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Abstract—The human face has a high potential for biometric
identification due to its many individual traits. At the same
time, such identification is vulnerable to biometric copies. These
presentation attacks pose a great challenge in unsupervised
authentication settings. As a countermeasure, we propose a
method that automatically analyzes the plausibility of facial
behavior based on a sequence of 3D face scans. A compact feature
representation measures facial behavior using the temporal
curvature change. Finally, we train our method only on genuine
faces in an anomaly detection scenario. Our method can detect
presentation attacks using elastic 3D masks, bent photographs
with eye holes, and monitor replay-attacks. For evaluation, we
recorded a challenging database containing such cases using a
high-quality 3D sensor. It features 109 4D face scans including
eleven different types of presentation attacks. We achieve error
rates of 11% and 6% for APCER and BPCER, respectively.

I. INTRODUCTION

The digital transformation of organizational processes to
improve efficiency in terms of time and resources is progress-
ing fast. As a result, the demand for automatic and robust
unsupervised authentication methods increases. However, cur-
rent authentication methods have limitations that make them
prone to advanced spoofing attacks or identity thefts. These
presentation attacks reduce trust in procedures for automated
border control, financial transfer, and mobile payments using
self-service eGates, kiosks, and mobile phones.

Biometric methods take advantage of the individuality of
human physiological characteristics. Typical systems are based
on finger print, palm print, or iris [31] identification. Addi-
tionally, the field of behavioral biometrics provides methods
to analyse voice [7], walking gait [6], and keystroke dynamics
[21]. By analyzing temporal dynamics these methods can
be more robust against presentation attacks than biometric
methods that rely on static appearance. However, individual
characteristics can also be replayed or imitated by another per-
son [1]. Therefore, we focus on presentation attack detection
(PAD) as a mandatory security check for face authentication
systems. We analyze the plausibility of the individual facial
trait of a person based on temporal sequences of three-
dimensional scans of their face. In the following, we will refer
to these as 4D face scans.

To account for the huge amount of redundant information
in high-resolution 4D face scans we analyze the plausibility of
curvature changes at sub-sampled radial stripes. An illustration

of the overall pipeline for our curvature analysis is depicted
in Fig. 1. As a result, our novel framework for anomaly
detection can detect elastic masks as well as static and planar
presentation attacks based on their abnormal facial behavior.
For static and planar presentation attacks, the curvatures are
either very small or are constant over time. The training based
only on genuine faces increases generalization capability as
properties of individual attack types cannot be memorized.

II. RELATED WORK

In the following, we first state the developments in the
field of presentation attack detection to put our work into
perspective. After that, we look into related work on curvature
analysis of radial stripes.

A. Presentation Attack Detection

In recent years, the quality of presentation attacks included
in public 3D face databases continuously improved from
photographs to sophisticated silicone masks. In Figure 2, we
give an overview on which kind of biometric copies impostors
already used in the past and how they are counteracted.

After accurate 2D face recognition systems were imple-
mented in portable devices, methods for detecting static pho-
tographs from differences in Fourier spectra like [16], [19]
emerged. In contrast, these methods are vulnerable to large res-
olution photographs with high-frequency spectra components.
Additionally, PAD methods based on natural face movements
like eye blinking [25] or eye movement [12] can be fooled
by additional holes at eyes and mouth. Thus, 2D challenge-
response protocols were introduced, where the user is asked to
perform facial expressions [26], head movements [2] or read
words aloud [17]. More recently, deep fakes [27] became a
threat. They can be used to reenact authenticated faces in real-
time on a portable monitor screen as the requested response.

At the same time, cheap 3D sensors become available.
They are integrated into mobile phones using time-of-flight,
structured-light or stereo 3D scanning technology. Due to
their high potential for PAD several methods for 3D face
scans based on curvature [18], depth variance of 3D landmark
locations [29], 3D face recognition [26] have been proposed.
The accuracy of the 3D face recognition method in [11]
reached the accuracy of 2D methods and is more robust against
planar presentation attacks by design.
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Fig. 1: Our suggested representation of 4D face scans reduces the huge amount of biometric characteristics in color and depth image sequences
to the graph shown on the right. This graph measures the facial expression change at distinct radial stripes over time. As such, it is eligible
for identifying presentation attacks in an anomaly detection setting using a one-class SVM, for instance. This figure is best viewed in color.
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Fig. 2: The complexity of presentation attacks increased over time
from face photographs to elastic masks. To detect them, a variety of
suitable countermeasures were developed.

Similarly, the authors of [24] are able to detect planar
presentation attacks based on facial images using a variety
of depth-of-field ranges captured by a light field camera.
However, there are sophisticated static 3D masks or detailed
wax figures that can fool said methods. Hence, we propose
to combine a challenge-response protocol with the temporal
analysis of 3D face to improve robustness against such so-
phisticated masks. In fact, the temporal aspect even allows to
detect elastic 3D masks.

As a source for training PAD methods, recent databases
contain many wax figures [13] or realistic silicone masks
that are deformed by facial expressions [20]. The variety of
such masks is limited, such that many 2D PAD methods have
already seen the same or similar presentation attacks during
training. Thus, properties of individual attack types might get
memorized while methods remain vulnerable to different or
unseen attacks. In contrast, our method requires no samples
containing presentation attacks during training. We propose an
anomaly detection scenario, where the PAD method is trained
only on recordings of genuine faces.

B. Curvature Analysis of Radial Stripes

According to [14], 3D anatomical curves provide a much
richer characterization of faces than landmarks, which are just
individual points along these curves. Thus, authors of [28]
localize a complete set of anatomical curves along ridges
and valleys of the neutral face shape for statistical analysis.
However, many heuristics would be required to obtain robust
anatomical curves in case of facial expressions. Instead of
relying on anatomical curves, the representation proposed in
[3] approximates the facial shape with a set of geodesics. Each
so-called radial curve is obtained by intersecting the facial
surface with a set of equiangular planes that pass through
an anchor point. This representation has proven to result in
superior performances in 4D facial expression recognition
[34], face recognition [3], [8], and even body part analysis
in general [5], [30].

These methods fit 1D polynomial curves in a registration
process. The degree of the polynomials is fixed. It is assumed
that the complexity of the underlying surface is similar for all
curves and all expected shapes. In practice, this results in plau-
sible curvatures values for planar presentation attacks in the
same range as for genuine faces due to overfitting. Therefore,
our proposed representation combines the extraction of radial
stripes with the calculation of the 3D surface curvature [23].
As a larger neighborhood in a 2D surface is taken into account,
this approach is more robust with respect to overfitting to
noise, outliers, and holes.

III. METHOD

For 4D facial behavior analysis, we have to deal with
extremely high spatiotemporal redundancy of 4D face scans.
The differences between both temporally consecutive scans
and spatially close point neighbors are very small. A feature
representation should only extract facial expression changes,
which constitute the overall facial behavior. Therefore, we
propose a representation of 4D face scans based on equidistant
surface curvatures extracted at equiangular radial stripes (Sec-
tion III-B) and their correlation over time (Section III-C). The
latter allows for measuring facial expression changes. Before



modeling, feature extraction and analysis a few pre-processing
steps are necessary to ensure a normalized input.

A. Pre-processing Steps

Given two synchronized sequences of color and depth
images, two pre-processing steps are performed. First, 68
anatomical landmarks are localized in the color images using
the method described in [15], transformed to the disparity
map, and 3D reconstructed (see Fig. 1, left). To also remove
the 3D reconstructed background, the point cloud is centered
at the nose tip landmark. Then, all points inside a sphere
of radius r = 0.1 m are extracted. This removes the large
proportion of background in the case of 3D face scans in
frontal and cooperative scenarios. For pose normalization, a
rigid transformation between consecutive 3D landmarks and
the localized 3D landmarks in the first face scan is obtained
by a Procrustes analysis. Afterward, these transformations are
applied to all temporally consecutive 3D face scans, which in
turn proved to be robust against pose changes.

B. Spatiotemporal Curvature Analysis

After 3D reconstruction, normalization and face extraction
based on a sphere centered at the nose tip we have a pose
normalized face. A depiction with landmarks (white) and nose
tip (black) can be found in the middle block of Fig. 1. The
black dot also serves as an origin of a reference coordinate
system given by the three unit vectors ~nj in x-, y-, and z-
direction, with j ∈ {1, 2, 3}. Red, green and blue arrows in
the middle image point into the positive direction of these
axes. In the next step, the face is intersected with the yz-plane
at regular angle steps. Then, a radial stripe is extracted by
taking all points for which the projection onto the x-axis ~n1
is lower than a certain threshold δ and the projection onto the
y-axis ~n2 is positive:~pi =

xiyi
zi

 :
∣∣~pTi ~n1∣∣ ≤ δ; ~pTi ~n2 > 0

 (1)

among all points ~pi of a single 3D face scan. Afterward,
the x- and y-axis are rotated clockwise around the z-axis by
α = 360°

N and the process is repeated until N radial stripes are
extracted. For instance, the first five out of N = 24 red stripes
in Fig. 1 denote the subset of points that satisfy Eq. (1) for
α = 360°

24 = 15°.
To reduce the feature dimension, we calculate the curvature

for each sampled point based on its local neighborhood in the
original point cloud. The use of the curvature is encouraged
by its invariance under 3D Euclidean transformations. The
curvature can be calculated from the 1D parametric arc-length
representation of each curve as

κ(s) =
y′′

(1 + y′2)
3
2

. (2)

Resulting 1D curvatures in case of a 3D scan of a flat surface
(e.g. face photograph, monitor) tend to be in the range of
genuine face scans. This is due to overfitting of radial curves to

noisy point cloud data. To alleviate this effect, we follow [23]
in approximating the 3D surface curvature using the surface
variation for each sampled point

κ̃(i) =

∣∣∣∣ λ0
λ0 + λ1 + λ2

∣∣∣∣ , (3)

where λ0 < λ1 < λ2 and λi are the eigenvalues of a
principal component analysis applied to a neighborhood with
a fixed radius of 6 mm in the original point cloud.

In contrast to previous works [3], [5], [8], [34], we take
the 2D neighborhood into account. The surface variation is
bounded to 1

3 for isotropically distributed points and avoids
the major impact of the unbounded, unstable second derivative
in Eq. (2). The 3D curvature calculation step in Fig. 1 shows
the resulting values obtained by Eq. (3) for an exemplary 3D
face scan.

To compare temporally consecutive radial stripes, we
sub-sample M points along each radial stripe. We obtain an
equidistant spacing between each point by sampling along
their projection to the radial axis of the intersection plane
~pTi ~ni. As an important advantage, the degree of equidistant
and equiangular sub-sampling can be varied by parameters
M and N depending on the desired accuracy and runtime.

C. Measuring Facial Expression Change

The set of M curvatures for N radial stripes would still
be indistinguishable between genuine faces and well-shaped
copies like the 3D masks from REAL-f Co. Therefore, we
measure the curvature change between temporally consecutive
face scans and perform PAD on the resulting time series
representation. We calculate the point-wise product of the
curvature values between temporally consecutive radial stripes.
As the detected position of the nose tip slightly varies, it is
necessary to align the radial stripes to each other. Hence, we
compute the maximum cross-correlation as

Rt = max
j

(
M∑

i=−M
κ̃t(i) · κ̃t−1(i+ j)

)
(4)

between radial stripes at time steps t and t−1, which refer to
consecutive frames in a video. The maximum cross-correlation
measures how similar the temporal curvature values are. The
resulting multivariate time series contains values of Rt for
each radial stripe. It measures the individual change of the
facial expression. For instance, the two inner peaks of the
graph for Rt in Fig. 1 relate to the eye movements and the
two outer peaks to the mouth movements. Estimating Rt for
a high-resolution scan takes 90 ms on an Intel Core-i7 CPU.

Fig. 3 shows some exemplary temporal trends for Rt.
It demonstrates that the overall facial expression change of
genuine faces is much larger than of presentation attacks using
3D masks. In contrast, Fig. 4 depicts the distribution of σ(Rt)
among all radial stripes and recordings in our database (see
Section IV-A). The standard deviation of the first and last few
radial stripes through the mouth differ between genuine faces
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Fig. 3: For most recordings of genuine faces like ’22’, the facial
expression change is larger than in case of the 3D mask recording
(’7’). Even when the facial expression change is similar like in
’11’ (elastic 3D mask) and ’5’ (minimal facial expression), there
is detectable difference in the standard deviation.

and presentation attacks by a large margin. For the eye regions,
the standard deviation is also different, but not well-separated.
Current active 3D sensors struggle to accurately measure the
eye region, which is either reflecting or absorbing the projected
stripe pattern.

In the last step, we need to distinguish changes induced
by presentation attacks and changes attributed to genuine
faces based on these findings. Thus, we calculate σ(Rt) as
a measurement of the overall facial expression intensity for
each radial stripe. In Section IV, we will report our automatic
PAD results based on this feature representation in an anomaly
detection setup using a one-class SVM.

IV. EXPERIMENTS

There are several public databases for PAD that have been
used in the past. However, they do not match our proposed
setting for 4D facial behavior analysis. In some cases, they
contain only 2D attacks using bent photographs (CASIA-
SURF [32]) and monitor replay-attacks (CASIA-FASD [33]).
Other databases like 3D-MAD [9], CS-MAD [4] and WMCA
[10] containing static, elastic and partial 3D masks only cap-
ture the neutral face appearance without any facial expression.
Thus, we created a new database for this evaluation.

A. Database and Protocol

During the preparations and planning of our recordings,
we focused on the cooperative self-service scenario with a
frontal pose for face authentication. Three studio lamps with
D65 standard illuminant were used to avoid light flicker and
ensure optimal illumination at a constant exposure time of the
3D sensor. Our application scenarios are the authentication
of ID-documents using eGates for cross-border traffic and
eKiosks for biometric data enrollment at administrative offices.
Recent mobile phones are also equipped with a 3D sensor.
Hence, the same authentication scenarios can be implemented
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Fig. 4: Blue and orange curves show the sample distribution of
σ(Rt) for each radial stripe (N = 128). In some cases, standard
deviations are small for both presentation attacks and genuine faces.
However, radial stripes corresponding to mouth and eye regions show
substantial differences.

in mobile devices in the future for mobile payments and
contract conclusions.

In addition, we applied a challenge-response protocol. We
asked participants nine questions that reflect common entry
regulations, like Why are you traveling?, How long will you
stay? and Do you carry liquids with you? These questions were
presented on a video wall behind the 3D sensor. Participants
were instructed to answer orally to induct visemes and facial
expressions.

For recording we used a highly accurate structured-light
3D sensor [22]. Such an active 3D sensor is more exact
in homogeneous areas like forehead or cheeks than passive
3D sensors and robust against extraneous light. Each 3D
reconstructed point cloud of a head has 1 million points.
On average 250k of those points constitute the facial region.
Sequences were recorded at 30 Hz for 36 s, during which
questions were asked in 4 s intervals.

In total, our database consist of 109 4D face scans from
24 different subjects (nine women, 15 men). Eleven different
types of presentation attacks were recorded resulting in 45
scans. Furthermore, six participants have beards and six wear
glasses. In the latter case, the participants were recorded with
and without glasses. Beards and glasses pose a challenge
for active 3D sensors. A visual overview with all types of
included presentation attacks is given in Fig. 5. Please note,
our database was created in a small study and is not balanced
with respect to gender, ethnicity or age.

B. Anomaly Detection Results

For PAD, we combined the standard deviation of N = 128
radial curves in a feature vector for each sample. Then, we
trained an one-class SVM only using genuine faces to pose
an anomaly detection task. Evaluation was carried out using
a leave-one-out cross-validation scheme over all subjects. As
parameters of the SVM, we chose a polynomial kernel function
and ν = 0.05 as the upper bound of training errors.
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Fig. 5: Our new PAD database contains 4D scans of static presentation attacks, elastic 3D masks and monitors replay-attacks. Photographs
as static masks were presented without holes (4 samples) and with holes for eyes and mouth (8x). Data protection agreements for presenting
facial images in compliance with the regulations were signed by all subjects in this paper.

TABLE I: Quantitative evaluation for anomaly detection and
standard PAD criteria: An SVM is only trained on genuine
faces (bona fide) to detect presentation attacks during testing.

Performance Measure Result

Area under ROC Curve (AUROC) 95.90%
Attack Present. Class. Error Rate (APCER) 11.46%± 3.26%
Bona fide Present. Class. Error Rate (BPCER) 6.19%± 1.23%

Table I contains the resulting quality metrics on our database
described before. The APCER measures the error rate for
presentation attacks wrongly classified as genuine. BPCER is
the analogous measure for bona fide presentations (genuine
faces). Both need to be low for a system suitable for practical
use. In our case, we can see a twice as high error rate in
the classification performance for presentation attacks when
compared to the performance on bona fide presentations.

We observed that the partial chin mask presentations (see
Fig. 5, left) particularly pose a challenge for our method.
For the most part, the face is still elastic and able to show
normal behavior, which can lead to errors. Analogously, there
are misclassifications in cases of especially strong facial
expressions when wearing an elastic mask. On the other
hand, the errors in genuine faces can be traced back to few
abnormal recordings. Corresponding participants did not blink
over the whole duration of the recording. Overall, however,
our approach performs very robust in all these different attack
scenarios. We are able to reach an AUC of almost 96% for
this classification task.

C. PAD Discussion

Given our previous findings, we encourage to specifically
localize facial regions, which show anomalous behavior in the
next step. It is possible to highlight the eyes or the partial
mask shown in Fig. 5 (left) for the chin region. We also like
to point out, that the standard PAD evaluation is only for the
classification of genuine faces vs. presentation attacks. In a
more complex task the type of attack could also be classified.

We like to stress, that a limited number of available pre-
sentation attack types (e.g. few distinctive masks) increases
the potential of bias in a database or algorithm. However, our
anomaly detection approach for PAD does not require training
samples of such attacks. It is not susceptible to overfitting by

memorizing properties of mask specifics, which can happen for
deep learning-based methods when the training set includes
presentation attacks. The resulting small BPCER shows the
generalization capability of our method despite the limited
number of subjects in the training set and potential biases from
emotional expressiveness, interaction context, or extraversion.

Please note, the steps for pose normalization and curvature
analysis preserve the metrical properties of the 3D scans. Thus,
we achieve robustness under head position and pose changes.
Furthermore, the infrared pattern projection of an active 3D
sensor results in robustness under illumination changes of
visible light.

D. Beyond Presentation Attack Detection

Our described scenario for PAD is unique, but is a result
of the fast progress in that area (see Fig. 2). The approach
of time series analysis of 3D point cloud data is not limited
to that application scenario. In a parallel medical study we
apply it in paresis treatment analysis. Patients with facial
palsy are recorded at regular time intervals using a similar
3D sensor, but without the challenge-response protocol. Each
individual recording is a temporal sequence of pre-defined
facial exercises that serve as training to regain muscle move-
ment. In this scenario our method serves as a detector and
measuring instrument. It is meant to support physicians in
treating such patients as it indicates subtle improvements. An
example is depicted in Fig. 6, where an improvement of the
cheek movement can be observed over time. The mean of the
cross-correlation R̄t continuously improved.

Beyond this medical task, it is also possible to apply
our method for emotion recognition given suitable 4D data
and a multi-class classifier. At the moment typical emotion
recognition benchmarks either lack depth information (2D
video datasets) or temporal information (single 3D face scans).

V. CONCLUSION

The process of face identification is of ever-increasing
importance in a variety of daily scenarios. At the same time
attacks on such systems increase and get more complex. In
this paper, we proposed a PAD method to robustly detect
flexible 3D masks, bent photographs, and monitor replay-
attacks using 4D face scans and behavioral analysis. We
sub-sampled the 3D surface curvature at equiangular radial
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Fig. 6: Besides natural fluctuations, R̄t improved over time for the
curves through the left cheek (arrow). It indicates, that the treatment
method was successful as the nerve reinnervated and allowed for
voluntary muscle movements. Inner red areas mark radial stripes
through the eyes, where recording artifacts can occur.

stripes and analyzed temporally consecutive stripes to detect
anomalies. Our proposed representation allows for varying the
degree of sub-sampling depending on the desired accuracy
and run-time. Furthermore, we created a new dynamic 4D
database for the evaluation of our method as available PAD
databases do not fit our setting of 4D anomaly detection.
Our results are very promising as the error rates demonstrate.
However, distinguishing elastic 3D masks from genuine faces
with minimal facial expressions remains a challenging task.
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