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Abstract: Modeling and simulation of complex non-linear systems are essential in physics, engineer-
ing, and signal processing. Neural networks are widely regarded for such tasks due to their ability to
learn complex representations from data. Training deep neural networks traditionally requires large
amounts of data, which may not always be readily available for such systems. Contrarily, there is a
large amount of domain knowledge in the form of mathematical models for the physics/behavior of
such systems. A new class of neural networks called Physics-Informed Neural Networks (PINNs) has
gained much attention recently as a paradigm for combining physics into neural networks. They have
become a powerful tool for solving forward and inverse problems involving differential equations.
A general framework of a PINN consists of a multi-layer perceptron that learns the solution of
the partial differential equation (PDE) along with its boundary/initial conditions by minimizing a
multi-objective loss function. This is formed by the sum of individual loss terms that penalize the
output at different collocation points based on the differential equation and initial and boundary
conditions. However, multiple loss terms arising from PDE residual and boundary conditions in
PINNs pose a challenge in optimizing the overall loss function. This often leads to training failures
and inaccurate results. We propose advanced gradient statistics-based weighting schemes for PINNs
to address this challenge. These schemes utilize backpropagated gradient statistics of individual
loss terms to appropriately scale and assign weights to each term, ensuring balanced training and
meaningful solutions. In addition to the existing gradient statistics-based weighting schemes, we
introduce kurtosis–standard deviation-based and combined mean and standard deviation-based
schemes for approximating solutions of PDEs using PINNs. We provide a qualitative and quantitative
comparison of these weighting schemes on 2D Poisson’s and Klein–Gordon’s equations, highlighting
their effectiveness in improving PINN performance.

Keywords: physics-informed neural networks; multi-objective optimization; loss weighting

1. Introduction

Deep learning has witnessed unprecedented growth and continues to improve various
fields, showcasing the immense potential that has yet to be fully explored. In recent years,
it has made significant inroads into science and technology, enabling the understanding
and modeling of complex systems. However, two key challenges with deep learning are
its black-box nature and its requirement for vast data. Acquiring such extensive data may
not always be feasible, and ensuring that the trained model comprehends the scientific
task accurately is imperative. Fortunately, an opportunity arises from the abundance of
domain knowledge available in the form of physical laws. Integrating this knowledge
into deep learning approaches holds the promise of bridging the gap between data-driven
learning and incorporating the physical laws that govern the systems. Such integration
would not only enhance the capabilities of neural networks but also enable them to learn
from data and fundamental scientific principles, thereby offering a powerful framework
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for advancing scientific research and technological applications. Physics-Informed Neural
Networks (PINNs) provide an elegant framework to accomplish this integration. They
combine physics in the form of partial differential equations of a system with classical neural
networks used for data-driven solutions. PINNs were introduced by Lagaris et al. [1] and
were popularized by seminal works [2,3]. In recent years, PINNs have garnered widespread
attention in scientific machine learning for their demonstrated ability to use underlying
physics [4]. The success of PINNs (and deep learning in general) can be attributed to the
robust and simplified implementations of Automatic Differentiation (AD) frameworks [5].
These frameworks facilitate easy computations of a composite function’s gradients with
respect to its parameters and inputs [6].

PINNs are widely used for solving differential equations’ forward and inverse prob-
lems (ordinary/partial/fractional/integro) [7,8]. For solving the forward problem of a
partial differential equation (PDE), a neural network is approximated as the solution of
the differential equation. It is common in the literature to formulate the loss function as
a linear combination of the differential equation and its boundary and initial conditions.
The neural network is trained to minimize the multi-object loss function. This leads to the
training of the neural network towards the particular solution of the differential equation
for the given boundary/initial conditions.

The use of PINNs has rapidly increased in recent years, with successful applications
in various areas such as Computational Fluid Dynamics [9,10], Geosciences [11,12], Signal
Processing [6,13,14], and Climate Sciences [15]. However, these networks have encountered
limitations and problems. PINNs are found to be difficult to train to achieve correct
solutions [16,17]. Specifically, the neural network fails to learn the correct solution, gives
erroneous solutions, and the training becomes unstable. It is found that for certain scenarios,
the neural network shows bias towards a wrong solution and even training for a larger
number of epochs will not help to overcome this failure [16]. Manual scaling of loss
terms or imposing hard boundary conditions [18] only works for a limited number of
cases and it is not universally applicable. This difficulty is attributed to the imbalanced
multi-objective optimization at the heart of PINNs. Recent works have been dedicated
to discovering failure modes and techniques to achieve balanced training and enhanced
performance. Enhancements were suggested for the architecture of the Neural Network
used [17,19], activation functions [20], and the formulation of boundary conditions [6,21].

In this paper, we focus on enhancing the multi-objective loss function of a PINN.
This is achieved by weighting individual loss terms to ensure proper training. By proper
training, we mean that all the loss functions contribute in a way that the solution of
the PINN converges towards the particular solution of the differential equation. The
weights are updated dynamically during the training. The motivation for choosing these
dynamically adaptive weights can come from different perspectives. In this study, we
explore the potential of gradient statistics to define adaptive weighting strategies. We aim
to leverage information from simple statistics (like mean, standard deviation, and kurtosis)
of backpropagated gradients of individual loss terms during training and assign individual
weights based on this information.

The schematic representation of implementing a weighting scheme in PINN training
is shown in Figure 1. The blue box represents a feed-forward neural network whose input
is the collocated space–time samples in the domain, boundaries, and initial condition. The
output is the solution that needs to be approximated. Using AD, the derivatives of output
with regard to input are estimated, and individual loss functions are formulated according
to the definition and boundary/initial conditions. In the red box, the weights are estimated
from the gradient statistics of individual loss terms before combining them into a single
multi-objective loss function. This final loss function is used to train the PINN using an
optimizer (generally Adam).

This line of work using gradient statistics for weighting is used in the prominent
works of Wang et al. [17], who used the mean magnitude of the gradients to assign weights.
In a similar line, Maddu et al. [22] used the standard deviation of gradients. The main
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contribution of this work is to extend them and introduce three novel schemes based on
mean and standard deviation combinations and kurtosis along with the existing mean-
based [17] and standard deviation-based [22] weighting schemes. Together with the original
formulation of Raissi et al. [23], we evaluate these weighting schemes’ qualitative and
quantitative performances by solving 2D Poisson’s and Klein–Gordon’s equations. In the
literature, there have been other strategies for determining weights, like self-attention-based
strategies [24] where the concept of self-attention is used to weigh individual loss terms,
Neural Tangent Kernel (NTK)-based [16] weighting where the eigenvalues of the NTK
matrix formed by individual loss terms under certain conditions are used for weighting
different loss terms, etc. In this paper. we focus on gradient statistics.

Figure 1. Schematic description of weighting loss terms based on gradient statistics in PINNs.
The loss function is formulated by weights derived as a function of backpropagated gradients of
loss functions.

In summary, our contributions are as follows:

• We give different perspectives from the literature that imbalanced training of multi-
objective optimization is one of the main causes of failure of a classical PINN and
emphasize the need to weigh individual loss terms to achieve balanced training.

• We propose that weighting the individual loss terms using backpropagated gradient
statistics offers an elegant method to improve the training of PINNs.

• We formulate three novel weighting schemes based on combinations of mean and
standard deviation and kurtosis and compare them to state-of-the-art mean [17] and
standard deviation-based [22] schemes and show an improvement in the training
of PINNs.

2. Theory

This section provides a basic overview of PINNs. We recommend referring to [2] for a
more detailed overview.

2.1. Physics-Informed Neural Networks: Theory and Formulation

Consider a general differential equation written as

ut +D[u] = 0, t ∈ [0, T], x ∈ Ω, (1)

where u(x,t) is the solution of the differential equation. In other words, the physics of
quantity u in the region Ω within time T is described by Equation (1). D[·] represents the
differential operator (linear or non-linear), which is a function containing derivatives with
regard to x∈ Ω. ut represents the derivative of u with regard to the temporal coordinate. To
resolve the behavior of u from (1), i.e., solve the differential equation, boundary conditions,
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and initial conditions are necessary. In other words, information about u along the boundary
∂Ω and its initial state at time 0. The general formulation of boundary conditions (BCs)
and initial conditions (ICs) is given by (2):

u(0, x) = g(x), x ∈ Ω,
B[u] = 0, t ∈ [0, T], x ∈ ∂Ω.

(2)

The function g(x) is the initial state of the solution u. B[·] is the operator that defines
the behavior at the boundary ∂Ω. Following the formulation of Raissi et al. [2], a neural
network, represented by uθ, with trainable parameters (weights and biases) θ approximates
the latent, hidden solution u. The inputs of this neural network are sampled points of time
and space within and along the boundaries. A PINN aims to tune parameters θ such that
the neural network approximates the solution of the differential equation. We calculate
the required derivatives (of any order) of output u with regard to inputs x, t by Automatic
Differentiation. The differential equation provides information about how the combination
of derivatives should behave at every point in the region Ω. Samples of input–output pairs
are available at boundaries ∂Ω. This model is trained on a loss function given by (3) with
the individual terms given by (4)–(6).

L(θ) = Lic(θ) + Lbc(θ) + Lr(θ), (3)

Lic(θ) =
1

Nic

Nic

∑
i=1

∣∣∣uθ(0, xi
ic)− g(xi

ic)
∣∣∣2, (4)

Lbc(θ) =
1

Nbc

Nbc

∑
i=1

∣∣∣B[uθ](ti
bc, xi

bc)
∣∣∣2, (5)

Lr(θ) =
1

Nr

Nr

∑
i=1

∣∣∣∣∂uθ

∂t
(ti

r, xi
r) +D[uθ](ti

r, xi
r)

∣∣∣∣2. (6)

The term Lr is the loss term enforcing the differential equation, i.e., this term penalizes
the points inside the region according to the differential operator. Lbc,Lic are the loss terms
that enforce the boundary and initial conditions of the differential equation, respectively.
xic, (tbc, xbc), and (tr , xr) are the initial, boundary, and residual (collocation points inside
the domain) samples, Nic, Nbc, and Nr are the numbers of initial, boundary, and residual
samples, respectively. The next step is to minimize these loss terms collectively using an
optimizer that updates the parameters θ of the neural network. This makes the neural
network output obey the differential equation and its boundary/initial conditions, thus
approximating the solution for the given boundary and initial conditions. It is a multi-
objective optimization problem where the physics is informed by the differential equation
used to construct the loss function and initial and boundary data samples.

2.2. Failure of Multi-Objective Optimization of PINNs

Classical PINNs showed limitations in approximating solutions to several types of
PDEs [16,17,22,25]. We give a brief overview of studies explaining the reasons for the
failure of PINNs.

• Wang et al. [17] studied the gradients being backpropagated from different loss terms.
The work has shown that during training, some loss functions (mostly Lbc) tend to
have backpropagated gradients becoming stiff, i.e., becoming zero/almost close to
zero. This makes contributions of these loss terms insignificant during training. This
unintended stiffness in gradient flow dynamics is given as failure of classical PINNs.

• Maddu et al. [22] showed that PINNs can be seen as a special case of Sobolev training.
They suggested that loss terms containing higher-order derivatives, dominant high
frequencies, or both (generally residual loss), exhibit dominance over other loss terms
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during training. This leads to non-existent or extremely weak gradients of remaining
loss terms. They termed this phenomenon as vanishing task-specific gradients.

• Wang et al. [16] investigated when and why PINNs fail. They used the theory of
Neural Tangent Kernels [26] to study the training dynamics of PINNs. They empir-
ically showed that PINNs suffer from inherent spectral bias and have imbalanced
convergence rates among different loss components. This discrepancy in convergence
rates and spectral bias is attributed to the failure of PINNs.

• Rohrhofer et al. [25] showed that multi-objective optimization of PINNs heavily
depends on its Pareto Front. They showed that for the classical formulation, the
Pareto optimal has a significant loss value where the optimization step cannot be taken
without increasing the individual loss values. They emphasized the need to scale loss
terms to reach a better Pareto optimal.

3. Gradient-Based Dynamic Weighting Schemes for Effective Training of PINNs

Imbalanced training of the multi-objective loss function of the PINN leads to erroneous
results. Hence, we opted for the approach of balancing them. The straightforward way for
scaling a loss term is by multiplying it with a scalar weight, denoted by λi, where i ∈ r, ic,
and ∈ bc represent the weights for residual, initial, and boundary loss, respectively. Thus
the original loss function in (3) can be rewritten as (7):

L(θ) = λicLic + λbcLbc + λrLr, (7)

where λic, λbc, λr are scalar weights for IC, BC, and residual, respectively.
Now, a weighting scheme aims to ensure that the imbalance explained in the previous

section does not happen. As already mentioned in the previous section, what is happening
is that during the training some loss terms are vanishing. They are not contributing during
the gradient descent step of the optimizer (generally Adam), i.e., their gradients with
regard to trainable parameters of the PINN are becoming zero. This phenomenon makes
the solution converge to an erroneous solution. These erroneous solutions are shown as
baselines. The weighting scheme should ensure that individual loss terms’ gradients do
not become zero during training and help the optimizer reach the optima corresponding to
the correct differential equation solution. Therefore, a weighting scheme should achieve
the following things:

• Keep track of gradients of individual loss terms forming the multi-objective loss terms
of a PINN (typically Lr,Lic,Lbc) during training.

• Detect and update the individual weights to prevent gradients from falling to zero.

A gradient statistics-based weighting scheme uses empirical statistics for the afore-
mentioned tasks. The idea is that by looking at the empirical statistics of the individual
backpropagated gradients, we obtain information about the distribution, which is used
both as a detector and an update formula. For example, Wang et al. [17] used the mean of
magnitude of gradients as a statistic. If the mean magnitude of the distribution of gradients
of a particular loss term falls to zero during training, it is a sign of stiffness/vanishing. This
is avoided by using the inverse of mean magnitude as a weight to the loss terms. This way,
whenever a loss term shows signs of stiffness, the weight is changed to train the PINN to
the desired solution.

The main contribution of this paper is to present a collection of such gradient statistics-
based weighting schemes. The first one is the aforementioned mean-based weighting
scheme [17]. Maddu et al. [22] used the inverse of standard deviation to assign weights
similarly. Building on these works, we introduce three novel weighting schemes based
on mean and standard deviation combinations and kurtosis. Detailed formulations of
all schemes are provided subsequently, but a short motivation is discussed here. The
motivation behind formulating these schemes is that the combination of mean and standard
deviation gives even more pronounced information about the distribution’s variability and
central tendency, thus making the combination of the mean and standard deviation a better
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weighting scheme. We introduce two such combinations: the sum and product of mean
and standard deviation. We also introduce kurtosis as a useful statistic because it captures
the peakedness of gradients around the mean. Therefore, kurtosis and standard deviation
are used together as a weighting scheme. Now, we describe all the weighting schemes (two
taken from the literature and three novel).

We calculate the empirical mean, maximum, standard deviation, and kurtosis of
backpropagated gradients at regular intervals of epochs during training. We follow the
method described by [22] for calculating mean and standard deviation and adopt a similar
approach for kurtosis calculation. Mean and maximum values are calculated for the
absolute values of the gradients. Standard deviation and kurtosis are calculated for the
original values.

3.1. Mean-Based Weighting Scheme

Wang et al. [17] introduced the first gradient-based weighting scheme based on the
mean magnitude of gradients. The mean magnitude of gradients falling to zero indicates
that the loss term is vanishing. Hence, using the inverse of the mean as a weight will
penalize the loss term when the gradients fall to zero. The formula for determining weights
is given by Equation (8):

λ̂k(τ) =
max{|∇

θshLr(τ)|}
||∇

θshLk(τ)||
,

λk(τ + 1) = αλk(τ) + (1− α)λ̂k(τ),

(8)

Here, λ̂k(τ) denotes the calculated weight of k-th loss term at training epoch τ.
The operator θsh denotes gradients with regard to parameters that are trainable (shared).
The weight for the next epoch is updated as the moving average of the current weight
(λ̂k(τ)) and the previous weight (λk(τ)). The parameter controlling the moving averages
is denoted by α. The denominator is the mean magnitude of gradients, and the numerator
has the maximum value among the gradients coming from Lr. The parameter α is the
controlling parameter of the updated weight, and its value is taken as 0.5. This will remain
the same for all the weighting schemes.

3.2. Standard Deviation-Based Weighting Scheme

Maddu et al. [22] suggested that standard deviation is a more suited statistic. Standard
deviation captures the spread or variability of the empirical distribution of gradients. A
decreasing standard deviation value (for a constant mean = 0) indicates that the distribution
is becoming narrower, and the values are falling closer to zero. This is a sign of stiffness
and a vanishing task. Therefore, the inverse of standard deviation as weight balances the
variability of all loss terms. The weights are given by

λ̂k(τ) =
std{∇

θshLr(τ)}
std{∇

θshLk(τ)}
, (9)

The operator std{·} denotes the calculation of standard deviation. It calculates the
standard deviation of the given distribution (here, gradients of a loss term). Building on
these two approaches given by (8) and (9), we present two different weighting schemes
based on the backpropagated gradient statistics of different loss terms.

3.3. Mean and Standard Deviation-Based Weighting Schemes

We propose the following extension of using mean and standard deviation jointly.
Using the standard deviation and mean together can provide a balance between measuring
the variability and the central tendency of the gradients. The standard deviation captures
the spread or dispersion of the gradients across the data points. The mean captures their
average or typical value, which may be informative about the overall behavior of the
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loss terms. Low mean and standard deviation could give a better indication of vanishing
tasks. Therefore, using the inverse of a combination of mean and standard deviation could
provide a better balance among the loss terms.

We consider two types of combinations: summation and multiplication, given by
Equations (10) and (11), respectively:

λ̂k(τ) =
std{∇

θshLr(τ)}+ max{|∇
θshLr(τ)|}

std{∇
θshLk(τ)}+ ||∇θshLk(τ)||

, (10)

λ̂k(τ) =
std{∇

θshLr(τ)} · ||∇θshLr(τ)||
std{∇

θshLk(τ)} · ||∇θshLk(τ)||
. (11)

Using moving averages to update the weight for the next epoch remains the same as
the previous strategy.

3.4. Kurtosis and Standard Deviation-Based

By considering the kurtosis and standard deviation, one can distinguish between
different types of variability in the gradients. Kurtosis measures the peakedness or flatness
of the distribution, in our case, of the gradients. This reveals whether they are concentrated
around the mean or widely dispersed. High kurtosis (leptokurtic) indicates that values
are peaked at the mean, as illustrated in the Figure 2. It shows that a high kurtosis
can indicate that gradients peak around zero for distributions with the same mean and
standard deviation. Therefore, using kurtosis and standard deviation together offers a more
sophisticated and nuanced perspective on the distribution of gradients. A high kurtosis
with a low standard deviation indicates all the gradients becoming stiff, or low kurtosis with
a high standard deviation indicates a broader spread of gradients. This approach captures
more complex patterns in the gradients and provides a more fine-grained weighting scheme.
The formula for determining weights is given by

λ̂k(τ) =
kurt{∇

θshLk(τ)}
std{∇

θshLk(τ)}
. (12)

The operator kurt{·} denotes the calculation of the kurtosis value of the distribution
of gradients of a loss term.

Figure 2. The plot shows different kurtosis values of curves having the same mean and standard
deviation, and that a peaked curve has high kurtosis.

4. Experiments and Results

We apply the proposed schemes in the previous section to PINNs to assess their
capabilities. We analyze their performance when compared to each other. To highlight



Sensors 2023, 23, 8665 8 of 16

the capabilities of the proposed schemes to improve PINNs, we solve the 2D Poisson’s
Equation and the Klein–Gordon Equation. These cases are used in the literature as a
benchmark since classical formulation PINNs struggle to predict the correct solution for
these equations. We use the PyTorch [27] package for constructing the neural network and
loss functions to approximate the solution of the differential equations. The metrics used
to validate the prediction of PINN is the relative L2 error between the prediction and the
ground truth solution. The code will be available on GitHub (https://github.com/cvjena/
GradStats4PINNs, accessed on 19 October 2023). We considered six weighting schemes for
determining the weights for the loss function, given by (7). We used the following notation
shown in Table 1.

Table 1. Symbols and descriptions of different weighting schemes.

Symbol Description

W1 Uniform weighting of all loss terms, the original implementation of Raissi et al. [2]

W2 Mean-based weighting scheme, original implementation of Wang et al. [17], given
by (8)

W3 Standard deviation-based weighting scheme, the original implementation of Maddu
et al. [22], given by (9)

W4 Weighting by the sum of mean and std, given by (10).

W5 Weighting by the product of mean and std, given by (11).

W6 Weighting by the ratio of kurtosis and std, given by (12).

The metric used to quantify the performance of PINN is the L2 error between the true
solution (denoted as utrue) and the predicted solution by the PINN (denoted by uPINN).
The formula is given by

L2 error =

√
|uPINN − utrue|2√
|utrue|2

. (13)

4.1. The 2D Poisson’s Equation

For the initial set of experiments, we solve the 2D Poisson’s Equation using PINNs. It
is a ubiquitous equation in many fields like gravity, electrostatics, and fluid mechanics. This
equation, Helmholtz, and the wave equation belong to the same family and are challenging
cases where classical PINNs are known to struggle [11,16,17]. The 2D Poisson’s Equation
in x and y is given by

∂2u
∂x2 +

∂2u
∂y2 = −2k2 cos(kx) sin(ky) x ∈ [0, 1], y ∈ [0, 1], (14)

where k is the wave number that determines the frequency of the solution u(x,y). The
complexity of the solution increases with increasing k. In [22], they show that the classical
implementation performs worse with increasing k. Therefore, we chose k = 6π to exem-
plify the usefulness of weighting schemes. The boundary conditions can be determined by
taking samples along the boundaries using an analytical solution. This equation has an
analytical solution given by

u(x, y) = cos(kx) sin(ky). (15)

We aim to measure the performance of the models as mentioned earlier in Table 1
in solving this benchmark problem for different architectures of a feed-forward neural
network. We achieve this by varying the number of hidden layers and neurons per layer.
We use a Sigmoid Linear Unit (Swish) as an activation function for all the architectures, as
prescribed in [28]. Following the related works [18,22], we uniformly sample 2500 points
inside the domain (Nr = 2500) and 500 points along the boundaries. (Nbc = 500). We

https://github.com/cvjena/GradStats4PINNs
https://github.com/cvjena/GradStats4PINNs
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train the neural networks with the most commonly used Adam optimizer (with default
hyperparameters prescribed by [29]) for 40,000 epochs. We chose the Adam optimizer
because of its robustness and it is proven to provide efficient and adaptive updates to
network weights [29].

The relative L2 errors for different architectures are in Table 2. We see that the performance
of the PINN is vastly improved by the weighting schemes over classic formulation (W1). The
general trend is that more layers and units lead to a better result. This makes sense because a
larger network means more parameters are used in training. The proposed weighting schemes
W5 or W6 for every architecture show the best performance. We observe that the lowest L2

error between the ground truth and prediction is obtained when we employ W6 for a neural
network with five layers and 100 units each. The smallest neural network containing three
layers and 30 units each gives the largest L2 errors between the prediction and ground truth.
These results demonstrate some interesting implications for the proposed weighting schemes.
W5 and W6 outperform the existing weighting schemes. W4 does not outperform W3, and its
behavior is similar to W2. This is because the sum of the mean and the standard deviation is
almost equal to the mean, which makes the behavior of W4 and W2 similar. We can also see
that W5 favors smaller architectures to reach a better prediction, and as the size increases, W6
performs better.

Table 2. Table of L2 errors between ground truth and prediction solutions for different layers and
units, using different weighting schemes for solving the 2D Poisson’s Equation 1. The lowest L2 error
for each set of architecture is shown and highlighted in bold.

Units/Layers W1 W2 W3 W4 W5 W6

100/5 0.0871 0.0071 0.0031 0.0065 0.0028 0.0019
50/5 0.0938 0.0194 0.0056 0.01511 0.0041 0.0031
30/5 0.2049 0.0274 0.0086 0.0273 0.0058 0.0065

100/3 0.0908 0.0162 0.0060 0.0160 0.0059 0.0048
50/3 0.1337 0.0308 0.0072 0.028 0.0059 0.0061
30/3 0.2773 0.0529 0.0208 0.0482 0.0124 0.0103

1 Using Adam optimizer, SiLU activation with default parameters. L2 error is the mean value from 10 independent
trials. Loss Weights are updated for every five epochs.

We also provide the evolution of L2 error during the training of PINN when using all
the different schemes in Figure 3. The graph shows how the weighting schemes avoid the
erroneous solution of W1 to reach a better prediction, and W6 has the best prediction of all the
weighting schemes, followed by W5 (Table 3). We provide visualizations of the predictions
of PINNs for one particular architecture of five hidden layers and 50 units per layer in the
Figure 4. When no weighting is used, the PINN fails to capture the ground truth solution,
giving rise to a large L2 error. This can be visually seen in the large areas of discrepancies
shown in the Figure 4. Using W2 shows considerable improvement. The L2 error decreases
a lot in this case when we compare it with W1. Still, the solution has visible discrepancies,
especially near the boundaries. W4 has a slightly better fit than W2 and still has discrepancies
around the boundaries. W3, W5, and W6 give the least L2 errors and thus perform the best in
this case. W6 outperforms W3 and W5, having the least L2 error of these three.

Table 3. Table of L2 errors between ground truth and prediction solutions using different weighting
schemes for solving 2D Poisson’s Equation 1. The lowest L2 error is shown and highlighted in bold.

Scheme W1 W2 W3 W4 W5 W6

L2 error
0.0938 ±

0.0163
0.0194 ±

0.0036
0.0056 ±

0.0015
0.0151 ±

0.0060
0.0041 ±

0.0013
0.0031 ±

0.0008
1 Using Adam optimizer, SiLU activation with default parameters. L2 error is from 10 independent trials. Loss
weights are updated for every 5 epochs.
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Figure 3. Poisson Equation: Graph showing evolution of L2 errors during the training for all the
weighting schemes.

Figure 4. Cont.
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Figure 4. Poisson Equation: Prediction of PINNs using schemes W1–W6 (top–bottom). Prediction
(middle) of W1 fails to capture the ground truth (left), resulting in high point-wise errors (right). W2
and W4 showed a better fit but still have observable point-wise discrepancies, especially along the
boundaries. W3, W5, and W6 have shown the best fit and least order of point-wise errors, with W6
having the least (best performing) L2 error among them.

To show the robustness of the proposed weighting schemes, we repeat the same
experiment by adding noise to the observations used for boundary conditions. These
experiments show the effectiveness of the proposed schemes against noisy observations.
We add a random Gaussian noise (random values generated from mean = 0 and standard
deviation = 0.01) to the boundary data while the remaining training procedure, architecture,
and hyperparameters remain the same as before. The results are tabulated in Table 4.
We observe that although the additional noise has an effect on overall performance, the
proposed weighting schemes are quite robust and still have better performance than W1
and W2.

Table 4. Table of L2 errors between ground truth and prediction solutions using different weighting
schemes for solving 2D Poisson’s Equation 1 with added noise. The lowest L2 error is shown and
highlighted in bold.

Scheme W1 W2 W3 W4 W5 W6

L2 error
0.1445 ±

0.0196
0.0231 ±

0.0086
0.0061 ±

0.0019
0.0192 ±

0.0058
0.0050 ±

0.0016
0.0041 ±

0.0010
1 Using Adam optimizer, SiLU activation with default parameters. L2 error is from 10 independent trials. Loss
weights are updated for every 5 epochs.

4.2. Klein–Gordon Equation

For the next set of experiments, we consider the Klein–Gordon Equation. It is given
in (16). The Klein–Gordon Equation is a relativistic wave equation with important ap-
plications in various fields, including quantum mechanics, quantum field theory, optics,
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acoustics, and classical mechanics. It has time-dependent non-linear terms, posing an
interesting challenge for PINNs:

∂2u
∂t2 + α

∂2u
∂x2 + βu + γuk = f (x, t), x ∈ [0, 1], t ∈ [0, 1]. (16)

The initial and Dirichlet boundary conditions are given in (17):

u(x, 0) = x,
∂u
∂t

(x, 0) = 0u(0, t) = 0, u(1, t) = cos(5πt) + t3. (17)

We choose the parameters to be α = −1, β = 0, γ = 1, andk = 3. We have the ground
truth solution and cubic non-linearity for this set of parameters. The ground truth solution
for this equation with boundary and initial conditions and given parameters is

u(x, t) = x cos(5πt) + (xt)3. (18)

We estimate the consistent forcing term f (x, t) as prescribed by [17]. To elucidate the
capabilities of proposed schemes to handle non-linear time-dependent terms, we proceed
by training a PINN to solve (16) along with its BCs and ICs and compare the predicted
solution with the ground truth given by (18). We use a feed-forward neural network of
7 layers and 50 units, each with a hyperbolic tangent activation function. The number
of collocation points in the domain(Nr) is 1000, with 300 points along the boundaries
(Nbc = 300). The training uses an Adam optimizer with default parameters for 40,000 steps.
The resulting L2 errors of the approximated solution of the Klein–Gordon Equation with
ground truth are given in Table 5.

Table 5. Table of L2 errors between ground truth and prediction solutions using different weighting
schemes for solving the Klein–Gordon Equation 1. The lowest L2 error is shown and highlighted
in bold.

Scheme W1 W2 W3 W4 W5 W6

L2 error
0.1037 ±

0.0272
0.0249 ±

0.0062
0.0248 ±

0.0071
0.0235 ±

0.0088
0.0219±
0.0051

0.0165 ±
0.0035

1 Using Adam optimizer, hyperbolic tangent activation with default parameters. L2 error is from 10 independent
trials. Loss weights are updated for every five epochs.

Visualizations of approximated solutions along with ground truth and point-wise
errors are given in Figure 5.

W1 failed to capture the solution, leading to a high L2 error. For this particular problem,
all the weighting schemes (W2–W6) have improved over W1, and the fit is also very good.
We see that W6 performs the best of all the weighting schemes, having the lowest L2 error.
This trend is visible in Figure 5. We see significant differences between ground truth and
prediction for W1, leading to clearly visible contours in the point-wise error plot. The
point-wise errors tend to decrease (the blackness in the plot increases) from W2 to W6, and
we observe that W6 has the best fit, following Table 5. This elucidates the effectiveness
of the proposed weighting schemes. It has to be noted that even though the solution has
improved significantly, the L2 error is still higher than in Poisson’s Equation. This is due
to the highly non-linear time-dependent terms, which can be further improved by using
advanced architectures [19] or adaptive activation functions [20]. The evolution of the L2

error during training is shown in Figure 6. The figure shows that weighting schemes reach
a better solution, and W6 outperforms them all.



Sensors 2023, 23, 8665 13 of 16

Figure 5. Klein–Gordon Equation: Prediction of PINNs using schemes W1–W6 (top–bottom). Predic-
tion (middle) of W1 fails to capture the ground truth (left), resulting in high point-wise errors (right).
Prediction clearly improved from W1 to W6.
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Figure 6. Solving the Klein–Gordon Equation using a PINN: evolution of L2 error during training.

5. Discussion and Conclusions

PINNs can potentially include knowledge in the form of differential equations in
neural networks, improving the modeling and simulations of many physical systems. This
potential is yet to be realized as PINNs often struggle to approximate solutions in many
cases. We outlined various works in the literature that show this struggle is due to the
imbalanced training of the multi-objective loss function used to train the PINN.

In this paper, we propose using statistics of individual backpropagated gradients of
loss terms to assign weights dynamically. We proposed a collection of weighting schemes
based on gradient statistics to improve the training of PINNs. These schemes follow a com-
mon principle of increasing the weight of a loss term if its distribution of backpropagated
gradients tends to approach zero. This approach prevents the loss term from vanishing
and enables the PINN to converge to a better optimum. We introduce three novel weight-
ing schemes extending the mean-based [17] and standard deviation-based [22] weighting
schemes. We use the combinations (sum and product) of mean and standard deviation as
weighting schemes to leverage the information about the gradients’ variability and central
tendency. Lastly, we use the kurtosis of distribution to have more nuanced information
about the peakedness of gradients around the mean to formulate a kurtosis and standard
deviation-based weighting scheme (W6).

The proposed schemes (two from the literature, three novel) were rigorously tested
along with the classical formulation qualitatively and quantitatively by solving 2D Poisson’s
and Klein–Gordon’s Equations. The metric relative L2 error results showed that weighting
drastically improved the performance of the PINN. The results proved that the weighting
schemes W5 and W6 (namely, product of mean and standard deviation-based and kurtosis–
standard deviation-based) outperform existing schemes, with W6 being the most robust.
W4 does not perform considerably compared to W5 and W6 because the sum of the mean
and standard deviation is almost equal to the mean. Thus, this set of weighting schemes
using only backpropagated gradient statistics provides an easy and efficient means to
significantly improve the training of PINNs. We have also tested the robustness of the
proposed schemes for noisy observations.

The main limitation of our proposed schemes is that they are empirical in nature.
These, albeit providing an efficient solution, they do not inform on how actual non-convex
optimization is being affected by weighting different loss terms. Hence, there will be
cases where these schemes may not be as efficient as other methods. This needs further
investigation. While this paper primarily takes an empirical approach, further investigation
into the impact of these schemes on the training dynamics would be an exciting avenue
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for future research. Understanding the underlying mechanisms and analyzing how these
schemes affect learning could provide valuable insights. The future of PINNs holds
exciting prospects, and the field of deep learning in physics continues to evolve, promising
advancements in various scientific domains.
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