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Abstract

Causal discovery from time series data encompasses many
existing solutions, including those based on deep learning
techniques. However, these methods typically do not endorse
one of the most prevalent paradigms in deep learning: End-
to-end learning. To address this gap, we explore what we call
Causal Pretraining. A methodology that aims to learn a di-
rect mapping from multivariate time series to the underlying
causal graphs in a supervised manner. Our empirical findings
suggest that causal discovery in a supervised manner is pos-
sible, assuming that the training and test time series samples
share most of their dynamics. More importantly, we found
evidence that the performance of Causal Pretraining can in-
crease with data and model size, even if the additional data
do not share the same dynamics. Further, we provide exam-
ples where causal discovery for real-world data with causally
pretrained neural networks is possible within limits. We ar-
gue that this hints at the possibility of a foundation model for
causal discovery.

Introduction
The investigation of causal discovery from time series data
encompasses many existing solutions, including, of course,
the integration of deep learning techniques. Despite the
widespread utilization of these techniques, many methods
do not endorse one of the most prevalent paradigms in
deep learning: End-to-end learning. This paradigm suggests
that it is often beneficial to only provide neural networks
with raw input data instead of handcrafting features. Ad-
ditionally, making assumptions on how a particular task
should be solved can hinder performance (Bojarski et al.
2016), (Amodei et al. 2016), (Glasmachers 2017). Contrary
to that, neural networks are typically embedded into well-
established causal discovery frameworks such as Granger
causality, (Tank et al. 2018), (Ahmad, Shadaydeh, and Den-
zler 2022), (Teodora Trifunov, Shadaydeh, and Denzler
2022), (Löwe et al. 2022) or score-based methods (Zheng
et al. 2018), (Ng et al. 2019). Through this, the solution
space is naturally restricted. To address this disparity, we
explore what we call Causal Pretraining, a methodology
that aims at learning a direct mapping from multivariate time
series to causal graphs as depicted in Figure 1. We pro-
pose to parameterize this mapping by a deep neural net-
work and train it in a supervised manner. In the training

Figure 1: Comparison between a general depiction of causal
discovery methods (left) and our Causal Pretraining method-
ology (right). Instead of inferring causal graphs from data
directly, Causal Pretraining produces neural networks that
can be deployed for inference directly.

phase, we sample from a distribution of synthetic time se-
ries with known corresponding causal graphs. Besides leav-
ing the solution space completely open, Causal Pretrain-
ing has another distinct advantage over many other deep-
learning approaches. Since it does not require fitting any
parameters during inference and natively allows for effec-
tive parallel processing, it makes the analysis of large sets
of time series exceptionally efficient. While this idea is, to
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our surprise, largely unexplored, we determined that sub-
stantial challenges are stabilizing training and encouraging
behavior beyond learning correlational patterns. Therefore,
we conducted experiments involving training multiple deep-
learning architecture archetypes with differing training tech-
niques on increasingly more complex synthetic datasets. We
specifically evaluate the test performance for synthetic data
samples that mimic the training dynamics (in-distribution)
and synthetic data samples with slightly altered dynamics
(out-of-distribution). To demonstrate the applicability of our
approach to real-world data, we also test our approach on
in-the-wild datasets with completely unknown data distribu-
tions in a zero-shot setting.

While much work still lies ahead, we empirically show
that Causal Pretraining can consistently uncover causal re-
lationships for unseen time series, assuming that the train-
ing and test time series samples share most of their dynam-
ics. More importantly, we also find that the performance of
Causal Pretraining increases with model size and the amount
of training data, even when the additional training samples
extend the data distribution. In these scenarios, we show
that Causal Pretraining can outperform alternative simple
approaches without fitting parameters for new data. We fur-
ther find potential to truly extrapolate to real-life data. We
argue that this together hints at the possibility of a founda-
tion model for causal discovery. Finally, we emphasize that
this paper focuses on empirical results and the applicability
of CP to real-world data. We retain theoretical insights, e.g.,
identifiability statements, for future work. In summary, we
present the following contributions:
1. We explore supervised learning for causal discovery

from time series data, aiming at learning it end-to-end
from synthetic data with shared dynamical properties.

2. We introduce and evaluate several helper techniques to
support the performance of Causal Pretraining.

3. We evaluate the ability of causally pretrained neural net-
works to predict real-world causal graphs.

4. We observe relations to foundation models, as supported
by our empirical results.

Background and Related Work
The discovery of causal relationships from observational
time series can be tackled in various ways (Gong et al. 2023),
(Assaad, Devijver, and Gaussier 2022), (Vowels, Camgoz,
and Bowden 2022), (Runge et al. 2023). Here, we give an
overview of these methods and elaborate on how they relate
to causal pretraining.

Score-based approaches aim to find a causal graph that
maximizes a defined scoring function (e.g., AIC score
(Akaike 1992)). With the introduction of formulating the
scoring as a continuous optimization problem (Zheng et al.
2018), (Pamfil et al. 2020), the possibility of deploying neu-
ral networks arose quickly. For causal discovery in data
without temporal dimension (sample data), a multitude of
methods that deploy deep-learning architectures was de-
veloped ((Lachapelle et al. 2020), (Ng et al. 2019),(Ky-
ono, Zhang, and van der Schaar 2020)). Concerning time
series data, (Sun et al. 2023) adapts the previously used

vectorized autoregressive model (VAR) from (Pamfil et al.
2020) to handle nonlinear relationships by deploying a 1D
convolution-based architecture.

Being exclusively applicable to time-series data, Granger
causality(Granger 1969) has a substantial history. At its
core, it evaluates whether a certain variable’s history helps
with predicting another target variable. Deep learning-based
Granger causality methods mostly deploy neural networks
as forecasting architectures and infer Granger causality in
various ways. (Montalto et al. 2015) and its extension (Wang
et al. 2018) deploy a greedy search over which input variable
to use with neural networks to determine Granger-causes.
(Tank et al. 2018) and (Tank et al. 2021) alternatively use
the weights of the first layer of an MLP under L2 regu-
larization of the same layer to determine Granger-causes.
Other methods infer from attention weights (Guo, Lin, and
Antulov-Fantulin 2019), (Dang, Shah, and Zerfos 2018) or
the parametrization of variational autoencoders (Li, Yu, and
Principe 2023), (Meng 2019). Furthermore, approaches such
as (Ahmad, Shadaydeh, and Denzler 2022) propose to gen-
erate in-distribution intervention variables and determine
Granger causes using the model invariance assumption. Im-
portantly, in all approaches mentioned so far, neural net-
works are optimized for a single specific dataset.

Framing causal discovery as a supervised learning task
was also explored to some extent. Concerning sample data,
an early work that does not deploy deep learning is (Lopez-
Paz et al. 2015), which aims at learning a binary classifier
to direct a link between two variables from data. Some re-
cent strain work that leverages deep learning methods to
map from data correlation matrix to directed acyclic graph
is (Li, Xiao, and Tian 2020) and (Petersen et al. 2023).
(Geffner et al. 2022) aims at learning an autoregressive flow
model (Huang et al. 2018) from data that can be used for
causal discovery. Finally, as the work that is closest to our
methodology, (Löwe et al. 2022) aims at learning a mapping
from multivariate time series to causal graph by deploying
a Variational autoencoder-based architecture to forecast the
time series. The encoder output is then leveraged to infer
Granger-causes for each variable. On the contrary, we aim
to learn direct mappings without a surrogate task. Another
crucial disparity from (Löwe et al. 2022) is that we frame
Causal Pretraining to uncover the time lags of any causal re-
lationship rather than only returning a summary graph that
ignores temporal patterns. To the best of our knowledge, our
proposed method is the first that aims to learn causal discov-
ery for time series completely end-to-end.

Method
Here, we formally introduce our methodology and discuss
assumptions. We subsequently detail the architectures and
the data generation process we used to test our approach.
Finally, we suggest various training techniques and assess
their impact on Causal Pretraining.

Definitions & Assumptions
We define X = (xt

i)i=1,..,V ;t=0,..,T to be a multivariate time
series with V ∈ N+ variables and a length of T∈ N0. We



Figure 2: Depiction of architectures that we consider for Causal Pretraining. From left to right: GRU, Transformer, Con-
vMixer, MLP. We further mark locations for correlation injection with *.

assume, for now, that any xt
i contained in X can be described

by the following time-invariant structural equation model:

xt
i =

N∑
n=1

V∑
j=1

fn
i,j(Ai,j,n · xt−n

j ) + eti . (1)

Here A is a three-dimensional tensor where element Aj,i,n

denotes a coefficient that describes the (causal) impact of
a specific variable j at a specific time lag n, i.e., xt−n

j , on
xt
i. N denotes the maximum time lag considered. Each lin-

ear effect is then transformed by an individual function fn
j,i

to account for possible nonlinear relationships. Additionally,
(eti)i=1,..,V denotes uncorrelated Gaussian noise.

Causal discovery methods (CDMs) are concerned with
uncovering the set of non-zero elements of A from a given
time series X. Typically they either aim at uncovering a
summary graph that is represented by an adjacency matrix
G ∈ ZV × V where element (i, j) denotes whether any
current or past observation of variable xj has an impact
on variable xi. Formulated differently, it specifies whether
the parameter vector Ai,j has any non-zero elements. Alter-
natively, methods that aim at uncovering a window causal
graph return a 3-dimensional tensor G ∈ ZV×V×N where
element (i, j, n) specifies whether Ai,j,n is estimated to be
non-zero. Based on this formalism, we can naively summa-

rize CDMs as: CDM(X)→ G. Contrary to that, Causal Pre-
training is not concerned with directly uncovering any causal
graph G, but rather with producing a causally pretrained
neural network (CPNN) in a supervised manner that can be
applied in zero-shot settings (no further parameter optimiza-
tion) to infer G. We define G as a set of structural equations
(Equation 1) that each specifies the causal dynamic of a mul-
tivariate time series. Additionally, we define X to be a set of
corresponding X that originates from a specific element in G.
Formally, Causal Pretraining (CP) can be defined as follows:

CP(X ,G) 7→ CPNN, CPNN(X) 7→ G ∈ ZV×V×N , (2)

where CPNN refers to a causally pretrained neural network.
We treat the elements of the network output G as proba-
bility estimates that the corresponding elements in A exist.
Throughout this paper, we make the following assumptions:
1. G is a Directed Acyclic Graph (DAG). No instantaneous
effects. 2. Causal sufficiency: All causes are observed. 3.
Theoretical insights such as (Shah and Peters 2020) suggest
that learning a CPNN that can correctly identify the non-zero
elements of A for any X is very likely impossible. Instead,
we assume that train and test distribution share general dy-
namics, such as the functional space f in Equation 1 from
which we draw elements for all synthetic data samples.



Architectures
To properly evaluate our methodology, we deem it essen-
tial to evaluate multiple differing architectures. We, there-
fore, select five different architectures, aiming at covering
the prominent deep-learning archetypes up to this date and
not necessarily focusing on fully optimizing the architec-
ture for Causal Pretraining for now. We test an MLP (Taud
and Mas 2018), a unidirectional GRU (uGRU), a bidirec-
tional GRU (bGRU), a Conv Mixer CM (Trockman and
Zico Kolter 2022), a recently introduced convolutional ar-
chitecture that showed strong results on image tasks, which
we adapt for time series and a Transformer (Trf) that bor-
rows heavily from the Informer (Zhou et al. 2021) architec-
ture excluding sparse attention but featuring Attention Dis-
tillation (Zhou et al. 2021). All architectures are depicted in
Figure 2 (both GRU architectures are jointly depicted). We
keep input and output dimensions for all architectures the
same (input: X, output: causal graph G, optional: regression
surrogate task as described below). All networks return a
vector with the length V ∗ V ∗N that we interpret as prob-
abilities for specific elements of A to be non-zero. We re-
shape this vector into GV×V×N and then calculate binary
cross-entropy for the primary loss component with A > 0
as the label. To make the comparison fair, we scale the
architectures to have similar amounts of parameters, aim-
ing at estimating the innate capabilities of these archetypes.
In total, we deploy five sizes in our experiments (although
not all sizes during every experiment), which we denote as
”small” (∼13k params), ”medium” (∼120k params), and
”big” (∼1.5M params) ”deep” (∼17M params), and ”lcm”
(”large causal model”, ∼ 300M params), seeAppendix 3.

Additional Training Techniques
While deep learning architectures are, in theory, universal
function approximations (Hornik, Stinchcombe, and White
1989), in reality, learning a proper function from observa-
tional data is not always straightforward. Networks often
converge to local minima or memorize data, which we at-
tempt to counter by employing the following three tech-
niques to help with the optimization process.

Regression Output An easy-to-achieve suboptimal solu-
tion in our training setup is predicting all elements of A as
zero. This often results in a small loss given that the true
number of non-zero elements in A (|A > 0|) is small. To
discourage this solution, we add an optional regression out-
put that predicts the number of non-zero elements in A. We
formulate the loss related to this prediction as follows:

regLoss = (Ŷreg − |(A > 0)|)2 (3)

where Ŷreg specifies the regression output. This task should
be trivial when the correct edges are identified (counting),
and this penalty term should be close to zero. However, pre-
dicting a graph with no edges leads to a high penalty.

Correlation Regularization Additionally, since no corre-
lation typically implies no causation, we introduce a regu-
larization term called correlation regularization (CR). This
term punishes the case where a model is confident that a

specific element of A is non-zero (high confidence in the
model output G), but the lagged-crosscorrelation of the cor-
responding time series is low. CR is defined in the following
way:

CR(G,X) =
V∑
i=1

V∑
j=1

N∑
n=1

(
Gi,j,n

|lcc(Xi,Xj , n)|+ β

)α

, (4)

lcc(a, b, n) =

T∑
t=0

(at − ā) · Ln(bt − b̄)√
T∑

t=0
(at − ā)2

√
T∑

t=0

(
Ln(bt − b̄)

)2 , (5)

where Ln is the lag operator (shifting the time series n
steps). Furthermore, α and β are hyperparameters determin-
ing the exact shape of the function. We include a depic-
tion of CR in the Appendix 5. Notable, the term does not
reward high confidence for predictions with corresponding
high cross-correlation. Nor does it punish low confidence
for edges with corresponding high cross-correlation values.
It thereby only encodes the idea that no correlation implies
no causation.

Correlation Injection Many causal discovery methods
take a skeleton graph that encodes correlations between
variables as a starting point for causal discovery ((Spirtes
et al. 2000),(Li, Xiao, and Tian 2020),(Petersen et al. 2023)).
To mimic this and to help the learning process, we fuse
(concatenate to the current hidden state) the lagged cross-
correlation of all time series in X into the network as de-
picted in Figure 2.

Data
Synthetic Data To perform Causal Pretraining, we re-
quire a large set of training examples. As real-world data
with labels, i.e., ground-truth causal graphs, are typically
rare, we generate sets of synthetic data (G,X ) to train on.
We randomly select elements of A to be non-zero to cre-
ate a single training example. We then randomly sample
all values of A that are non-zero from a specified uni-
form distribution and draw nonlinear relations fn

i,j from a
set of specified functions:{ex, x2, σ(x), sin(x), cos(x),
relu(x), log(σ(x)), 1

x , ∥x∥, clamp(x, (−0.5, 0.5)}. For lin-
ear datasets, we generate data from vector autoregressive
models, i.e., we set all fn

i,j(·) = (·) in Equation 1. Then we
generate X according to this dynamic. A detailed descrip-
tion of this process is included in Appendix 1. Since there
is no guarantee that randomly sampled structural equations
(Equation 1) lead to a stable system, we establish stability
tests to exclude unstable systems from the datasets. Finally,
we apply min-max normalization to the time series. We re-
fer to Table 4 (Appendix) for further specifications of the
datasets that we use for training. We also provide additional
data information in the Experiment section .

Kuramoto A frequently used source for synthetic data
is fully observable physical simulations. Similar to (Löwe
et al. 2022) from which we also adapt the simulation, we



perform Causal Pretraining on data originating from a Ku-
ramoto model (Kuramoto 1975) with five variables. Since
we are primarily concerned with one-dimensional vari-
ables, we use the trajectories of the simulated variables as
one-dimensional time series. Notably, the dynamics of this
dataset do not strictly follow Equation 1. We, therefore, em-
pirically evaluate with this dataset whether we can relax our
initial assumption.

Zero-shot Inference Another capability of Causal Pre-
training we aim to explore in this work is whether it can
extrapolate to real-world data outside the training distribu-
tion. To test this, we perform zero-shot inference on two
distinct benchmarks, meaning we do not perform any fur-
ther parameter optimization for unseen data. First, we pre-
dict the causal relationships in a benchmark involving the
discharge of rivers in Germany (Ahmad, Shadaydeh, and
Denzler 2022). Secondly, we test the causal direction in a
real-life dataset originating from (Jesson et al. 2021), in-
volving the estimation of aerosol-cloud interactions. Since
the dataset is originally concerned with estimating the aver-
age treatment effect of aerosol on different cloud parameters
under weather confounding (meaning the direction of the ef-
fect is clear), we are concerned with confirming this causal
direction by only evaluating the predicted direction between
these two variables under the influence of other weather vari-
ables (we consider sea surface temperature, effective inver-
sion strength, and relative humidity at 850 mb).

Experiments
To properly evaluate Causal Pretraining, we conducted four
studies aiming at the step-by-step evaluation. During all ex-
periments, we compare CPNNs with two simple baseline
techniques and one popular causal discovery method for
time series data (PCMCI, (Runge et al. 2019)). We addition-
ally compare the results on the Kuramoto data with results
provided in (Löwe et al. 2022). For baselines, we calculate
the absolute lagged cross-correlation for all variables and
use them directly as probability estimates for A. We refer
to this as Correlation Thresholding (CT). Additionally, we
perform a linear form of Granger-causality GVAR by fitting
a VAR model to the data and treating the absolute parame-
ters of the model as probability estimates for A. Further, we
deploy the PCMCI algorithm using partial correlation as the
conditional independence test.

Synthetic Data 1 - Impact of the Dataset
To evaluate the performance of CP, we conducted experi-
ments on the precise data distribution we described in the
Data section . We continuously evaluated two distinct test
sets to understand extrapolation capabilities during this syn-
thetic data experiment. Firstly, a test set, named Test-Set 1,
includes test samples originating from the same distribution
as the training data. Secondly, a test set, named Test-Set 2,
which has an increased variance for the noise e and an al-
tered (slightly lower, not overlapping) range from which we
draw non-zero elements in A (see Equation 1). To stop train-
ing, we perform early stopping based on the loss of an addi-
tional validation set that follows the A range of Test-Set 2 but

keeps the training variance of the noise e. We use AdamW
(Loshchilov and Hutter 2018) as the optimizer during all ex-
periments.

We trained all described architectures on six distinct
datasets. Here, we generated 5000 samples for training and
500 samples for testing, which have different structural
equations (Equation 1) with varying A and differing f . We
increased the complexity of the dataset step by step, increas-
ing the number of variables, the number of lags, the co-
efficient range, and the set from which we draw the func-
tions fn

i,j . In short, we tested two linear datasets (SL, ML),
two nonlinear datasets with a reduced nonlinear function set
(SNL, MNL), and two datasets with the full function set,
as described in the Data section ,(LNL, XLNL). In all three
cases, we considered three variables, a maximum lag of two,
and the model size ”small” for the first dataset. For the sec-
ond dataset, we considered five variables, a maximum lag
of three, and the model size ”medium”. To compare the per-
formance of our method, we report the best-performing hy-
perparameter combination of each architecture. We searched
the optimal parameters of batch size, learning rate, weight
decay, and training addition (Regression Loss, CR, Corre-
lation injection) by performing a full grid search and ran
each hyperparameter combination twice. We then selected
the combination that resulted in the lowest observed valida-
tion loss and rerun it ten times.

Since we were also interested in the performance of CP
when trained on data that origins from different distribu-
tions, we conducted a second set of experiments where we
doubled the size of the six training sets that we described
above and joined them together, making the maximum num-
ber of lags and the number of variables flexible. By this, we
also mixed linear and non-linear samples, effectively draw-
ing from different data distributions. We performed a simi-
lar hyperparameter search as in our first experiment. To keep
the search space reasonable, we omitted the regression head.
We also always included correlation injection since these hy-
perparameter selections performed consistently better in our
first synthetic data experiment. We independently trained
model sizes ’medium’ and ’big’ and rerun the best-scoring
hyperparameter combination ten times. We report the results
of these studies in Table 1. We denote the results of the first
study with Single and the results of the second study with
Joint.

Surprisingly, we found that CP generally performed
worse than our baselines in our first set of experiments. With
some exceptions, the AUROC scores on both test sets were
typically worse, even considering the best possible runs we
performed. From our architectures, uGRU and Trf seemed
to perform slightly better. However, these tendencies were
too inconsistent to conclude a clear trend. Contrary to that,
the performance of CP in our second experiment set outper-
formed all baselines, notably, while fitting no parameters on
the test sets. Since CDNNs have to learn a much more ex-
tensive training distribution to perform comparably, we ex-
pected CDNNs to be less precise. We found the opposite to
be true. Even if we kept the architecture size the same, e.g.,
’medium’, we observed that the performance of CDNNs in-
creased. Furthermore, increasing the model size improved



MLP uGRU bGRU CM Trf CT GVAR PCMCI
Causal Pretraining Baselines

Test-Set 1

SL .999 (.000) 1.00 (.000) .999 (.000) .999 (.000) 1.00 (.000) .997 1.00 1.00
ML .498 (.005) .621 (.053) .626 (.185) .513 (.014) .621 (.125) .997 1.00 1.00
SNL .950 (.001) .955 (.001) .948 (.002) .949 (.002) .955 (.003) .918 .916 .915
MNL .525 (.004) .829 (.102) .555 (.104) .519 (.004) .545 (.009) .937 .938 .941
LNL .933 (.001) .937 (.001) .937 (.001) .935 (.002) .934 (.001) .936 .944 .943

Si
ng

le

XLNL .499 (.006) .689 (.111) .749 (.138) .506 (.004) .518 (.034) .938 .944 .943

Medium .928 (.023) .907 (.023) .920 (.012) .887 (.003) .950 (.015)

Jo
in

t

Big .761 (.028) .959 (.028) .962 (.032) .886 (.003) .977 (.001) .958 .888 .946

Test-Set 2

SL .999 (.000) 1.00 (.000) .999 (.000) .999 (.000) 1.00 (.000) .999 .999 .999
ML .499 (.003) .600 (.052) .613 (.181) .506 (.007) .601 (.119) .999 1.00 1.00
SNL .930 (.001) .935 (.000) .933 (.001) .931 (.002) .935 (.002) .926 .928 .924
MNL .520 (.006) .785 (.088) .547 (.090) .518 (.005) .538 (.010) .927 .927 .927
LNL .905 (.002) .915 (.002) .916 (.001) .912 (.002) .916 (.001) .910 .912 .905Si

ng
le

XLNL .502 (.006) .659 (.096) .710 (.124) .503 (.006) .518 (.027) .913 .913 .910

Medium .916 (.023) .895 (.022) .906 (.011) .869 (.003) .939 (.015)

Jo
in

t

Big .752 (.027) .946 (.038) .952 (.033) .867 (.002) .970 (.001) .948 .862 .910

Table 1: Mean AUROC scores for the synthetic data experiments Single and Joint (bottom two lines of each Test-set). For
experiment Single, the first column specifics the dataset, while for experiment Joint, it specifies model size. Best results are
denoted in bold. We report the corresponding standard deviation calculated over 10 runs in brackets.

the performance and, most importantly, the generalization
(Test-Set 2). We interpret this in the following way: The
broader the training distribution, the more robust/generally
applicable CPNNs must become to solve the training distri-
bution. This, in turn, helps with out-of-training performance
and generalization. Further, the amount of samples required
to optimize CP properly is much larger than we initially
expected. We suggest that further improvements could be
achieved by making the training distribution even broader,
even for similarly sized architectures.

Synthetic Data 2 - Impact of Model Size
As we investigated the relationship between the training dis-
tribution and the performance of CP, we also wanted to ex-
plore the relationship between the number of parameters and
the ability to learn increasingly more complex datasets. For
this, we generated three synthetic linear datasets and step-
wise increased the number of variables to 10. We performed
Causal Pretraining on each dataset, trained varying model
sizes independently, and performed the exact hyperparame-
ter search as in the previous chapter. We selected the perfor-
mance of the best-scoring hyperparameter combination of
the best-performing architecture. We then retrained this con-
figuration five times to calculate the final reference scores re-
ported in Figure 4. Note that for the size ”lcm” we restricted
our search to the Trf and the CM architecture. We find that
the parameter count of the model determines the ability to
perform causal discovery properly. Specifically, there seems
to be a parameter threshold under which no proper solution
can be learned (AUROC 0.5). We also find that the extrap-

Figure 3: Relationship between the Model size and the per-
formance on datasets with an increased number of variables.
We display the performance on Test-set 2 for each data point.

olation capabilities increase even when keeping the same
number of data samples (contrary to what one would typ-
ically expect concerning overfitting). Further, the required
model size for certain variables was much bigger than ex-
pected. However, we suggest that this might be partly be-
cause discovering a causal graph G with multiple lags re-
quires the estimation of V × V × N values, which might
be hard for CPNNs. This suggests that reducing the number
of lags might reduce the required parameters in the future.



ACD* MLP uGRU bGRU CM Trf CT GVAR PCMCI
Test-Set

Kuramoto .952 .825 (.025) .905 (.053) .852 (.076) .954 (.010) .888 (.070) 0.628 0.464 0.523

Rivers 0.425 1.00 0.5000 0.600 1.000 1.00 1.00 1.00
Aerosol-Cloud 0.00 0.017 0.793 1.00 0.150 0.473 1.00 0.363

Table 2: We here report mean AUROC scores for the Kuramoto dataset, AUROC scores for the highest scoring CPNNs on the
River benchmarks, and Accuracy for the Aerosol-Cloud benchmark. The highest scores are denoted in bold. We additionally
report the variance, calculated over 10 runs on the Kuramoto dataset.in brackets. * (Löwe et al. 2022).

Together, we conclude from this that to improve the perfor-
mance of CP, we need to increase its scaling, especially con-
sidering that it is likely that learning much broader distribu-
tions will also require an even higher parameter count.

Kuramoto
To bridge the gap to (Löwe et al. 2022), we evaluate CP on
data from a Kuramoto Model with five variables. We gen-
erated 50,000 samples for training and 5,000 samples for
testing, originating from a simulation of this model. Further,
we kept the same simulation settings as in (Löwe et al. 2022)
and ignored the diagonal of G (autoregressive links) to make
our experiments directly comparable. We again performed a
hyperparameter search for each architecture and retrained
the best hyperparameter combination ten times to report the
standard deviation. We report the results of these experi-
ments in Table 2. Here, the CM architectures performed
best and achieved similar, if not slightly better, results than
(Löwe et al. 2022). Further, all of our baselines are deci-
sively outperformed on this dataset, which we attribute to the
fact that the Kuramoto dataset does not follow Equation 1,
which hinders methods that rely on linear relationships.

Zero-shot Inference
To test the performance of CPNNs when applied to truly
out-of-distribution data, we reuse the CDNNs from Syn-
thetic Data 1 on two benchmarks involving the discharge of
rivers in Germany (Ahmad, Shadaydeh, and Denzler 2022)
and aerosol-cloud interactions (Jesson et al. 2021). Since all
of these datasets only specify a summary graph G, we took
the causal link of the first time lag as the prediction for the
summary graph. We report the results of this experiment in
Table 2. Importantly, since we wanted to perform this exper-
iment as close to a real application of CPNNs as possible, we
do not report STD but inferred the summary graph once for
each sample from the full-time series and with the highest-
scoring models from Synthetic Data 1 .

We found that the performance of CPNNs on unseen data
distribution differs widely between model architectures and
datasets. While the river benchmark is properly predicted by
the uGRU and the Trf architecture, these architectures are
specifically outperformed by CM on the aerosol dataset. As
a side note, (Ahmad, Shadaydeh, and Denzler 2022) or orig-
inally (Gerhardus and Runge 2020) suggest that the river
benchmark is more challenging than our scoring suggests.
This is, since they report results for fixed p-values, which

is not required when calculating AUROC scores. While the
performance of CP is improvable, we find it promising that
models not trained on these datasets do not break down en-
tirely but display some extrapolation capabilities. We believe
this signifies that CPNNs incorporate some form of Causal
Discovery test that can uncover correct causal structures in
more general settings than the training distribution.

Discussion and Conclusion
This work introduced Causal Pretraining, a methodology
for supervised deep end-to-end causal discovery from time
series data. We conducted the first experiments, provid-
ing evidence that our causally pre-trained neural networks
(CDNNs) can achieve similar results to other causal dis-
covery methods without fine-tuning any parameters during
inference and being highly computationally parallelizable.
We provided evidence that CDNNs show some potential
to extrapolate to unseen real-life data outside of the train-
ing distribution. Specifically interesting, the performance of
CDNNs and its capability to generalize increases with data
complexity and model size. Under the assumption that this
trend continues beyond the scope of our experiments, we
take this as evidence that foundation causal models trained
through Causal Pretraining are possible. Recent develop-
ments in deep learning (OpenAI 2023) suggest that consis-
tent generalization by scaling up through data and model di-
mensions is indeed possible. This idea also aligns with theo-
retical research such as (Bubeck and Sellke 2021), (Bartlett
et al. 2020) or (Brutzkus and Globerson 2019), suggest-
ing that greatly over-parametrizing neural networks can help
with generalization. While we excluded these experiments in
this paper since they are probably intuitive for deep-learning
practitioners, we also found that both scalings must go hand-
in-hand while performing Causal Pretraining. Simply scal-
ing up the architectures without increasing the dataset’s
complexity makes it arbitrarily easy for neural networks to
remember the training dataset and not generalize at all. Fur-
ther, keeping the network too small while increasing the data
complexity in might make the learning task impossible and,
with that, also prevent generalization. We reserve keeping
this delicate balance while scaling up our methodology con-
cerning data distribution and model size for future research.
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Appendix
Here, we include additional specifications for the exact pa-
rameter counts for all used architectures and sizes in Table 3
and data that we use throughout this paper in Algorithm 1
and Table 4. Next, we include a study on inference speed in
Inference Speed and a depiction of Correlation Regulariza-
tion in Figure 5. While we expected that the importance of
hyperparameter selection would decrease with model size,
we found no consistent pattern in our experiments. To de-
pict this, we display an example of performance distribu-
tion over hyperparameter in Figure 6. Further, in Prelim-
inary studies , we describe two small experiments on the
baseline capabilities of our architectures, which were histor-
ically performed before experiments in the Experiment sec-
tion . In Probabilistic studies , we introduce a procedure that
allows CPNNs to predict probability distributions instead of
probability scalars that might be useful for certain applica-
tions. Finally, we provide a summary of all abbreviations
used throughout the paper in Table 5.

Algorithm 1: An algorithm with caption

Require: : maximum lags(n), number of variables(v)
Require: : link threshold, link distribution
Require: : ts length, noise var, number of samples
Require: : nl selection, nl threshold
Require: : data test(), graph test()
X = {}
G = {}
while len(G) < number of samples do

Draw : U(0, 1)V×V×N

PA : 1 if Draw > link threshold else 0
A = U(link distribution) if PA else 0
if nonlinear then

Draw : U(0, 1)V×V×N

PA : 1 if Draw > nl threshold else 0
f : U(nl selection) if PA else 1

else
f : 1

end if
X = {}
while len(X) < ts length do

generate xnew
i according to Equation 1 (A, f)

end while
if data test(X) then
X ← X
G ← G

end if
end while

Inference Speed
Since inference with CPNNs is highly parallelizable (batch-
ing), which we denote as a neat advantage of CPNNs, we
provide some short comparisons on inference speed. For
this, we reuse the dataset of the above section and mea-
sure the speed to predict the corresponding test set with
500 samples each. We perform inference on an Intel i7-7700

Size Small Medium Big Deep LCM
MLP 13.4k 118k 1.5M 17.3M -
uGRU 13.0k 126k 1.6M 17.2M -
bGRU 12.7k 116k 1.5M 18.4M -
CM 13.3k 128k 1.4M 17M 286M
Trf 12.3k 120k 1.4M 16.1M 391M

Table 3: Excact parameter count for all architectures and
sizes we use throughout this paper.

CPU, omitting GPU support from which CPNNs would ad-
ditionally benefit. We summarize the relationship between
the number of variables and the inference speed as follows:
While our simple benchmark techniques are still slightly
faster since they come with closed-form solutions for their
optimization (and we additionally implemented a batched
version for CT), the inference speed of Causal Pretraining
lies in the same order of magnitude for all number of vari-
ables tested. In contrast, PCMCI scales quadratically in our
experiments. The number of conditional independence tests
that must be performed grows quadratically with the number
of variables, making it infeasible to infer from a large set of
variables. Importantly, all our methods (including PCMCI)
are very fast to compute in comparison to other approaches
such as, e.g., (Tank et al. 2018) or (Ahmad, Shadaydeh,
and Denzler 2022), which require fitting neural networks
for each sample. We believe this feature of CPNNs makes it
specifically beneficial in areas where many similar samples
have to be processed, such as in Earth and neuroscience. Es-
pecially considering that they can outperform similarly fast
benchmarks.

Figure 4: Comparison of inference speed. Here, we use the
architecture with the highest AUROC score for each dataset
to represent CPNNs. We report the speed of computing the
solution for 500 samples and 100 repetitions.



Name Pre SL ML SNL MNL LNL XLNL Wide
Function set L L L NL1 NL1 NL2 NL2 NL2
Variables 3 3 5 3 5 3 5 7/10/15
Maximum lag 2 2 3 2 3 2 3 3
Coefficients (train) br br ± br br ± br br ± br ± br
Noise var (train) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Coefficients (test 1) br br ± br br ± br br ± br ± br
Noise var (test 1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Coefficients (test 2) sr sr ± sr sr ± sr sr ± sr ± sr
Noise var (test 2) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Average non-zero 9 2.7 7.5 2.7 7.5 2.7 7.5 14.7/30/67.5

Table 4: Dataset specifications. L denotes linear, NL1 denotes drawing only from (ex, x2), and NL2 denotes the full function
set specified in the method Method section . Furthermore, sr denotes the range (0.2-0.3), and br denotes the range (0.3-0.5). ±
denotes that values drawn from a range can be positive or negative. Wide specifies the datasets that were used during Synthetic
Data 2 . Pre specifies the dataset used during Preliminary studies .

Preliminary Studies: Architecture Capabilities
Initially, we conducted two experiments to estimate our ar-
chitecture’s general capabilities. We used the model size
”small” for these three experiments and chose a learning rate
of 0.0001, a weight decay of 0.01, and a batch size of 64,
performing no hyperparameter search.

First, we tested whether our architectures can correctly
distinguish between a linear and a nonlinear X, which we
deemed to be an essential capability. For this purpose, we
fixed which elements of A are non-zero and only alter their
actual values. We then added a nonlinear fn

j,i for half of the
samples as described in Algorithm 1. We temporarily re-
purposed the regression head by adding a Sigmoid function.
We treated the output as a binary classification and used bi-
nary cross entropy as the loss function.

We found that the uGRU and the Trf architecture outper-
form the other approaches in this limited setting (Increased
AUROC scores on Test data), framing them as the most
promising candidates. While we found this to be rather in-
tuitive, since these are archetypes frequently applied to time
series, we also later found out that this advantage does not
necessarily translate into more general setups. We conclude
that this supports our approach of considering multiple ar-
chitectures.

Second, we tested whether CPNNs can uncover the pre-
cise values in A. We again fix which values of A are non-
zero and alter only its coefficients. To train, we remove the
sigmoid activation from our output vector and treat it as a
direct prediction for A. We take the original A as labels and
optimize an MSE loss.

We found that none of our architectures can uncover the
exact A. They instead converge on predicting the mean of
each element in A. This behavior is consistent over all tested
architectures, and we observed no change even when weigh-
ing the loss values of non-zero elements higher than those
elements that are zero. We took this as a reason for our bi-
nary problem formulation, aiming only at uncovering which
elements are non-zero but not the exact strength of the re-
lationship. While we are confident that this behavior might
be altered with more sophisticated loss schemes or larger

Figure 5: Visualization of CR for α = 1.5 and β = 0.15. The
penalty is only big when the confidence is high while the
correlation coefficient is low.

model sizes, we keep this additional complexity for future
research. Importantly, making binary decisions aligns with
many other causal inference methods.

Probabilistic Predictions
Here, we tested whether we can adapt our method to produce
distribution as outputs instead of a single probability. We do
this by running many short samples of the same time series
through a model and constructing a distribution over output
probabilities for each edge. It might be interesting to ana-
lyze the form of these distributions in the future, which could
help detect wrongly classified edges or determine the exact
decision threshold. As an example of this procedure, Fig-
ure 6 holds the output distributions of a uGRU model with
the size ”big” for a single sample from the XLnL dataset.
Notably, some links have very high consistent confidence,
while the prediction varies much more for others.



Figure 6: Left: Impact of hyperparameter selection. We report the standard deviation of the AUROC score on the validation
set. For the synthetic data, we provide the joint dataset grid search results for model sizes ”medium” and ”big” and the grid
search results for the dataset LnL for model size ”small,” ignoring all combinations that were not evaluated for the joint dataset.
Right: Distributions over output probabilities for every edge in a single sample, sampled as described in Probabilistic studies .
Colorful distributions denote true edges.

Abbreviation Full Name Type
CP Causal Pretraining Method
CPNN Causally Pretrained Neural Network Method

MLP Multi-Layer Perceptron Architecture
uGRU unidirectional Gated Recurrent Unit Architecture
bGRU bidirectional Gated Recurrent Unit Architecture
CM ConvMixer Architecture
Trf Transformer Architecture

SL Small Linear Dataset
ML Medium Linear Dataset
SNL Small Nonlinear Dataset
MNL Medium Nonlinear Dataset
LNL Large Nonlinear Dataset
XLNL Extra Large Nonlinear Dataset

CP Correlation Thresholding Baseline
GVAR Granger Causal Vectorized Autoregression Baseline

LCM Large Causal Model Model size

CR Correlation Regularization Technique

Table 5: Summary of abbreviations used throughout this paper.
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