and differ-
ences from simulating the complete system using PINNs.
We also performed experiments on models speci�cally de-
veloped for super-resolution of simulations, most notably
PhySR [16] and MeshFreeFlowNet [7] and did not include
because they do not come under the family of INRs. There
is no straightforward F-INR- equivalent of such methods.
We include them here for completeness, and we observe
that even for standard backends, F-INR shows competitive
performance.

E.1. Architecture

The training strategy is similar to that of [1]. The input
for each neural network is coordinates of respective dimen-
sions, and the output is a velocity vector in thex and y
direction, respectively. The Navier-Stokes equation is in
its vorticity form, so this velocity is converted into vortic-
ity, which is then used to enforce the PDE loss term and
compressibility constraint. The sparse observations are also
given as a loss term along with the initial condition. The
weights used for physics loss term, initial, and sparse ob-
servation loss terms are1, 103, and104, respectively. These
are tuned to get the best-performing results. We uniformly
sample 100 points per dimension as collocation points to
enforce the PDE loss. We use WIRE and SIREN backends
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and ReLU10 and ReLU20 for all three modes. Each neu-
ral network for F-INR is three layers of 256 neurons each.
For the baseline implementations, we use six layers of 256
neurons each. MeshFreeFlowNet [7] and PhySR [16] are
implemented as the authors prescribe. Since they involve
3D operations, a F-INR equivalent is not as straightforward
as other backends and, hence, is out of the scope of this cur-
rent work. The sparse data used for training is of shape
10� 64� 64, uniformly sampled from the original resolu-
tion dataset 101� 128� 128. Thereby inducing a 40x spar-
sity. Each model is trained for 50000 Adam iterations, with
resampling of collocation points for every 1000 iterations.
We test the learned models by predicting the simulation in
the original resolution of the dataset, thereby achieving the
super-resolution task. We quantify the relative L2 error be-
tween the ground truth and the prediction.

E.2. Results

The results are given in Figure18 and Table6. We see
that F-INR achieves better results than the baseline, starting
from a Rank as low as 32. This highlights the effectiveness
of these models in terms of speed and ef�ciency. A visual-
ization of the prediction of F-INR with Mode Tucker, Rank
32, and WIRE backend is provided in Figure20.

E.2.1. Sparsity Ablation

Here, we tested the performance of the F-INR s for differ-
ent sparsity levels. We use the same setup and combination
of models and train them using three varying levels of spar-
sity: 160x, 40x, and 10x. We show that even for a sparsity
level 160x, F-INR s gives a competitive performance. We
also observe that more data corresponds to a better solution
overall. The results are given in Figure19. We see that for
all the backends, sparsities, and ranks, TT mode stands out
as best performing, followed by Tucker mode and CP mode,
respectively.

F. Geometry Learning via Signed Distance
Functions

The task of Geometry encoding via SDF involves solving
the Eikonal PDE. The input is the voxel coordinate, and the
output is the corresponding SDF value. We use three pub-
licly available models that have intricate details [2, 3, 21],
and refer to them as the Armadillo, Lucy, and Thai statues.
For training, the.obj �les are converted into SDF using
mesh2sdf package [23]. The learned SDFs are visualized
using marching cubes with Laplacian smoothing [9].

F.1. Architecture and training

For F-INR s, Three neural networks have the input of co-
ordinates and output of the r-ranked tensor component. All
three modes are used. For backends, we observe that the
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Figure 18. L2 Error vs. Speedup plots for Super-Resolution of
simulation task. This is a visualization of Table6. This demon-
strates that the proposed method consistently outperforms base-
line methods in terms of speed and solution quality. Notably, the
ReLU20 backend exhibits poor performance, whereas the ReLU10
backend achieves superior results, surpassing baseline methods.
This highlights the sensitivity of the positional encoding parame-
ter � . Our results show that the TT mode consistently yields better
across all modes, underscoring its effectiveness in this context.

results deteriorate for ReLU with positional encoding for
� = 20. Hence, we only include� = 10, � = 20.

Three neural networks of three layers, each having 256
neurons, are used for all the backends and modes. The
baselines have �ve layers with the same number of neu-
rons. We also applied SOTA methods like DeepSDF [14]
and IGR [4]. They are usually trained with point clouds,
but we trained them here with the same voxel grid that we
train F-INR with. They are trained with the same instruc-
tions prescribed by the authors.
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Figure 19. L2 Errors for varying sparsity levels for super-resolution using F-INRs. Three levels of sparsity are tested for all the modes
and backends. We observe that ReLU20 performs badly, and mode TT performs the best. Less sparsity leads to a better solution because
more data is available. Nevertheless, F-INR s achieves competitive results even for higher sparsities.

All the models are trained for 50000 Adam iterations,
and the model with the least loss is saved for the prediction.

F.2. Results

We use IoU andL 2 Error metrics to quantify the predicted
values against the ground truth. All the results for Lucy are
provided in Figure24and Table8. For Armadillo, Figure22
and Table7. Finally, for the Thai statue, the results are pro-
vided in Table9 and Figure26 and also visualized in Fig-
ure23. All the results show that F-INR s achieves a better
result in less time. We also tested the effect of the Eikonal
PDE on the solution. We vary the relative weight of the
Eikonal term w.r.t to other loss terms for the best perform-
ing F-INR, i.e., Mode TT with Rank 128 and with ReLU10
backend, and the results are given in Figure25. We observe
that the Eikonal PDE signi�cantly affects �nding a better
solution.
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Figure 20. Visualization of vorticity for the super-resolution tasks
using F-INR:Mode Tucker with Rank 32 and WIRE backend.
We achieve good prediction closer to ground truth with a smaller
rank of 32, highlighting the effectiveness of F-INR.

Backend Mode Rank L2 Error Time (hh:mm)

ReLU0 - - 0.426� 0.104 20:23
ReLU20 - - 0.773� 0.211 20:48
ReLU10 - - 0.097� 0.009 20:30
WIRE - - 0.073� 0.004 20:25
SIREN - - 0.184� 0.010 20:24
Modi�edPINN [72] - - 0.074� 0.008 28:40
CausalPINN [73] - - 0.070� 0.011 33:12
MFF Net [25] - - 0.048� 0.003 35:18
PhySR [51] - - 0.038� 0.020 27:05

CP 16 0.320� 0.029 0:35
CP 32 0.185� 0.021 0:37
CP 64 0.088� 0.018 0:49
CP 128 0.046� 0.007 1:08
CP 256 0.043� 0.007 1:42
TT 16 0.207� 0.068 0:35
TT 32 0.079� 0.015 0:39

WIRE TT 64 0.034� 0.004 0:59
TT 128 0.035� 0.002 1:44
TT 256 0.032� 0.002 1:56
Tucker 16 0.215� 0.051 0:35
Tucker 32 0.070� 0.023 0:37
Tucker 64 0.061� 0.019 0:49
Tucker 128 0.036� 0.003 1:08
Tucker 256 0.034� 0.004 2:03

CP 16 0.342� 0.053 0:35
CP 32 0.193� 0.077 0:37
CP 64 0.078� 0.008 0:48
CP 128 0.044� 0.005 1:07
CP 256 0.040� 0.010 1:52
TT 16 0.521� 0.070 0:32
TT 32 0.164� 0.074 0:36

SIREN TT 64 0.038� 0.008 0:53
TT 128 0.048� 0.005 1:31
TT 256 0.045� 0.003 1:58
Tucker 16 0.652� 0.087 0:31
Tucker 32 0.238� 0.071 0:35
Tucker 64 0.113� 0.058 0:52
Tucker 128 0.828� 0.161 1:36
Tucker 256 0.635� 0.089 2:00

CP 16 0.473� 0.037 0:34
CP 32 0.379� 0.049 0:37
CP 64 0.320� 0.078 0:48
CP 128 0.314� 0.078 1:07
TT 16 0.396� 0.065 0:32
TT 32 0.345� 0.075 0:35
TT 64 0.286� 0.061 0:52

ReLU0 TT 128 0.327� 0.078 1:30
Tucker 16 0.422� 0.059 0:30
Tucker 32 0.408� 0.032 0:34
Tucker 64 0.324� 0.086 0:51
Tucker 128 0.325� 0.078 1:34

CP 16 0.344� 0.012 0:32
CP 32 0.199� 0.009 0:35
CP 64 0.112� 0.008 0:47
CP 128 0.050� 0.015 1:05
CP 256 0.044� 0.010 1:55
TT 16 0.247� 0.049 0:30
TT 32 0.084� 0.015 0:33
TT 64 0.032� 0.001 0:51

ReLU10 TT 128 0.030� 0.002 1:24
TT 256 0.030� 0.002 1:59
Tucker 16 0.264� 0.045 0:29
Tucker 32 0.073� 0.009 0:32
Tucker 64 0.038� 0.005 0:49
Tucker 128 0.032� 0.004 1:34
Tucker 256 0.032� 0.005 2:03

CP 16 0.778� 0.337 0:36
CP 32 0.852� 0.273 0:38
CP 64 0.817� 0.338 0:50
CP 128 0.776� 0.085 1:10
CP 256 0.079� 0.025 2:27
TT 16 0.689� 0.205 0:35
TT 32 0.744� 0.276 0:39

ReLU20 TT 64 0.810� 0.134 0:58
TT 128 0.881� 0.178 1:42
TT 256 0.772� 0.349 2:30
Tucker 16 0.845� 0.358 0:34
Tucker 32 0.912� 0.418 0:37
Tucker 64 0.773� 0.137 0:54
Tucker 128 0.766� 0.062 1:38
Tucker 256 0.789� 0.084 2:39

Table 6. Comparison ofL 2 Errors for F-INR s and baseline imple-
mentations for super-resolution of decaying vorticity simulation
using Navier Stokes equation. We tabulate all the combinations of
ranks, modes, and backends. F-INR s consistently outperforms,
having lesserL 2 error and convergence time than baseline imple-
mentations.
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Figure 21. Visualization of vorticity for the super-resolution tasks
using F-INR:Mode TT with Rank 64 and ReLU10 backend.
We achieve good prediction closer to ground truth with a rank
of 64; this solution surpasses the baseline implementations, high-
lighting the effectiveness of F-INR.

Figure 22. Quantitative results IoU vs Speedup, for model Ar-
madillo. The general trend is that a higher rank leads to a better
IoU. Tensor-Train [13] models perform the best in several models
compared to the other two models.
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Figure 23. Here, we visualize the qualitative differences in complex Thai statuette 3D scan reconstructions. All models have been obtained
from SDF using the marching cubes algorithm with the additional step of Laplacian smoothing to reduce introduced artifacts. We compare
the results to the obtained ground truth SDF, the worst and best-performing baseline methods, and the best-decomposed version. Addition-
ally, we show how a too low rank (r = 16) does not yield a successful reconstruction.

Figure 24. Quantitative results IoU vs Speedup, for model Lucy.
The general trend is that a larger rank leads to a better IoU. Tensor-
Train models perform the best when compared to the other two
models, and in several models, they are better than baselines.

Figure 25. The effect of Eikonal term on the learned SDF for Lucy
model. We varied the relative weight of the Eikonal term for the
best performing F-INR: Mode TT Rank 128 and ReLU10 Back-
end. We observe that the presence of the Eikonal term signi�cantly
affects the solution, and after a relative weight of around 0.5, its
effect is constant.
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Backend Mode Rank IoU L2 Error Time (s)

ReLU0 - - 0.941 ± 0.002 0.295 ± 0.002 15057
ReLU10 - - 0.950 ± 0.001 0.233 ± 0.002 15428
ReLU20 - - 0.989 ± 0.005 0.135 ± 0.003 15929
WIRE - - 0.988 ± 0.003 0.154 ± 0.004 15134
SIREN - - 0.989 ± 0.004 0.127 ± 0.006 15165
DeepSDF [47] - 0 0.989 ± 0.002 0.126 ± 0.005 18932
IGR [15] - 0 0.990 ± 0.004 0.127 ± 0.004 17533

CP 16 0.930 ± 0.005 0.338 ± 0.015 157
CP 32 0.941 ± 0.004 0.301 ± 0.009 174
CP 64 0.950 ± 0.006 0.291 ± 0.008 217
CP 128 0.947 ± 0.002 0.295 ± 0.009 289
TT 16 0.951 ± 0.004 0.285 ± 0.007 156

ReLU0 TT 32 0.955 ± 0.002 0.266 ± 0.008 178
TT 64 0.957 ± 0.003 0.257 ± 0.011 233
TT 128 0.962 ± 0.003 0.239 ± 0.002 423
Tucker 16 0.942 ± 0.009 0.316 ± 0.009 155
Tucker 32 0.947 ± 0.003 0.295 ± 0.014 174
Tucker 64 0.954 ± 0.002 0.267 ± 0.007 238
Tucker 128 0.957 ± 0.004 0.250 ± 0.014 441

CP 16 0.961 ± 0.013 0.279 ± 0.011 170
CP 32 0.983 ± 0.001 0.201 ± 0.003 184
CP 64 0.988 ± 0.000 0.150 ± 0.003 218
CP 128 0.990 ± 0.000 0.128 ± 0.002 284
TT 16 0.987 ± 0.000 0.155 ± 0.003 174

WIRE TT 32 0.991 ± 0.000 0.119 ± 0.002 180
TT 64 0.994 ± 0.000 0.094 ± 0.001 248
TT 128 0.997 ± 0.000 0.078 ± 0.002 455
Tucker 16 0.971 ± 0.002 0.243 ± 0.004 168
Tucker 32 0.986 ± 0.001 0.175 ± 0.004 188
Tucker 64 0.989 ± 0.000 0.137 ± 0.004 244
Tucker 128 0.992 ± 0.000 0.121 ± 0.002 431

CP 16 0.951 ± 0.012 0.280 ± 0.011 169
CP 32 0.985 ± 0.002 0.187 ± 0.003 188
CP 64 0.994 ± 0.000 0.128 ± 0.002 222
CP 128 0.997 ± 0.000 0.092 ± 0.002 298
TT 16 0.992 ± 0.000 0.138 ± 0.004 169

ReLU20 TT 32 0.998 ± 0.000 0.088 ± 0.002 179
TT 64 1.000 ± 0.000 0.064 ± 0.003 246
TT 128 1.000 ± 0.000 0.055 ± 0.012 460
Tucker 16 0.963 ± 0.008 0.247 ± 0.006 168
Tucker 32 0.990 ± 0.039 0.165 ± 0.030 184
Tucker 64 0.957 ± 0.165 0.189 ± 0.059 241
Tucker 128 0.816 ± 0.189 0.230 ± 0.059 428

CP 16 0.941 ± 0.005 0.295 ± 0.006 166
CP 32 0.983 ± 0.001 0.200 ± 0.005 173
CP 64 0.990 ± 0.000 0.151 ± 0.001 214
CP 128 0.992 ± 0.000 0.128 ± 0.001 286
TT 16 0.994 ± 0.001 0.125 ± 0.002 160

SIREN TT 32 1.000 ± 0.000 0.066 ± 0.005 175
TT 64 1.000 ± 0.000 0.053 ± 0.020 236
TT 128 1.000 ± 0.000 0.095 ± 0.014 422
Tucker 16 0.968 ± 0.005 0.233 ± 0.006 156
Tucker 32 0.990 ± 0.000 0.158 ± 0.004 171
Tucker 64 0.996 ± 0.000 0.114 ± 0.005 235
Tucker 128 0.997 ± 0.388 0.138 ± 0.368 451

CP 16 0.952 ± 0.009 0.290 ± 0.008 148
CP 32 0.980 ± 0.003 0.214 ± 0.007 169
CP 64 0.986 ± 0.000 0.160 ± 0.003 201
CP 128 0.989 ± 0.000 0.133 ± 0.001 282
TT 16 0.979 ± 0.000 0.187 ± 0.002 149

ReLU10 TT 32 0.979 ± 0.000 0.169 ± 0.001 166
TT 64 0.979 ± 0.000 0.166 ± 0.001 219
TT 128 0.978 ± 0.001 0.170 ± 0.003 404
Tucker 16 0.965 ± 0.001 0.242 ± 0.003 145
Tucker 32 0.976 ± 0.001 0.202 ± 0.004 167
Tucker 64 0.978 ± 0.006 0.184 ± 0.019 229
Tucker 128 0.892 ± 0.270 0.394 ± 0.229 440

Table 7. Results for geometry encoding task: Here we provide
both IoU andL 2 Error between the predicted SDFs and Ground
truth, for Armadillo model, taken from [65]. A visualization of
IoU values is provided in Figure22.

Backend Mode Rank IoU L2 Error Time(s)

ReLU0 - - 0.884 ± 0.007 0.213 ± 0.003 15963
ReLU10 - - 0.908 ± 0.009 0.188 ± 0.004 16428
ReLU20 - - 0.973 ± 0.006 0.163 ± 0.004 16923
SIREN - - 0.971 ± 0.005 0.126 ± 0.010 16138
WIRE - - 0.975 ± 0.009 0.062 ± 0.064 16157
DeepSDF [47] - 0 0.978 ± 0.010 0.062 ± 0.015 18375
IGR [15] - 0 0.985 ± 0.004 0.067 ± 0.014 16912

CP 16 0.852 ± 0.007 0.225 ± 0.005 178
CP 32 0.869 ± 0.015 0.213 ± 0.007 194
CP 64 0.883 ± 0.007 0.213 ± 0.003 228
CP 128 0.885 ± 0.006 0.211 ± 0.004 304
TT 16 0.884 ± 0.009 0.207 ± 0.007 177

ReLU0 TT 32 0.896 ± 0.009 0.198 ± 0.005 195
TT 64 0.907 ± 0.003 0.191 ± 0.002 250
TT 128 0.923 ± 0.003 0.181 ± 0.002 448
Tucker 16 0.864 ± 0.006 0.220 ± 0.008 170
Tucker 32 0.880 ± 0.003 0.209 ± 0.005 192
Tucker 64 0.904 ± 0.006 0.198 ± 0.003 256
Tucker 128 0.922 ± 0.005 0.186 ± 0.004 465

CP 16 0.869 ± 0.019 0.217 ± 0.009 190
CP 32 0.933 ± 0.013 0.159 ± 0.010 204
CP 64 0.961 ± 0.002 0.121 ± 0.003 238
CP 128 0.973 ± 0.001 0.100 ± 0.002 314
TT 16 0.941 ± 0.007 0.133 ± 0.015 194

WIRE TT 32 0.976 ± 0.002 0.089 ± 0.002 210
TT 64 0.987 ± 0.001 0.069 ± 0.003 266
TT 128 0.991 ± 0.001 0.058 ± 0.003 475
Tucker 16 0.909 ± 0.014 0.198 ± 0.005 188
Tucker 32 0.953 ± 0.004 0.137 ± 0.003 208
Tucker 64 0.971 ± 0.001 0.111 ± 0.002 264
Tucker 128 0.977 ± 0.001 0.092 ± 0.005 452

CP 16 0.829 ± 0.021 0.217 ± 0.034 191
CP 32 0.912 ± 0.012 0.176 ± 0.018 205
CP 64 0.962 ± 0.004 0.118 ± 0.002 239
CP 128 0.989 ± 0.001 0.076 ± 0.002 315
TT 16 0.928 ± 0.010 0.142 ± 0.014 195

ReLU20 TT 32 0.988 ± 0.001 0.070 ± 0.003 211
TT 64 0.999 ± 0.000 0.055 ± 0.005 267
TT 128 0.999 ± 0.000 0.045 ± 0.003 477
Tucker 16 0.892 ± 0.043 0.185 ± 0.007 189
Tucker 32 0.948 ± 0.021 0.146 ± 0.005 209
Tucker 64 0.984 ± 0.039 0.104 ± 0.028 265
Tucker 128 0.860 ± 0.035 0.146 ± 0.043 450

CP 16 0.882 ± 0.022 0.235 ± 0.010 181
CP 32 0.928 ± 0.016 0.193 ± 0.008 199
CP 64 0.967 ± 0.003 0.141 ± 0.004 231
CP 128 0.979 ± 0.001 0.119 ± 0.001 307
TT 16 0.894 ± 0.010 0.136 ± 0.002 179

SIREN TT 32 0.983 ± 0.002 0.066 ± 0.002 197
TT 64 0.998 ± 0.000 0.063 ± 0.011 252
TT 128 0.994 ± 0.002 0.105 ± 0.010 454
Tucker 16 0.899 ± 0.028 0.182 ± 0.007 172
Tucker 32 0.919 ± 0.015 0.141 ± 0.006 195
Tucker 64 0.977 ± 0.018 0.098 ± 0.020 259
Tucker 128 0.980 ± 0.030 0.121 ± 0.374 469

CP 16 0.885 ± 0.042 0.231 ± 0.018 170
CP 32 0.903 ± 0.010 0.209 ± 0.004 187
CP 64 0.947 ± 0.005 0.159 ± 0.004 221
CP 128 0.956 ± 0.002 0.135 ± 0.006 302
TT 16 0.932 ± 0.011 0.179 ± 0.001 169

ReLU10 TT 32 0.943 ± 0.007 0.162 ± 0.002 186
TT 64 0.945 ± 0.006 0.159 ± 0.002 239
TT 128 0.937 ± 0.007 0.164 ± 0.008 424
Tucker 16 0.911 ± 0.013 0.223 ± 0.006 165
Tucker 32 0.932 ± 0.004 0.190 ± 0.001 187
Tucker 64 0.930 ± 0.032 0.168 ± 0.244 249
Tucker 128 0.851 ± 0.038 0.458 ± 0.216 460

Table 8. Results for Geometry encoding task: Here we provide
both IoU and L2 Error between the predicted SDFs and Ground
truth, for Lucy model, taken from [12]. A visualization of IoU
values is provided in Figure24.
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Figure 26. Quantitative results IoU vs. Speedup, for model Thai
Statue. The general trend is that a larger rank leads to a better IoU.
Tensor-Train models perform the best when compared to the other
two models, and in several models, they are better than baselines.
Even though all values seem closer, the visualizations shown in23
show the qualitative differences.

Backend Mode Rank IoU L2 Error Time (s)

ReLU0 - - 0.874� 0.007 0.229� 0.003 16148
ReLU10 - - 0.898� 0.009 0.192� 0.004 16753
ReLU20 - - 0.973� 0.006 0.163� 0.004 17023
SIREN - - 0.971� 0.005 0.126� 0.010 16438
WIRE - - 0.975� 0.009 0.062� 0.064 16557

CP 16 0.858� 0.002 0.229� 0.002 342
CP 32 0.871� 0.003 0.227� 0.001 377
CP 64 0.873� 0.002 0.217� 0.004 486
CP 128 0.879� 0.002 0.205� 0.005 670
TT 16 0.887� 0.005 0.209� 0.006 324

ReLU0 TT 32 0.897� 0.002 0.187� 0.006 351
TT 64 0.919� 0.007 0.179� 0.006 526
TT 128 0.924� 0.001 0.167� 0.003 902
Tucker 16 0.869� 0.006 0.219� 0.006 308
Tucker 32 0.887� 0.004 0.212� 0.005 347
Tucker 64 0.901� 0.004 0.196� 0.004 519
Tucker 128 0.915� 0.005 0.186� 0.004 945

CP 16 0.918� 0.008 0.227� 0.004 357
CP 32 0.952� 0.003 0.176� 0.007 379
CP 64 0.965� 0.001 0.133� 0.004 492
CP 128 0.973� 0.001 0.107� 0.003 686
TT 16 0.960� 0.003 0.156� 0.005 353

WIRE TT 32 0.975� 0.001 0.097� 0.003 396
TT 64 0.982� 0.000 0.076� 0.002 595
TT 128 0.987� 0.001 0.069� 0.001 1047
Tucker 16 0.933� 0.004 0.207� 0.006 351
Tucker 32 0.962� 0.002 0.154� 0.004 387
Tucker 64 0.970� 0.001 0.120� 0.003 565
Tucker 128 0.976� 0.001 0.101� 0.003 1028

CP 16 0.912� 0.010 0.217� 0.010 365
CP 32 0.948� 0.002 0.170� 0.017 388
CP 64 0.972� 0.002 0.130� 0.006 503
CP 128 0.984� 0.001 0.089� 0.003 704
TT 16 0.960� 0.005 0.165� 0.010 359

ReLU20 TT 32 0.983� 0.002 0.080� 0.005 397
TT 64 0.997� 0.001 0.059� 0.003 585
TT 128 0.999� 0.000 0.051� 0.001 1029
Tucker 16 0.939� 0.005 0.195� 0.005 341
Tucker 32 0.967� 0.016 0.144� 0.008 376
Tucker 64 0.936� 0.102 0.142� 0.022 543
Tucker 128 0.967� 0.129 0.109� 0.061 989

CP 16 0.913� 0.007 0.241� 0.006 357
CP 32 0.950� 0.004 0.192� 0.005 372
CP 64 0.967� 0.001 0.148� 0.003 485
CP 128 0.976� 0.001 0.122� 0.001 673
TT 16 0.936� 0.004 0.145� 0.004 327

SIREN TT 32 0.976� 0.002 0.075� 0.001 361
TT 64 0.995� 0.000 0.060� 0.024 534
TT 128 0.991� 0.008 0.097� 0.020 912
Tucker 16 0.934� 0.017 0.195� 0.015 318
Tucker 32 0.965� 0.004 0.144� 0.001 352
Tucker 64 0.979� 0.007 0.102� 0.033 528
Tucker 128 0.983� 0.493 0.143� 0.446 961

CP 16 0.913� 0.009 0.236� 0.007 325
CP 32 0.945� 0.007 0.201� 0.006 353
CP 64 0.955� 0.001 0.162� 0.002 471
CP 128 0.961� 0.001 0.138� 0.003 656
TT 16 0.935� 0.002 0.186� 0.004 303

ReLU10 TT 32 0.942� 0.002 0.161� 0.002 339
TT 64 0.943� 0.001 0.157� 0.003 513
TT 128 0.942� 0.003 0.157� 0.003 840
Tucker 16 0.918� 0.009 0.221� 0.005 290
Tucker 32 0.939� 0.004 0.191� 0.003 326
Tucker 64 0.937� 0.046 0.182� 0.110 494
Tucker 128 0.874� 0.337 0.279� 0.304 943

Table 9. Results for Geometry encoding task: Here, we provide
both IoU and L2 Error between the predicted SDFs and Ground
truth for the Thai model, taken from [12]. A visualization of IoU
values is provided in Figure26 and the SDFs are visualized in
Figure23.
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