
Functional Tensor Decompositions for
Physics-Informed Neural Networks

Sai Karthikeya Vemuri1,2[0009−0003−6272−8603], Tim
Büchner1[0000−0002−6879−552X], Julia Niebling2[0000−0001−5413−2234], and

Joachim Denzler1[0000−0002−3193−3300]

1 Computer Vision Group, Friedrich Schiller University Jena, 07743 Jena, Germany
2 Institute of Data Science, German Aerospace Center, 07745 Jena, Germany

sai.karthikeya.vemuri@uni-jena.de

Abstract. Physics-Informed Neural Networks (PINNs) have shown con-
tinuous and increasing promise in approximating partial differential equa-
tions (PDEs), although they remain constrained by the curse of dimen-
sionality. In this paper, we propose a generalized PINN version of the
classical variable separable method. To do this, we first show that, using
the universal approximation theorem, a multivariate function can be ap-
proximated by the outer product of neural networks, whose inputs are
separated variables. We leverage tensor decomposition forms to separate
the variables in a PINN setting. By employing Canonic Polyadic (CP),
Tensor-Train (TT), and Tucker decomposition forms within the PINN
framework, we create robust architectures for learning multivariate func-
tions from separate neural networks connected by outer products. Our
methodology significantly enhances the performance of PINNs, as evi-
denced by improved results on complex high-dimensional PDEs, includ-
ing the 3d Helmholtz and 5d Poisson equations, among others. This re-
search underscores the potential of tensor decomposition-based variably
separated PINNs to surpass the state-of-the-art, offering a compelling
solution to the dimensionality challenge in PDE approximation.

Keywords: Tensor Decomposition · Physics-Informed Neural Networks

1 Introduction

Employing existing physical knowledge within data-driven systems is impor-
tant for scientists at the intersection of science, engineering, and machine/deep
learning to enforce proper behavior within a model. Physics-informed neural net-
works (PINNs) [27] provide the paradigm to formulate rules of physics within
the network architecture, such that the model learns from data and the underly-
ing physics. Consequently, PINNs gained traction within the scientific machine-
learning community. Mainly, PINNs are extensively applied to solve forward
and inverse problems involving systems of differential equations. They are ap-
plied in various areas of science ranging from Geophysics, Structural mechanics,
and Fluid dynamics to Epidemiology [1, 7, 31, 32]. We refer the readers to the
excellent overview of PINNs by Cuomo et al. [7].

2 S. Vemuri et al.

Like other numerical methods for solving partial differential equations (PDE),
PINNs also suffer from the curse of dimensionality. We need n collocation points
to solve a PDE accurately. In that case, the solution space explodes as nd with
each dimension d, and classical PINNs get into computational problems as neural
networks struggle to resolve relevant features, often leading to erroneous solu-
tions. Such problems and failure modes are discussed in detail in [17,22,34,35].

A classic method of solving differential equations is the variable separable
method [26], where the solution is defined as the product of univariate functions.
This approach is limited to a few classes of differential equations. We propose
a new PINN alternative to the classical variable separable method, which can
solve many arbitrary multi-dimensional PDEs irrespective of the presence of a
separable form. We leverage tensor decomposition approaches and their func-
tional forms and use individual neural networks to learn information along each
dimension.

There is an increasing interest in using multiple neural networks and their
blending together to form more accurate and robust PINNs. Moseley et al. [24]
suggested dividing the domain of PDE solution into smaller subdomains and
using individual neural networks to learn the solution within each subdomain.
Haghighat et al. [10] propose an individual neural network for each variable
in a mathematical model of solid mechanics consisting of five variables. Cai et
al. [3], by applying PINNs to the two-phase Stefan problem, use two neural
networks to model the unknown interface between two different material phases
and describe the phases’ two temperature distributions [18,19]. Jin et al. [14] used
multiple neural networks to improve neural operators, which also come under
the broad family of physics-informed machine learning, where a PDE solution
operator is learned instead of solving a particular PDE. They used multiple
branch and trunk nets and combined them to train Deep Neural Operators
efficiently. Applying this to PINNs, Cho et al. [5] introduced Separable PINNs,
where they use separate neural networks per axis, thus reducing the number of
collocation points, and they leverage forward mode automatic differentiation to
decrease computation and memory costs significantly.

Building upon these approaches, we introduce functional tensor decomposi-
tions as a generalized separation of variables method. We leverage several tensor
decomposition forms to separate the variables in a PINN setting and approxi-
mate each decomposition component using a neural network. We show that these
methods are more accurate and faster than state-of-the-art PINN architectures.
Our four main contributions are as follows:

1. We extend the classical variable separable methods with PINNs by leverag-
ing functional tensor decomposition forms, where individual neural networks
learn each component of the tensor decomposition.

2. We extend the universal approximation theorem and show that any multi-
variate function can be approximated using the outer product of univariate
neural networks, irrespective of whether a variable separable form exists.

Functional Tensor Decompositions for Physics-Informed Neural Networks 3

3. We propose to use three functional tensor decomposition forms that can
be combined into PINNs: Canonic-Polyadic (CP-PINN) [12], Tensor-Train
(TT-PINN) [25], and Tucker decomposition [30].

4. We demonstrate that our proposed method outperforms previous state-of-
the-art PINN architectures for high-dimensional PDEs and requires fewer
collocation points [5]. Thus, it offers an effective means to mitigate the curse
of dimensionality and provide a better representation of solutions. The code
is available at https://github.com/cvjena/TensorDecompositions4PINNs

2 Theoretical Background

The classical variable separable method involves writing a multivariate function
as a sum of products of univariate functions. Such forms only exist for a limited
number of functions/PDEs [26]. When we decompose a multivariate function and
learn each univariate function using a neural network, it is crucial to demonstrate
that this approach is practical even when a separable form does not exist. This
ensures the method’s general applicability to all types of PDEs. To support this
argument, we show in the following sections that a multi-dimensional function
can be approximated using the outer products of neural networks, where a neural
network represents each dimension with a sufficient rank. After that, we explain
in detail how tensor decompositions are utilized in PINNs and how such archi-
tectures could mitigate the curse of dimensionality and improve the speed and
accuracy of PINNs.

2.1 Universal Approximation Theorem

In this section, we revisit the classic Universal Approximation Theorem [8, 13]
and extend it to separable functions. We show empirically that any continuous
multivariate function f : K → R within a compact bounded d-dimensional set
K ∈ Rd can be approximated by the outer product of d neural networks. Each
neural network is a function of a single variable xi(1 ≤ i ≤ d). Furthermore, we
demonstrate how tensor decomposition forms can separate dimensions and how
these components support solving PDEs using PINNs.

The Universal Approximation Theorem states that a feed-forward neural
network with a single hidden layer can theoretically approximate any continuous
function on a bounded domain with arbitrary accuracy [8, 13]. Hence, given a
continuous function f : Rd → R and for any ϵ > 0, there exists a feed-forward
neural network f̂ , such that∥∥∥f(x)− f̂(x)

∥∥∥ < ϵ;∀x ∈ K. (1)

considering that for all x inside of K, which is a compact subset in Rd, the
inequality holds true.

Functional approximation problems, including those tackled by PINNs, in-
volve high-dimensional spaces where the curse of dimensionality becomes a sig-
nificant issue. Thus, significant challenges are posed in computation, the number

https://github.com/cvjena/TensorDecompositions4PINNs

4 S. Vemuri et al.

of parameters needed, and the calculation of derivatives (an additional special
case for PINNs).

A classical approach to address this curse of dimensionality is the sum of
separable functions and is based on reconstructing a multivariate function as a
product of univariate functions [5, 11, 26]: A d-variate function f : K → R can
be written as

f(x1, x2, . . . , xd) =

r∑
j=1

d⊗
i=1

gji (xi). (2)

Where gji are univariate functions, j denotes the separation rank, representing
the number of terms in the function gi. We designate the operator

⊗
as the

tensor product of vector spaces defined by individual univariate functions. One
of the important features of these functions is that they are not restricted from
coming from a particular basis set. This is the exact point we would like to
emphasize. Since they are not restricted to being unique, we propose that neural
networks can approximate these functions.

We simplify the notation by rewriting the Equation (2) to omit separation
rank, and the separated functions gi contain r components corresponding to the
i-th dimension. This is written as:

f(x1, x2...., xd) =

d⊗
i=1

gi(xi). (3)

Now, we use d neural networks, e.g., per dimension of the problem, to ap-
proximate the individual functions gi. Now the tensor product of these univariate
approximations is the approximation of f , denoted by f̂ , as

f̂(x1, x2...., xd) =

d⊗
i=1

ĝi(xi, θi). (4)

Where θi represents a neural network’s trainable parameters (weights and
biases). Following the above-mentioned Universal Approximation Theorem, we
can approximate a neural network ĝi for every individual component gi [8, 13]
and every ϵi ∈ R, such that

∥gi(xi)− ĝi(xi)∥ < ϵi;∀xi ∈ Ki ∧ 1 ≤ i ≤ d, (5)

where Ki is a compact subset of R. The error in approximating f by f̂ can
be now written as∥∥∥f(x1, x2, . . . , xd)− f̂(x1, x2, . . . , xd)

∥∥∥ =

∥∥∥∥∥
d⊗

i=1

gi(xi)−
d⊗

i=1

ĝi(xi, θi)

∥∥∥∥∥ . (6)

Under certain reasonable assumptions that the univariate functional spaces
are Banach in nature, and the norm is a reasonable cross-norm [11], the norm of

Functional Tensor Decompositions for Physics-Informed Neural Networks 5

the outer product can be written as simply the norm of products. This property
is illustrated as follows:

∥
d⊗

i=1

xi∥ =

d∏
i=1

∥xi∥. (7)

Using this property and identity of difference of products, which is derived
using mathematical induction in [11], we expand the right-hand side of Equa-
tion (6):

d⊗
i=1

gi −
d⊗

i=1

ĝi =

d∑
j=1

(
j−1∏
k=1

ĝk

)
(gj − ĝj)

 d∏
l=j+1

gl

 . (8)

Taking the norm and including the above equation in Equation (6)

∥f − f̂∥ =

∥∥∥∥∥∥
d∑

j=1

(
j−1∏
k=1

ĝk

)
(gj − ĝj)

 d∏
l=j+1

gl

∥∥∥∥∥∥ . (9)

Using the triangle inequality [28], we obtain

∥f − f̂∥ ≤
d∑

j=1

∥∥∥∥∥∥
(

j−1∏
k=1

ĝk

)
(gj − ĝj)

 d∏
l=j+1

gl

∥∥∥∥∥∥ . (10)

Finally, assuming the norm is sub-multiplicative, something like L, we get

∥f − f̂∥ ≤
d∑

j=1

(
j−1∏
k=1

∥ĝk∥

)
∥gj − ĝj∥

 d∏
l=j+1

∥gl∥

 . (11)

Simplified expression by using Equation (5)

∥f − f̂∥ ≤
d∑

j=1

(
j−1∏
k=1

∥ĝk∥

)
ϵj

 d∏
l=j+1

∥gl∥

 . (12)

By appropriately choosing the approximation errors ϵj for each univariate
function and making sure that the norms don’t explode (i.e., weights and gradi-
ents do not explode) [9, 15], we can ensure that the total error is less than any
desired ϵ. Thus, the constructed multivariate approximation using outer prod-
ucts of univariate functions with large enough rank is also a universal function
approximator. This shows that, theoretically, we can represent any arbitrary
multivariate function, regardless of the existence of variable separable form, as
the outer product of neural networks. The inputs to these individual neural
networks correspond to particular dimensions. The underlying ideas of triangle
inequality and identity of differences are drawn from well-established theories in
the field [5, 11,14].

6 S. Vemuri et al.

2.2 Physics-Informed Neural Networks

Physics-Informed Neural Networks (PINNs) are a class of neural networks that
incorporate physical laws described by partial differential equations (PDEs) into
the training process [27]. Unlike traditional neural networks that rely exclusively
on data-driven learning, PINNs utilize the underlying model structure, e.g., the
actual gradients in the loss function, to constrain the solution space effectively.
Thereby, prior knowledge and physically consistent constraints are enforced into
the learning process. Specifically, in a PINN, the loss function L is augmented
with terms that enforce the PDE constraints. Consider a PDE of the form:

F(x, u(x),∇u(x),∇2u(x), . . .) = 0, (13)

where x ∈ Rd represents the spatial and temporal variables, and u(x) describes
the solution. The loss function L is composed of the data loss Ldata and physics
loss Lphysics. Ldata captures the error between the predicted solution u(x; θ)
and the observed data. Furthermore, Lphysics constrains the solution space such
that the model abides by the underlying governing physics at collocation points
within the domain. We formally define both as

Ldata =
1

N

N∑
i=1

(
u(xi; θ)− udata

i

)2
, and (14)

Lphysics =
1

M

M∑
j=1

(
F(xj , u(xj ; θ),∇u(xj ; θ),∇2u(xj ; θ), . . .)

)2
. (15)

Where N and M are data and collocation points, respectively. The interplay
between these two loss functions is controlled by parameter λ [23, 32, 34]. The
combined multi-objective loss function is given as:

L = Ldata + λ · Lphysics. (16)

As stated, the collocation points refer to points inside the domain where the
physics is obeyed. Generally, these are sampled uniformly in the domain to en-
sure the neural network learns the domain space. The curse of dimensionality
manifests in PINNs as the number of collocations grows exponentially for every
additional dimension. This challenges PINNs on many fronts, making them com-
putationally expensive, and approximating solutions becomes increasingly diffi-
cult. Such failure modes are more explained in the works like [17,22,32,34,35].

PINNs can be easily seen as a special case of functional approximation, where,
along with some samples, we give the underlying PDE residual(physics) from
which the underlying function (solution of PDE) u needs to be approximated.
We propose to represent the solution of a PINN as the outer product of uni-
variate neural networks to separate variables. This can be seen as the PINN
counterpart of the classic variable separable method. Since we have shown that
the outer product of neural networks with a sufficient rank can approximate a
multivariate function, this works even for cases where classical variable separa-
ble form does not exist, making a generalized separation of the variable method.
The advantages of this approach over classical PINNs are as follows:

Functional Tensor Decompositions for Physics-Informed Neural Networks 7

A1(x1) A2(x2)

A3
(x

3
)

n1 ×R

n2 ×R

n3
×R

(a) Canonic-Polyadic [12]

A1(x1) A2(x2) A3(x3)

n1 ×R1
R1 × n2 ×R2

R2 × n3

(b) Tensor Train [25]

A1(x1)
C

A2(x2)

A3
(x3

)

n1 ×R1
R1 ×R2 ×R3

n2 ×R2

n3
×R3

(c) Tucker [30]

Fig. 1: We provide a schematic visualization for the tensor decompositions (a)-
(c) on the examples for d = 3. The shape of the factor tensors (A) is written on
the bottom of each component. Tucker [30] additionally has one core tensor C.

1. Requirement of fewer collocation points. While a classical PINN requires nd

collocation points to sample a d-dimensional domain, our approach needs
only n · d points, effectively mitigating the curse of dimensionality.

2. The solution of the PDE is expressed in variable separable form, irrespective
of classical variable separable form.

3. We employ individual neural networks per dimension, allowing better feature
representation and avoiding potential local minima in complex problems.

2.3 Functional Tensor Decompositions for PINNs

We leverage tensor decomposition forms to achieve the separation of variables.
This approach decomposes a high-dimensional tensor into smaller components
by approximating multivariate functions using outer products of univariate func-
tions. We refer to this technique as functional tensor decomposition. A separate
neural network is responsible for learning each component in the tensor de-
composition. This work discusses three tensor decomposition forms: Canonic-
Polyadic [12], Tensor-Train [25], and Tucker decompositions [30]. We provide
definitions and schematics, and later the inclusion into the PINN architectures,
but recommend the work of [16] for a broad overview of tensor decomposition.

Canonic-Polyadic Decomposition (CP) involves decomposing a d order ten-
sor into d factor matrices of a specified rank R [12] similar to Separable PINN [5]
as shown in Figure 1a. Mathematically, for a multi-dimensional tensor f , the CP
decomposition is written as

f(x1, x2, . . . , xd) ≈ [[A1(x1), A2(x2), . . . , Ad(xd)]], (17)

where [[·]] denotes tensor product operation with A1 ∈ Rn1×R, . . . , Ad ∈ Rnd×R

being factor matrices, for ni points along each i-th dimension.

8 S. Vemuri et al.

n1 × 1 n2 × 1 n3 × 1

NN1 NN2 NN3

A1(x1) A2(x2) A3(x3)

x1 x2 x3

n
1
×

R

n
2
×

R

n
3
×

R

n
1
×

n
2
×

n
3

f(x1, x2, x3)

(a) CP-PINN

n1 × 1 n2 × 1 n3 × 1

NN1 NN2 NN3

A1(x1) A2(x2) A3(x3)

x1 x2 x3

n
1
×

R
1

R
1
×

n
2
×

R
2

R
2
×

n
3

n
1
×

n
2
×

n
3

f(x1, x2, x3)

(b) TT-PINN

n1 × 1 n2 × 1 n3 × 1

NN1 NN2 NN3

A1(x1) A2(x2) A3(x3)

x1 x2 x3

C

n
1
×

R
1

n
2
×

R
2

n
3
×

R
3

R1 × R2 × R3

n
1
×

n
2
×

n
3

f(x1, x2, x3)

(c) Tucker-PINN

Fig. 2: Functional tensor decomposition forms within the PINN model architec-
ture: The approximation of each component matrix based on a single variable is
done with an individual neural network. These outputs are then combined as in
the Canonic-Polyadic [12] (a), Tensor-Train [25] (b) or Tucker [30] (c) manner.

Tensor-Train Decomposition (TT) represents a high-dimensional tensor as
a sequence of low-dimensional tensors (cores) connected in a chain (train) [25],
with an example shown in Figure 1b. Similar to the matrix notation CP, we have

f(x1, x2, . . . , xd) ≈ [[A1(x1), A2(x2), . . . , Ad(xd)]] (18)

where each core tensor Ai ∈ RRi−1×ni×Ri , and R0 = Rd = 1, where ni is number
of the points in the i-th dimension. Unlike CP, TT connects tensors belonging
to the adjacent dimensions, making it more stable [25].

Tucker Decomposition generalizes CP by decomposing a tensor into a core
tensor multiplied by matrices along each mode [30], visualized in Figure 1c.
Therefore, by updating the CP matrix notation, we obtain

f(x1, x2, . . . , xd) ≈ [[C;A1(x1), A2(x2), . . . , Ad(xd)]] . (19)

We denote C ∈ RR1×R2×R3×...×Rd as the core tensor and A1 ∈ Rn1×R1 , A2 ∈
Rn2×R2 , . . . , Ad ∈ Rnd×Rd are factor matrices. Unlike both CP and TT decom-
position, the core connects all the dimensions, making it even more stable, with
more parameters [30].

Functional tensor decomposition forms in PINNs We now use the afore-
mentioned tensor decomposition in a PINN setup. As described earlier, we as-
sume the solution of a PDE that needs to be solved by a PINN is decomposed
into components constituting any of the tensor decomposition mentioned above,

Functional Tensor Decompositions for Physics-Informed Neural Networks 9

and a neural network learns each component. Therefore, we propose three archi-
tectures based on functional tensor decompositions: CP-PINN, TT-PINN, and
Tucker-PINN. The schematics given in Figure 1 and Figure 2 are for a three-
dimensional PDE, but the concepts scales to arbitrary dimensions (≥ 3). For
CP-PINN and Tucker-PINN, each network outputs a factor matrix of shape
n × R, where n still denotes the input dimension and R the desired rank of
the decomposition. For this paper’s scope, we consider that the ranks for all
components of Tucker-PINN and TT-PINN are set to the same integer R. Ad-
ditionally, for Tucker-PINN, we initialize the core tensor as an orthogonal and
trainable parameter to learn the entries during training. For TT-PINN, each
network outputs either the train start or end part with the shape n × r or the
train middle of shape r × n× r.

3 Experiments

We solve benchmark PDEs in three dimensions and more to demonstrate the
effectiveness of our tensor decomposition architectures CP-PINN, TT-PINN, and
Tucker-PINN. We compare our results with the original PINN architecture [27]
and other state-of-the-art PINN models [20, 23, 33]. Each variable is put into a
four-layer feed-forward neural network with tanh(·) activation functions for the
proposed PINN architecture. The feature depth per layer corresponds to the
rank unless specified otherwise. A network’s input is collocation points along a
single dimension of shape n× 1, with n being the number of available points.

Our functional tensor decomposition models, the PDE simulation code, and
experiments are created in JAX [2]. We adopt the implementation of forward
gradients from [5]. The overall setup adheres to the conventional PINN frame-
work, comprising a composite loss function (Equation 16) that combines data
and PDE residual terms with no weighting, i.e., by setting λ = 1. All models
are trained using Adam optimizer [15] with learning rate 1e−3 and for 50000
iterations. The performance metric is the L2 error between predicted and sim-
ulated solutions. The tests are conducted on an NVIDIA GeForce GTX 1080
GPU, with reported relative speeds in iterations per second (IT/s).

First, we choose two three-dimensional PDE benchmarks, (2+1)d Klein-
Gordon and 3d Helmholtz equation [5, 21, 29, 37], for investigating the perfor-
mance of our functional tensor decomposition based PINNs. Problems of this
high dimension are computationally challenging for PINNs yet frequently arise
in real-world applications. The boundary/initial conditions and visualizations
are reported in Table 1 upper half. We compare our models against state-of-the-
art methods like gradient-based PINN [27], G-PINN [36], SA-PINN [23], and
Causal-PINN [33] (all implemented via PINA [6]). We omit SPINN [5] due to
the same nature as CP-PINN. We ensured the solution was converged for all
the benchmarks, and the training setup was as close as given in the original
source. We experiment with multiple collocation points and ranks to evaluate
the influence of these hyperparameters on the general model architecture.

10 S. Vemuri et al.

Table 1: We provide an overview of the four PDE experiment setups that were
used to investigate the capabilities of our tensor decomposition PINNs. The plots
are best viewed digitally and in color.

(2+1)d Klein-Gordon [5] 3d Helmholtz [29]

f = ∂ttu−∆u+ u2,

u = (x+ y) · cos(2t),
u(x, y, 0) = x+ y + x · y · sin(2t),

[x, y] ∈ [−1, 1]2, t ∈ [0, 10]

∆u+ k2u = q, x ∈ [−1, 1]3,

u(x) = 0, x ∈ ∂Ω,

q = −(a1π)
2u− (a2π)

2u

− (a3π)
2u+ k2u,

u =

3∏
i=1

sin(aiπxi)

(2+1)d Flow mixing [4] 5d Poisson [37]

0 =
∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
,

a(x, y) = − vt · y
vt,max · r ,

b(x, y) =
vt · x

vt,max · r ,

vt =
tanh(r)

tanh2(r)
,

r =
√

x2 + y2,

u = − tanh(
y

2
cos(

vt
r · vt,max

t)

− x

2
sin(

vt
r · vt,max

t))

with t ∈ [0, 4], x ∈ [−4, 4], y ∈ [−4, 4],

and vt,max = 0.385

∆u = −π2

4

n∑
i=1

sin(
π

2
xi),

u =

n∑
i=1

(
sin

(π
2
xi

))
,

with x ∈ [0, 1] , n = 5.

Functional Tensor Decompositions for Physics-Informed Neural Networks 11

Table 2: (2+1)d Klein Gordon Equation and 3d Helmholtz are solved by various
architectures. The general trend is that a larger rank leads and a larger number
of points leads to a better solution. Furthermore, we observe that our tensor
decomposition PINNs are a magnitude of 10 better at solving these problems.
The best performance per task is double underlined, and the second best is
underlined.

PINN model Rank Points L2 Klein-
Gordon ↓ L2 Helmholtz ↓ Speed (IT/s) ↑

Vanilla PINN [27] - 323 0.092 0.998 20
G-PINN [19] - 323 0.073 0.794 16
SA-PINN [23] - 323 0.095 0.920 15
Causal-PINN [33] - 323 0.041 0.406 3

CP-PINN

8 64× 3 0.050 0.061 364
16 64× 3 0.025 0.051 347
32 16× 3 0.069 0.063 357
32 32× 3 0.055 0.060 343
32 64× 3 0.008 0.040 327

TT-PINN

8 64× 3 0.068 0.064 358
16 64× 3 0.043 0.061 353
32 16× 3 0.088 0.060 356
32 32× 3 0.079 0.055 310
32 64× 3 0.010 0.048 305

Tucker-PINN

8 64× 3 0.061 0.079 345
16 64× 3 0.053 0.076 328
32 16× 3 0.066 0.077 301
32 32× 3 0.062 0.070 333
32 64× 3 0.019 0.057 312

The performance of the proposed approaches in benchmarking experiments is
presented in Table 2. The results indicate that CP-PINN, TT-PINN, and Tucker-
PINN demonstrate computational efficiency, requiring fewer collocation points
and achieving higher accuracy (a factor of 10) compared to current state-of-the-
art methods. A comparative analysis of CP-PINN, TT-PINN, and Tucker-PINN
reveals that increasing the number of collocation points and the model’s rank
generally leads to improved solution accuracy. In particular, for both PDE prob-
lems, we observe that CP-PINN with a rank of 32 and 64× 3 collocation points
achieves the most accurate solutions. Similarly, TT-PINN achieves the second-
best performance with the same rank and collocation points. We hypothesize
that a low rank may result in excessive information compression, potentially
leading to losing essential details in the subsequent inverse decomposition.

To further substantiate our findings, we investigate whether our function
tensor decomposition scales to a higher dimension (> 3) effectively, as shown
theoretically. Therefore, we solve 5d Poisson’s Equation [37] and simulate the

12 S. Vemuri et al.

Table 3: We show the L2 loss for the CP-PINN, TT-PINN, and Tucker-PINN on
the 5d Poisson’s Equation and (2+1)d Flow mixing simulation data. The best
performing scores are underlined, and each experiment has been repeated ten
times (we omit the standard deviation as it has been consistent around 0.01.)

Model Points Rank CP-PINN TT-PINN Tucker-PINN

5d Poisson’s Equation 24× 3
6 0.097 0.048 0.040
8 0.077 0.047 0.038
12 0.033 0.037 0.026

(2+1)d Flow mixing 128× 3 64 0.013 0.018 0.028

(2+1)d flow mixing PDE [4] to capture the intricate mixing process of two flu-
ids, see Table 1 lower half. The other PINN architectures are not suitable to
solve this task owing to their vast sampling of collocation points and slow speed
and are omitted from the results in Table 3. For the experiments, we use a fixed
collocation point amount but vary the rank of the decomposition components.
Surprisingly, our experiments reveal that Tucker-PINN outperforms both CP-
PINN and TT-PINN, contradicting the findings in Table 2. We attribute this
discrepancy to the fact that CP decomposition has fewer parameters, which may
make it more challenging to find suitable rank-one approximations as dimension-
ality increases. Further, we observe that the (2+1)d flow mixing problem was
solved only with a rank of 64 by our proposed architectures. This suggests that
more collocation points may be necessary for an accurate approximation. Ad-
ditionally, modifications to the neural network architecture or training protocol
and extensive hyperparameter tuning could enable solutions for lower ranks than
64 but are out of the scope of this work.

4 Discussion and Conclusions

We introduce functional tensor decomposition based PINNs, a novel approach for
solving PDEs using PINNs. Our essential contribution is extending the classical
variable separable method to PINNs by leveraging function tensor decomposition
forms. We show that PINNs can approximate multivariate PDEs by decompos-
ing the solution as the outer product of smaller tensors with controlled ranks,
enabling efficient and effective solutions to complex problems.

A critical insight is that such a PINN can learn any PDE irrespective of
whether the variable separable form exists. We investigate three tensor decom-
position forms incorporated into the general PINN framework to reduce the
computational complexity, especially the curse of dimensionaly. The primary
concept underlying our functional tensor decomposition approach for PINNs is
as follows: (1) We decompose the multivariate solution of a PDE and learn each
part using an individual neural network, and (2) we use this within the PINN
framework, where a loss function with PDE residual and boundary conditions

Functional Tensor Decompositions for Physics-Informed Neural Networks 13

is optimized. Please note that a unique form of decomposition does not need to
exist as we estimate the decomposition in a data-driven manner.

We conducted experiments using benchmark PDEs, such as the Klein-Gordon
Equation [5] and 3d Helmholtz [29] equation, to demonstrate that our proposed
methods significantly outperform existing PINNs. This distinction in accuracy
is evident even when employing low numbers of collocation points and ranks.
Furthermore, we substantiated our findings by checking whether our method
scales to higher dimensional (> 3) PDEs, such as the 5d Poisson equation [37] or
(2+1)d flow mixing [4]. We are demonstrating the ability of our method to tackle
complex issues with a relatively small number of collocation points and faster
speed. The results show that we effectively mitigate the curse of dimensionality,
enabling PINNs to solve problems in even higher dimensions efficiently.

Several open questions remain unanswered and could provide further inter-
esting research in developing PINNs for high-dimensional PDEs, even though we
already outperform existing methods by a factor of ten. Our experiments indi-
cate no best tensor decomposition form, and factors like collocation points, rank,
and available physical knowledge play a significant role in overall performance.
The Canonical-Polyadic decomposition [12] is the most straightforward represen-
tation among the same rank but becomes unstable in higher ranks [25]. While
Tucker decomposition [30], with its increased parameter count for the same rank,
does experience a curse of dimensionality due to the core tensor, albeit to a lesser
extent than others. We assume that Tensor-Train [25] is a good candidate with
lower dimensionality and is more stable in higher dimensions. We demonstrate
the potential of functional tensor decomposition in enhancing PINNs. While fur-
ther optimization may be possible, our findings already highlight the benefits of
this method over traditional numerical approaches.

References

1. Berkhahn, S., Ehrhardt, M.: A physics-informed neural network to model covid-
19 infection and hospitalization scenarios. Advances in Continuous and Discrete
Models 2022(1), 61 (Oct 2022). https://doi.org/10.1186/s13662-022-03733-5

2. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q.: JAX:
composable transformations of Python+NumPy programs (2018), http://github.
com/google/jax

3. Cai, S., Wang, Z., Wang, S., Perdikaris, P., Karniadakis, G.E.: Physics-Informed
Neural Networks for Heat Transfer Problems. Journal of Heat Transfer 143(6),
060801 (04 2021). https://doi.org/10.1115/1.4050542

4. Chiu, P.H., Wong, J.C., Ooi, C., Dao, M.H., Ong, Y.S.: Can-pinn: A fast physics-
informed neural network based on coupled-automatic–numerical differentiation
method. Computer Methods in Applied Mechanics and Engineering 395, 114909
(2022). https://doi.org/https://doi.org/10.1016/j.cma.2022.114909

5. Cho, J., Nam, S., Yang, H., Yun, S.B., Hong, Y., Park, E.: Separable physics-
informed neural networks. Advances in Neural Information Processing Systems
(2023)

https://doi.org/10.1186/s13662-022-03733-5
https://doi.org/10.1186/s13662-022-03733-5
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1115/1.4050542
https://doi.org/10.1115/1.4050542
https://doi.org/https://doi.org/10.1016/j.cma.2022.114909
https://doi.org/https://doi.org/10.1016/j.cma.2022.114909

14 S. Vemuri et al.

6. Coscia, D., Ivagnes, A., Demo, N., Rozza, G.: Physics-informed neural networks
for advanced modeling. Journal of Open Source Software 8(87), 5352 (2023)

7. Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Sci-
entific machine learning through physics–informed neural networks: Where we
are and what’s next. Journal of Scientific Computing 92(3), 88 (Jul 2022).
https://doi.org/10.1007/s10915-022-01939-z

8. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems 2(4), 303–314 (Dec 1989). https://doi.org/
10.1007/BF02551274, https://doi.org/10.1007/BF02551274

9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedfor-
ward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics. Pro-
ceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR, Chia La-
guna Resort, Sardinia, Italy (13–15 May 2010), https://proceedings.mlr.press/v9/
glorot10a.html

10. Haghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R.: A physics-informed
deep learning framework for inversion and surrogate modeling in solid mechanics.
Computer Methods in Applied Mechanics and Engineering 379, 113741 (2021).
https://doi.org/https://doi.org/10.1016/j.cma.2021.113741

11. Herath, I.: Multivariate Regression using Neural Networks and Sums of Separable
Functions. Ph.D. thesis, Ohio University (04 2022), http://rave.ohiolink.edu/etdc/
view?acc_num=ohiou1648166101093853

12. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematics and Physics 6(1-4), 164–189 (1927). https://doi.org/https:
//doi.org/10.1002/sapm192761164

13. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are
universal approximators. Neural Networks 2(5), 359–366 (1989). https://doi.org/
https://doi.org/10.1016/0893-6080(89)90020-8

14. Jin, P., Meng, S., Lu, L.: Mionet: Learning multiple-input operators via ten-
sor product. SIAM Journal on Scientific Computing 44(6), A3490–A3514 (2022).
https://doi.org/10.1137/22M1477751

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review
51(3), 455–500 (2009). https://doi.org/10.1137/07070111X

17. Krishnapriyan, A.S., Gholami, A., Zhe, S., Kirby, R.M., Mahoney, M.W.: Charac-
terizing possible failure modes in physics-informed neural networks (2021)

18. Lin, C., Maxey, M., Li, Z., Karniadakis, G.E.: A seamless multiscale operator
neural network for inferring bubble dynamics. Journal of Fluid Mechanics 929,
A18 (2021). https://doi.org/10.1017/jfm.2021.866

19. Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear op-
erators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence 3(3), 218–229 (Mar 2021). https://doi.org/10.1038/
s42256-021-00302-5

20. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library
for solving differential equations (7 2019). https://doi.org/10.1137/19M1274067

21. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: A deep learning library
for solving differential equations. SIAM Review 63(1), 208–228 (2021). https://
doi.org/10.1137/19M1274067

https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/https://doi.org/10.1016/j.cma.2021.113741
https://doi.org/https://doi.org/10.1016/j.cma.2021.113741
http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1648166101093853
http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1648166101093853
https://doi.org/https://doi.org/10.1002/sapm192761164
https://doi.org/https://doi.org/10.1002/sapm192761164
https://doi.org/https://doi.org/10.1002/sapm192761164
https://doi.org/https://doi.org/10.1002/sapm192761164
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1137/22M1477751
https://doi.org/10.1137/22M1477751
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://doi.org/10.1017/jfm.2021.866
https://doi.org/10.1017/jfm.2021.866
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067

Functional Tensor Decompositions for Physics-Informed Neural Networks 15

22. Maddu, S., Sturm, D., Müller, C.L., Sbalzarini, I.F.: Inverse dirichlet weighting en-
ables reliable training of physics informed neural networks. Machine Learning: Sci-
ence and Technology 3(1), 015026 (feb 2022). https://doi.org/10.1088/2632-2153/
ac3712

23. McClenny, L., Braga-Neto, U.: Self-adaptive physics-informed neural networks us-
ing a soft attention mechanism (2022)

24. Moseley, B., Markham, A., Nissen-Meyer, T.: Finite basis physics-informed neural
networks (fbpinns): a scalable domain decomposition approach for solving differ-
ential equations (2021)

25. Oseledets, I.V.: Tensor-train decomposition. SIAM Journal on Scientific Comput-
ing 33(5), 2295–2317 (2011). https://doi.org/10.1137/090752286

26. Raisinghania, M.: Ordinary and Partial Differential Equations. S. Chand Publish-
ing (1991), https://books.google.de/books?id=vaorDAAAQBAJ

27. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part
ii): Data-driven discovery of nonlinear partial differential equations (11 2017), http:
//arxiv.org/abs/1711.10566

28. Rudin, W.: Principles of Mathematical Analysis. International series in pure
and applied mathematics, McGraw-Hill (1964), https://books.google.de/books?
id=yifvAAAAMAAJ

29. Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D.,
Niepert, M.: Pdebench: An extensive benchmark for scientific machine learning
(2023)

30. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (Sep 1966). https://doi.org/10.1007/BF02289464

31. Vemuri, S.K., Büchner, T., Denzler, J.: Estimating soil hydraulic parameters for
unsaturated flow using physics-informed neural networks. In: Franco, L., de Mu-
latier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A.
(eds.) Computational Science – ICCS 2024. pp. 338–351. Springer Nature Switzer-
land, Cham (2024). https://doi.org/10.1007/978-3-031-63759-9_37

32. Vemuri, S.K., Denzler, J.: Gradient statistics-based multi-objective optimization
in physics-informed neural networks. Sensors 23(21) (2023). https://doi.org/10.
3390/s23218665

33. Wang, S., Sankaran, S., Perdikaris, P.: Respecting causality is all you need for
training physics-informed neural networks (2022)

34. Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow
pathologies in physics-informed neural networks. SIAM Journal on Scientific Com-
puting 43(5), A3055–A3081 (2021). https://doi.org/10.1137/20M1318043

35. Wang, S., Yu, X., Perdikaris, P.: When and why pinns fail to train: A neural
tangent kernel perspective. Journal of Computational Physics 449, 110768 (2022).
https://doi.org/10.1016/j.jcp.2021.110768

36. Yu, J., Lu, L., Meng, X., Karniadakis, G.E.: Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in
Applied Mechanics and Engineering 393, 114823 (Apr 2022). https://doi.org/10.
1016/j.cma.2022.114823

37. Zeng, C., Burghardt, T., Gambaruto, A.M.: Feature mapping in physics-informed
neural networks (pinns) (2024)

https://doi.org/10.1088/2632-2153/ac3712
https://doi.org/10.1088/2632-2153/ac3712
https://doi.org/10.1088/2632-2153/ac3712
https://doi.org/10.1088/2632-2153/ac3712
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://books.google.de/books?id=vaorDAAAQBAJ
http://arxiv.org/abs/1711.10566
http://arxiv.org/abs/1711.10566
https://books.google.de/books?id=yifvAAAAMAAJ
https://books.google.de/books?id=yifvAAAAMAAJ
https://doi.org/10.1007/BF02289464
https://doi.org/10.1007/BF02289464
https://doi.org/10.1007/978-3-031-63759-9_37
https://doi.org/10.1007/978-3-031-63759-9_37
https://doi.org/10.3390/s23218665
https://doi.org/10.3390/s23218665
https://doi.org/10.3390/s23218665
https://doi.org/10.3390/s23218665
https://doi.org/10.1137/20M1318043
https://doi.org/10.1137/20M1318043
https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/10.1016/j.cma.2022.114823
https://doi.org/10.1016/j.cma.2022.114823
https://doi.org/10.1016/j.cma.2022.114823
https://doi.org/10.1016/j.cma.2022.114823

	Functional Tensor Decompositions for Physics-Informed Neural Networks

