
Deep Learning-Assisted Dynamic Mode
Decomposition for Non-resonant Background

Removal in CARS Spectroscopy

Adithya Ashok Chalain Valapil1[0009−0004−3807−5144], Carl
Messerschmidt2[0009−0007−3056−6063], Maha Shadaydeh1[0000−0001−6455−2400],

Michael Schmitt2[0000−0002−3807−3630], Jürgen Popp2,3[0000−0003−4257−593X], and
Joachim Denzler1[0000−0002−3193−3300]

1 Computer Vision Group, Friedrich-Schiller University, 07743, Jena, Germany
2 Leibniz-Institute of Photonic Technology, 07745 Jena, Germany

3 Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
{adithya.ashok,carl.messerschmidt,maha.shadaydeh,m.schmitt,juergen.popp,

joachim.denzler}@uni-jena.de https://inf-cv.uni-jena.de

Abstract. Coherent Anti-Stokes Raman Spectroscopy (CARS) provides
non-invasive, label-free chemical analysis at high spatial resolution, mak-
ing it a powerful tool for biomedical and material imaging. However,
their effectiveness is hindered by a dominant and unpredictable non-
resonant background (NRB) that distorts meaningful spectral features.
Existing NRB removal methods often require additional measurements
or computationally intensive post-processing. In this work, we present
a physics-informed framework that leverages the broadband, low-rank
structure of the NRB using Dynamic Mode Decomposition (DMD) for
unsupervised separation of resonant Raman modes from non-resonant
contributions in the spectral domain. We further introduce DA-DMD -
a Deep Learning-Assisted DMD approach, that uses an attention mecha-
nism to adaptively weight DMD modes and a CNN with skip connection
to enhance Raman signal reconstruction. Trained entirely on synthetic
data, DA-DMD eliminates the need for experimental labels or calibration.
We validate our methods on synthetic and real CARS measurements,
demonstrating superior background suppression, fidelity preservation,
and generalization compared to existing approaches. DA-DMD offers fast
inference and improves robustness, positioning it as a practical tool for
scalable chemical imaging in complex environments.

Keywords: Dynamic Mode Decomposition · Raman Spectroscopy ·
Channel Attention · Delay Embedding · Unsupervised Learning.

1 Introduction

Analyzing molecular composition is fundamental to fields such as biology, materi-
als science, and medicine. Spectroscopy, particularly Raman scattering, enables
label-free chemical imaging from spectral measurements by probing vibrational
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modes of molecules [27, 33]. However, traditional Spontaneous Raman (SR) spec-
troscopy suffers from weak signal intensity, requiring long integration times that
limit its use in real-time applications. Coherent Anti-Stokes Raman Spectroscopy
(CARS) overcomes this limitation by using nonlinear optical interactions to
coherently excite molecular vibrations, boosting signal strength by several orders
of magnitude [14]. This makes CARS ideal for high-speed, chemically specific
spectral analysis. However, CARS suffers from a critical challenge: the presence
of a non-resonant background (NRB) - an intense, broadband signal arising from
electronic nonlinearities rather than molecular vibrations. This NRB distorts
spectral line shapes and conceals the very information CARS aims to reveal [37].

This study proposes decomposing the CARS spectra into two components,
namely the NRB and the Raman signatures, using dynamic mode decomposition
(DMD). The NRB spectrum is typically broad and featureless [23], implying slow
changes over wavenumber or low-frequency dynamics, which can be separated
from the Raman spectra that exhibit fast changes over wavenumber or high-
frequency dynamics.

DMD is a data-driven method for extracting spatiotemporal patterns in se-
quential measurements [28]. This is achieved by decomposing these measurements
into a set of modes, each of which is associated with a fixed oscillation frequency
and a decay/growth rate over time [50]. DMD has been traditionally applied to
spatiotemporal dynamic systems in diverse fields such as fluid mechanics [41],
robotics [6], ecosystems [42] and neuroscience [8]. For the first time, in this study,
we adapt DMD for spectral analysis by reinterpreting wavenumber progression
as a pseudo-temporal coordinate. The Raman signature embedded in the CARS
spectra causes strong correlation at adjacent wavenumbers of the CARS spec-
tra due to the finite vibrational mode bandwidth, which has a peak centered
at a wavenumber and influences the intensity values over a range of adjacent
wavenumbers (lineshapes) [14, 17]. These correlations manifest as a sequence
of local and fast intensity variations across the wavenumber axis, creating a
sequential structure that we exploit for NRB removal.

We introduce two approaches using DMD. 1. Unsupervised DMD, which
clusters the DMD modes into low-frequency (NRB) and high-frequency (Ra-
man) components using spectral priors, while requiring no training data; 2.
Deep Learning-Assisted DMD (DA-DMD), where we propose to enhance the
modes selection by combining the DMD decomposition capability with chan-
nel attention [20, 46] and further refine the reconstructions via convolutional
networks [36].

The efficacy of both approaches is validated through quantitative and qualita-
tive analyses, employing both synthetic and experimental data sets. The results
demonstrate that our unsupervised DMD approach not only matches but also
surpasses conventional unsupervised methods in suppressing NRB. Additionally,
DA-DMD attains state-of-the-art accuracy with expedited inference while training
with considerably fewer samples compared to other deep-learning methods.
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2 Related Works

Existing NRB removal strategies face critical trade-offs. There are experimental
methods like interferometric CARS [38], frequency modulation CARS [16], and
polarization CARS [13] for narrow-band operation, as well as time-resolved
CARS [48] and Fourier transform CARS [35] for broadband mode. These methods
suppress NRB at the source but require complex instrumentation and sacrifice
signal strength.

Alternative approaches focus on the post-processing of measured spectra.
There are widely used methods like time domain Kramers-Kronig (TDKK) [11,30]
and Maximum Entropy Method (MEM) [45], which are computationally intensive.
Therefore, the discrete Hilbert transform used in these methods was later replaced
by a learned matrix approach in LeDHT [10]. Another approach uses singular value
decomposition (SVD) and transformed basis vectors to establish the “factorized
Kramers–Kronig and error correction” (fKK-EC) method [12]. These two methods
significantly improved the speed of the phase retrieval task. However, these
traditional methods require extra reference spectra, which can be time-consuming
and may not always be available [25].

Conversely, deep learning methods offer a promising solution for NRB removal
without requiring reference spectra. Methods like SpecNet [24, 44], long short-
term memory (LSTM) [19], bi-directional LSTM (Bi-LSTM) [25], very deep
convolutional autoencoders (VECTOR) [32,49], generative adversarial networks
(GAN) [31, 47] and convolutional neural networks with gated recurrent units
(CNN+GRU) [47] can provide a more efficient and effective way to remove NRB
and recover the underlying Raman spectra by training on synthetic spectra. We
compare our DA-DMD approach with these methods.

Using multiscale frequency analysis, the wavelet prism signal decomposition
technique [39] separates Raman features from NRB. This was recently extended
to interpolated inverse discrete wavelet transforms that we refer to as IWT in
our work [18]. We also compare our unsupervised DMD setup with this method.

3 Unsupervised Hankelized DMD for NRB Removal

3.1 DMD: Preliminaries

Let xj ∈ RM denote sequential data with time index j = 1, ..., N , where M and
N denote the dimension of each measurement and the number of measurement
snapshots, respectively. DMD finds a best-fit linear operator A ∈ RM×M such that
xj+1 ≈ Axj holds for all pairs of measurements j [5]. Let X =

[
x1 x2 · · · xN−1

]
and the time-shifted matrix X′ =

[
x2 x3 . . . xN

]
. This relationship can be

described in a matrix form as X′ ≈ AX. The best-fit linear operator is computed
as A = X′X† where † is the Moore-Penrose pseudoinverse, which is computed
using the singular value decomposition (SVD) of X. The eigendecomposition of
A yields the eigenvalues and eigenvectors (modes) that can be used for signal
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reconstruction. Specifically, let ϕi and λi be the ith eigenvector-eigenvalue pair
of A, xj at any time j can be reconstructed as

xj =

M∑
i=1

biϕiλ
j
i (1)

where bi denotes the weights of the modes in the initial state x0.
The eigenvalues λi are in general complex numbers that can be defined as

λi = e(σi+j2πfi)∆(t) where σi and fi are respectively the growth/decay rate and
the eigenfrequency for the i -the mode, and ∆(t) is the time interval between two
consecutive snapshots of measurement.

3.2 Hankelized DMD of CARS Spectra

Time delay embedding is an established method for the geometric reconstruc-
tion of attractors for nonlinear systems [40, 43]. As traditional DMD assumes
Markovian dynamics, where only the present step matters and lacks memory of
past states, we employ delay embedding (Hankelization) [9,51], which captures
hidden correlations across wavenumber.

In our study, the dimension of the measurement at each wavenumber of the
spectrum equals one. To match the definition of xj in Section 3.1 and to be able
to use DMD to decompose the spectrum into M modes, we use an M dimensional
delay embedding vector to represent the wavenumbers. This forms a Hankel
matrix H on input xj as in Eq. 2 which embeds pseudo-temporal dynamics into
the spectrum, allowing us to analyze the spectral evolution more comprehensively.
The Hankel matrix H is constructed as follows:

H =


x1 x2 . . xL

x2 x3 . . xL+1

. . . . .

. . . . .
xM xM+1 . . xN

 . (2)

Here, N refers to the length of original spectrum and L = N − M + 1. The
embedding delay dimension M is calculated as delay or lag τ that encapsulates
maximum information between the spectrum and its delayed version. It can be
calculated using autocorrelation function (ACF) metric [7] with Eq. 9 in Appx.
A. An example is shown for ethanol spectrum in Fig. 5. Here, the first major dip
in the ACF curve at τ = 12 is considered a good value for M in this case.

3.3 Mode Clustering for NRB Removal

After the decomposition of the spectrum into M modes, we separate these
modes into two clusters; the first low-frequency cluster is used to reconstruct
the NRB, while the second high-frequency cluster is used to reconstruct the
Raman signatures. We show this interpretation using ethanol as an example
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Fig. 1: Clustering example. Reconstruction of clusters for separating the Raman
signatures (in blue) and NRB (in red) is shown. A 2-class clustering is applied
on the frequencies of the eigenvalues λi to extract the Raman modes. Results are
shown before the removal of very high-frequency modes in the Raman signature.

in Appx. B Fig. 6. The first mode resembles NRB spectral contribution, while
the combination of the second and third modes shows major similarity with
the Raman line shapes. Some of the missing peaks are often present at higher
modes. To separate these M modes, we employ 2-class clustering [21] to group the
eigenfrequencies of λi into two clusters, as illustrated in Fig. 1. The reconstructed
cluster, according to Eq. 1, without the first mode, is expected to contain the
Raman signatures. To refine results, we iteratively reapply DMD as suggested
in [34] to the previous high-frequency cluster to eliminate the very high-frequency
modes. Therefore, the cluster with the first mode is retained. The recursive
process is terminated when a frequency above a threshold is eliminated [15,29].
We learn this threshold from the Fourier transform of the spectrum. This process
ultimately removes very high-frequency noises.

4 DA-DMD: Deep Learning-Assisted DMD

The main challenge in the above-discussed DMD method is the selection of
relevant modes using clustering. Assuming the ideal selection of clusters, we
still need parametrized smoothing functions like a recursive DMD process that
sometimes even out relevant peaks. To address these limitations, we propose a deep
learning-assisted DMD (DA-DMD) approach as shown in Fig. 2. We introduce an
attention mechanism after Hankelized DMD to learn the relevance of each mode
using synthetic training data, as each mode contributes differently to the final
reconstructed spectrum. Once the importance of each mode is learned, a set of
convolutional layers reduces multi-mode input to a single-channel representation
corresponding to the clean spectrum.

A Squeeze-and-Excitation (SE) block is used for attention in our model [20].
It optimizes the feature representation by adaptively reweighing the extracted
DMD modes based on the most relevant spectral components, while suppressing
less significant ones. The squeeze operation condenses global information from
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Fig. 2: Flow diagram of DA-DMD. Once the modes are extracted using
Hankelized DMD, a Squeeze-and-Excitation (SE) block [20] is used for channel
attention to extract the relevance of each mode (Eq. 4). A set of convolutional
layers is then used to produce denoised spectra.

the extracted DMD modes by Global Average Pooling (GAP). For an input
X ∈ RB×M×N with batch size B, number of modes (equal to delay embedding)
M and spectral length N , we obtain activation of mode m at spectral point i for
batch b as Xb,m,i. The GAP reduces each mode to a single value as:

X̄m =
1

N

N∑
i=1

Xm,i. (3)

This reduces X to a compressed feature vector X̄ ∈ RB×M , which represents
the global contribution of mode m across the entire spectrum. Then comes the
excitation step, where we pass X̄m through a fully connected network or gated
mechanism to determine the importance of each mode. The excitation mechanism
consists of two fully connected layers with ReLU activation, followed by a sigmoid
activation to obtain the mode attention vector as:

s = σ(W2 ·ReLU(W1 · X̄)), (4)

where W1 ∈ R(M/k)×M reduces the dimension by a factor of k and W2 ∈
RM×(M/k) re-expands it back to match M . The extracted DMD modes are scaled
using learned importance weights, i.e., X̃m = sm.Xm.

Following the SE block’s mode weighting, the architecture employs a CNN
block with a set of convolutional layers [36] that expands the multi-channel
input (corresponding to DMD modes) to capture fine characteristics, which then
collapses into a single feature map (corresponding to Raman spectra). A skip
connection is used from the SE block’s output to a deeper convolutional layer
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as shown in Fig.2. This preserves spatial information by bridging the shallow
and deep representations during the forward pass in the network. The deeper
layers are used to enhance gradient flow and enable iterative feature refinement.
This design choice prevents feature dilution and ensures that the remaining
CNN layers reconstruct a clean and accurate Raman spectrum from the learned
representations. As the delay embedding step alters the results in reduced spectral
length, a linear interpolation-based upsampling layer is added at the end to ensure
that the final spectrum y ∈ RN has the same length as the input.

5 Experiments and Results

Experiments are done on synthetic and real samples. We compare the proposed
methods with several state-of-the-art techniques, including IWT, TDKK, and
other deep learning (DA-DMD, VECTOR, GAN, CNN+GRU, Bi-LSTM, LSTM,
SpecNet) methods. Both DMD and IWT are unsupervised methods and require
no training. The results of each experiment are discussed mainly in comparison
to those of DA-DMD.

We include both qualitative analysis and quantitative metric evaluation.
Qualitatively, we discuss the characteristics of a good Raman reconstruction by
the visual quality of peak occurrence and intensities. Quantitatively, we compare
using two metrics: Mean Square Error (MSE) and Pearson’s correlation (r), which
are calculated as follows.

MSE =

K∑
i=1

(ŷi − yi)
2, r =

∑K
i=1(ŷi − ¯̂y)(yi − ȳ)√∑K

i=1(ŷi − ¯̂y)2
√∑K

i=1(yi − ȳ)2
, (5)

where ŷ and y are predicted and ground truth respectively. The mean of K
spectra is denoted by ȳ. The MSE is an error metric that is best when close to 0,
while r shows the best similarity when close to 1.

5.1 Experiments on synthetic spectra

Synthetic data generation. We generate synthetic Raman-CARS pairs follow-
ing [44], modeling Raman spectra as Lorentzian peaks(Eq. 6) with random NRB
as noise (Eq. 7) among a fourth-degree polynomial and double sigmoid function.
For each spectral pair, the function parameters are also randomly selected as
specified below.

Resonant: χ(3)
r (ω) =

P∑
p=1

Ep

Ωp − ω − iγp
, (6)

where, P ∼ U{1, 25} is number of peaks varied per sample, Ep ∈ U(0.01, 1.0) is the
amplitude, Ωp ∈ U(0, 1) is the normalized resonance frequency, γp ∈ U(0.001, 0.02)
is the linewidth and ω is the normalized Raman shift ranging 1000 points over
[0, 1].

Non-resonant: χ(3)
nrb(ω) =

{ 1
1+e−b1(ω−c1) · 1

1+eb2(ω−c2) (Sigmoid)
aω4 + bω3 + cω2 + dω + e (Polynomial)

, (7)
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where, b1, b2 ∼ N (10, 5) control the steepness of the rising and falling rates of the
sigmoid functions, c1 ∼ N (0.2, 0.3) and c2 ∼ N (0.7, 0.3) determine the position of
inflection points of the sigmoid function. The coefficients of polynomial function
are a, c ∼ U(−1, 1) and b, d, e ∼ U(−10, 10) .

CARS spectrum: ICARS(ω) ∝
∣∣∣χ(3)

r (ω) + χnrb

∣∣∣2 , (8)

to which a random noise ∼ U(0.0005, 0.003) is also added to simulate high-
frequency disturbances. The total spectrum is normalized to ensure that learning
focuses on the spectral shape rather than absolute intensity.

DA-DMD architecture selection. Our DA-DMD model is implemented
on PyTorch 2.2.1 with CUDA 12.1 and cuDNN 8.9.2. The architecture mainly
comprises an SE block for reweighting the modes and a CNN block for supervision
and spectral refinement. Ablation studies (Tab. 1) on synthetic spectra have been
conducted to confirm the necessity of both of these blocks. We used 1700 spectra
to train our model for each setup and then test our prediction on 300 samples.
In the first setup (Without SE block), the SE channel attention block is removed
by keeping only the CNN layers. In the second setup (Without CNN block), the
result of the attention block is reduced to one prediction result. We see that the
performance of our model without either SE or CNN block is worse than the
complete DA-DMD model.

DA-DMD Model MSE Corr
Complete model 0.0005 ± 0.0008 0.9494 ± 0.1607

Without SE block 0.0050 ± 0.0025 0.6026 ± 0.1621
Without CNN block 0.0033 ± 0.0021 0.7664 ± 0.1580

Tab. 1: Ablation Study. Testing the impact of each of the SE and CNN blocks
in the deep learning architecture of the DA-DMD model based on MSE and
correlation (mean ± standard deviation) for 300 synthetic spectral predictions.

In contrast to our CNN block, other architectures like autoencoders were
tested and failed. Various techniques like batch normalization, spatial attention,
and multiple skip connections were tested to optimize the architecture, but they
did not improve the performance significantly. We, therefore, came up with the
architecture detailed in 4. It is trained for 50 epochs. We used Adam Optimizer
with a learning rate of 0.001 during backpropagation [26]. The number of delay
embedding is selected as M = 12 by estimating using ACF as discussed in
Section 3.2. The reduction ratio k = 4 is optimized among common values used
in the original SE block [20]. The Mean Square Error (MSE) is our loss function.



DL-Assisted DMD for CARS Spectroscopy 9

DA-
DMD VECTOR GAN CNN+

GRU
Bi-

LSTM LSTM Spec
Net

# Training samples 2k 200k 200k 200k 50k 50k 50k
Training time/epoch (s) 6.6 18.7 142 6667 1360 240 73
# Parameters 0.5M 111.8M 6.2M 84.0k 5.2k 3.9k 6.0M
Prediction time (ms) 6 7 1 713 168 103 71

Tab. 2: Model evaluation. Comparison of computational requirements in terms
of the training (per epoch) and prediction time (per spectrum), number of samples,
and number of parameters for all deep learning models.

Deep learning model evaluation. All deep learning models are trained on
synthetic datasets. We use available pretrained models or training setup for
VECTOR [4], GAN [2], CNN+GRU [2], Bi-LSTM [3], LSTM [3] and SpecNet [1].

The time-domain Kramers Kronig (TDKK) algorithm needs reference mea-
surements and requires optimizations for phase and scale retrieval parameters.
Another major drawback they have is the high computational time. Deep learning
models overcome these limitations. The computational complexity of the deep
learning models is compared in Tab. 2. All experiments were conducted on a
workstation equipped with an NVIDIA GeForce RTX 1080 GPU (40 GB VRAM),
Intel Core i5-11600 CPU, and 32 GB RAM, running Ubuntu 22.04. It is clear
that DA-DMD has a significantly low training time. This is mainly because
of the need for a significantly lower number of training data (2000 synthetic
samples), as DMD largely supports the network with preprocessed or decomposed
modes. The prediction time is also low compared to all other models (except
GAN). VECTOR also performs closely well in the computational complexity
test. Though all the Recurrent Neural Networks (RNN) based models (LSTM,
Bi-LSTM, CNN+GRU) have fewer trainable parameters than DA-DMD, they
demand high computational time.

Analysis of results. A comparison of all models is conducted with 1000
newly simulated spectra to assess the consistency of performance. All models’
performance for a synthetic sample is shown in Fig. 3. The unsupervised DMD
and IWT produce peaks at the correct location. The results of IWT show
good peak recovery, but a slight phase shift often remains in the unsupervised
setting. DMD also produces good performance, predicting peaks that correlate
with Raman peaks. From Tab. 3, we can see that DA-DMD and VECTOR
perform best considering all metrics. According to the previous study [47], GAN
and CNN+GRU are expected to perform better for synthetic spectra. This
performance discrepancy is due to the difference in hyperparameters for synthetic
training data generation. Fig. 7 in Appx. C shows the results of a second test done
using a synthetic data generator provided by [47]. Both GAN and CNN+GRU
models perform best in this secondary test. Our DA-DMD and VECTOR show
consistently good results across both tests. LSTM shows the worst performance
among the deep learning models.



10 C.V. Adithya Ashok et al.

CARS

Raman

R
aw

In
te

n
si

ty
(a

.u
.)

DMD

IWT

U
n

su
p

.

Wavenumber (cm−1)

DA-DMD

VECTOR

GAN

CNN+GRU

Bi-LSTM

LSTM

SpecNet

S
u

p
ervised

Fig. 3: Qualitative performance of
synthetic spectra with reconstruc-
tion on one sample with all models.

Model MSE Corr

DMD 0.0063 ±0.0132 0.67 ±0.11

IWT 0.0109 ±0.0062 0.21 ±0.19

DA-DMD 0.0006 ±0.0006 0.98 ±0.01

VECTOR 0.0007 ±0.0010 0.97 ±0.02

GAN 0.0033 ±0.0073 0.88 ±0.14

CNN+GRU 0.0031 ±0.0017 0.90 ±0.09

Bi-LSTM 0.0017 ±0.0023 0.90 ±0.13

LSTM 0.0221 ±0.0430 0.78 ±0.31

SpecNet 0.0013 ±0.0016 0.94 ±0.05

Tab. 3: Quantitative performance using
MSE and correlation is shown on syn-
thetic data for the unsupervised DMD,
IWT, and the seven supervised deep learn-
ing models (DA-DMD, VECTOR, GAN,
CNN+GRU, Bi-LSTM, LSTM, SpecNet).

5.2 Experiments on real CARS spectra

There are two types of real samples used in our experiments. We use spectra
measured using broadband CARS (BCARS) setup. Toluene CARS (3- & 2-
color case as in [47]) and Raman spectra, along with the experimental results
of existing deep learning models, are provided by Vernuccio et al. [47]. Ethanol
CARS and Raman spectra are measured on BCARS, setup as in [22]. The TDKK
reconstruction is obtained from the available CARS and NRB spectra. The
deep learning models used in the previous section are used for prediction here.
Both samples are homogeneous in nature, and the tests on them provide a good
understanding of the performance in simple real-world scenarios. Fig. 4(a) and
Fig. 4(b) show the reconstructed toluene and ethanol spectra, respectively.

Quantitative analysis. As illustrated in Tab. 4, our proposed DA-DMD
achieves state-of-the-art performance on the fingerprint region of the ethanol
spectrum, attaining the lowest MSE (0.0031) and highest correlation (0.8767)
among all models, including TDKK, which uses extra reference measurements.
Among the deep learning methods, ours shows a clear reduction in MSE and
increase in correlation, simply from comparison to the second-best SpecNet model
(MSE: 0.0043, correlation: 0.8367). DA-DMD also notably improves upon its
unsupervised counterpart DMD (MSE: 0.0151, correlation: 0.3673), demonstrating
the effectiveness of our domain adaptation framework. While the GAN and
CNN+GRU models show moderate correlation scores (0.7818 - 0.8113), their
MSE values (0.0181 - 0.0071) remain substantially higher than DA-DMD’s. The



DL-Assisted DMD for CARS Spectroscopy 11

CARS

Raman

DMD

IWT

In
te

n
si

ty
(a

.u
.)

DA-DMD

VECTOR

GAN

CNN+GRU

Bi-LSTM

LSTM

SpecNet

500 1000 1500 2000 2500 3000
Wavenumber (cm−1)

TDKK

(a)

CARS

Raman

R
a
w

DMD

IWT

U
n

su
p

.

DA-DMD

VECTOR

GAN

CNN+GRU

Bi-LSTM

LSTM

SpecNet

S
u

p
erv

ised

500 1000 1500
Wavenumber (cm−1)

TDKK

(b)

Fig. 4: Qualitative reconstruction performance on real spectra: (a) toluene and
(b) ethanol fingerprint spectra. Dotted lines mark the original Raman peaks.

LSTM model fails completely with a negative correlation (-0.0054), highlighting
the challenge of sequential modeling of this task.

For toluene analysis, DA-DMD delivers the highest correlation (0.8746) with
competitive MSE (0.0060) just after GAN (0.0057), outperforming all other deep
learning approaches, including Bi-LSTM (MSE: 0.0080, correlation: 0.8017) and
SpecNet (MSE: 0.0063, correlation: 0.8043). While the TDKK baseline achieves
marginally better MSE (0.0037) and correlation (0.8970), DA-DMD’s performance
remains within 0.0023 MSE units of this benchmark. The GAN model’s strong
MSE (0.0057) but lower correlation (0.8699) suggests that it captures magnitude
variations better than spectral shapes, whereas DA-DMD balances both metrics
effectively. Our method shows remarkable improvement over the original DMD
implementation, increasing correlation by 18.8% (DMD: 0.7359 → DA-DMD:
0.8746) despite slightly higher MSE. LSTM shows the lowest performance among
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DMD IWT DA-
DMD VECTOR GAN CNN+

GRU
Bi-

LSTM LSTM Spec
Net TDKK

Tol - MSE 0.0052 0.0150 0.0060 0.0087 0.0057 0.0084 0.0080 0.0244 0.0063 0.0037

Tol - Corr 0.7359 0.7288 0.8746 0.8332 0.8699 0.8023 0.8017 0.8656 0.8043 0.8970

EtOH - MSE 0.0151 0.0502 0.0031 0.0047 0.0181 0.0071 0.0064 0.1267 0.0043 0.0050

EtOH - Corr 0.3673 0.4270 0.8767 0.7978 0.7818 0.8113 0.8245 -0.0054 0.8367 0.8753

Tab. 4: Quantitative performance on real spectra measured using MSE and
correlation for all models on toluene (Tol) and ethanol (EtOH) reconstruction,
qualitatively shown in Fig. 4.

the models when considering MSE. However, it shows a decent correlation of
0.8656 compared to other models. These results show the relevance of including
multiple metrics for evaluation and the importance of qualitative analysis.

Qualitative analysis. For ethanol’s fingerprint region (Fig. 4(b)), most deep
learning models successfully capture all major spectral features but introduce
high-frequency noise due to unsmoothed reconstructions. DA-DMD shows fewer
artifacts and detects all peaks. Most methods struggle with minor false positives
concentrated below 800 cm−1. VECTOR, Bi-LSTM, and CNN+GRU also re-
construct good peak shapes at the correct positions. Notably, LSTM produces
severe distortions, including artificial peaks at 700 cm−1 and 1200 cm−1 that
obscure true spectral content. While unsupervised DMD and IWT avoid these
artifacts, their reconstructions lack the sharpness required for precise intensity
quantification, particularly in overlapping band regions.

As shown in Fig. 4(a), DA-DMD, Bi-LSTM, and GAN demonstrate superior
performance in reconstructing toluene spectra, with both methods accurately
resolving peak positions and relative intensities across the characteristic vibra-
tional bands, especially in detecting peak 5. Very small single peaks (2, 9, 12)
and double peaks (10, 11) are better detected in DA-DMD. Most of the models
(except DMD and VECTOR) predict slight false variations in the silent region
(1800 - 2800 cm−1). The unsupervised DMD and IWT methods show promising
baseline agreement but struggle with precise peak localization. DMD introduces
positional errors, while IWT suffers from inconsistent phase correction artifacts.

6 Conclusion

In this study, we use DMD to decompose CARS spectra into different modes
where low-frequency modes correspond to NRB, and high frequencies show Raman
contribution. We then employ an unsupervised two-class clustering approach to
remove NRB. Compared to state-of-the-art unsupervised methods such as IWT,
DMD matches or outperforms IWT. To enhance the performance further, we
then replace this mode clustering step with a supervised deep learning approach,
DA-DMD, which improves mode selection. Compared to state-of-the-art deep
learning methods, DA-DMD offers several advantages. 1. It provides low-latency
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prediction (less than 10 ms per spectrum); 2. There is no need for reference
measurements, and only minimal training on synthetic data is required, making
DA-DMD easily adaptable to new samples and setups with minimal changes; 3. It
accurately reconstructs the Raman signatures for both synthetic and real spectra.
However, similar to other methods, our DMD-based models are sensitive to NRB
magnitudes and peak overlap resolution. Future work will focus on: 1. Optimizing
the deep learning architecture (layer depth and DMD mode count), informed by
physical constraints in the loss function; 2. Synthesizing training data that better
captures real-world spectral complexity; 3. Including comprehensive, comparable
data from FT-Raman (ground truth) and BCARS spectra of various samples, to
strengthen the broad applicability of the proposed methods.

Code availability

The DA-DMD model with related code and training data is available in GitHub
https://github.com/spectra-analysis/DA_DMD.
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A Calculation of the delay embedding dimension M using
the autocorrelation function

The autocorrelation function (ACF) is a statistical measure that quantifies the
correlation between a series and its lagged values. Basically, it explains the
average relationship between a data point in a series and its historical values.
When analyzing sequential data, as in our case, the ACF is used to estimate the
delay embedding dimension.

The normalized autocorrelation function (ACF) for a spectrum x is computed
as:

ACF(τ) =

∑N−τ
j=1 (xj − x̄)(xj+τ − x̄)∑N

j=1(xj − x̄)2
, (9)

where τ is the delay lag and x̄ is the mean of x. This quantifies self-similarity in
spectral features across lags. An example ACF(τ) function and the selection of
the embedding dimension M as the lag (τ) of the first dip is shown in Fig. 5
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Fig. 5: Example usage of the autocorrelation function (ACF) to select delay
embedding dimension. Here, we use an ethanol spectrum, and the ACF provides
a clear dip around the delay lag τ = 12 (red dotted vertical line).

B The DMD modes of the ethanol spectrum

Fig.6 visualizes seven modes out of twelve of the ethanol spectrum. The first
real mode is assumed to present the NRB. Other complex modes are used to
reconstruct the Raman spectrum. Certain smaller peaks with higher frequencies
are missing in the second and third modes, and this is retrieved from other modes
in the method discussed in the paper.
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Fig. 6: The absolute values of the first seven DMD modes for ethanol spectra are
plotted in blue. The corresponding CARS (red) and TDKK reconstructed Raman
spectra (green) are also shown in the first two rows to highlight the similarity
between the input CARS, output Raman/TDKK, and the DMD modes. The
first mode is considered to be the NRB component, while the other complex
conjugate modes are used to reconstruct the Raman spectrum.



DL-Assisted DMD for CARS Spectroscopy 19

C Deep learning model performance on an alternate set of
synthetic spectra

We compare the performance of all deep learning models for a different set of
synthetic spectra generated using different parameters as per [47]. Fig.7 shows
the resulting MSE and correlation of 1000 spectra. In comparison to the results
of Tab 3 in the paper, we noticed slightly different performance, which shows that
the parameters used in the synthetic data generation influence the performance
and also help verify the model performance consistency.
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Fig. 7: Performance of seven deep learning models using correlation and MSE
metrics on thousand synthetic datasets generated according to [47]. The plots
show the mean and the skewness of these metrics.

We also tested metrics like the coefficient of determination (R2) and Cosine
Similarity (SC), but they give very similar insight as correlation (r).
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