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Abstract
Since the publication of the original Transformer architec-
ture (Vaswani et al. 2017), Transformers revolutionized the
field of Natural Language Processing. This, mainly due to
their ability to understand timely dependencies better than
competing RNN-based architectures. Surprisingly, this ar-
chitecture change does not affect the field of Reinforce-
ment Learning (RL), even though RNNs are quite popular
in RL, and time dependencies are very common in RL. Re-
cently, (Parisotto et al. 2019) conducted the first promising
research of Transformers in RL. To support the findings of
this work, this paper seeks to provide an additional exam-
ple of a Transformer-based RL method. Specifically, the goal
is a simple Transformer-based Deep Q-Learning method that
is stable over several environments. Due to the unstable na-
ture of Transformers and RL, an extensive method search
was conducted to arrive at a final method that leverages de-
velopments around Transformers as well as Q-learning. The
proposed method can match the performance of classic Q-
learning on control environments while showing potential on
some selected Atari benchmarks. Furthermore, it was criti-
cally evaluated to give additional insights into the relation
between Transformers and RL.

Transformer architectures revolutionized the field of Nat-
ural Language Processing (NLP). The classic Transformer
(Vaswani et al. 2017) and its successors such as (Devlin et al.
2018) or (Radford et al. 2019) outperform traditionally used
RNN-based architectures on the majority of tasks in NLP.
Their superior performance can be mostly attributed to their
ability to understand timely dependencies and notably long-
term dependencies better than RNN-based methods. Timely
dependencies are not only interesting for NLP tasks. In re-
inforcement learning, such an ability is useful to perform in
environments that are only partially observable. RNN-based
methods are traditionally deployed to such environments.
Furthermore, there are multiple successful examples of ap-
plications of the Attention mechanism (the core function-
ality of the Transformer) to RL (Iqbal and Sha 2019), (Oh
et al. 2016) and (Manchin, Abbasnejad, and van den Hengel
2019). Due to these facts, the deployment of Transformer-
based architectures to RL is a promising research direc-
tion. While there were several studies on Transformer-based
methods in RL, many of them such as (Upadhyay et al.
2019) or (Mishra et al. 2017) reported random performance

for their Transformer-based approaches. Even on simple
MDP or Multi-armed Bandit problems. Contrary to that, the
first major success with Transformer-based RL methods was
recently reported by (Parisotto et al. 2019). So while it is
possible to use Transformer-based architectures in RL, it
seems to be a nontrivial task. In RL, the information signal
is affected by past decisions. This creates dependencies and
makes optimization harder than training on a fixed dataset.
Additionally, Transformer-architectures are quite hard to op-
timize which was already stated in (Vaswani et al. 2017).
As an example, they are strongly dependent on a specific
learning rate schedule to be optimized. Together, these two
conditions make the optimization of Transformer-based ar-
chitectures in RL challenging.

To support the results of (Parisotto et al. 2019) and to
further evaluate the possibility of Transformer-based mod-
els in RL, this paper seeks to create a new Transformer-
based RL method that contrary to (Parisotto et al. 2019) fea-
tures a model that is based on the original Transformer from
(Vaswani et al. 2017) instead of the Transformer-XL (Dai
et al. 2019). Furthermore, this work will alternatively use the
Transformer-based model as a value function for a Deep Q-
learning agent. While the approach of (Parisotto et al. 2019)
showed strong performance, its optimization method as well
as their Transformer model are quite advanced. On contrary,
the approach in this paper uses a well-known optimization
method (Q-learning) as well as a simple Transformer version
to add to a clear understanding of the interrelations between
RL and Transformer-based models. Furthermore, it is hoped
that this choice will make it easier to retrace results that are
reported in this paper and encourage additional research. In
summary, the following ideas are hoped to be supported:
• With a couple of alterations, Transformers can generally

perform in RL.
• Transformer-based Deep Q-networks (TBQN) can per-

form.
• Transformers can outperform RNN based models in RL.

Background
Deep Q-learning
The goal of Q-learning is to find a function that correctly
maps state (s) action (a) pairs to their corresponding value



for an agent that interacts with an environment. The simplest
form of Q-learning is defined as updating a Q-function in the
following manner:

td =Rt+1 + γmax
a

Q(st+1, a)−Q(st, at)

Q(st, at)← Q(st, at) + α ∗ td
(1)

where R is a reward, γ is a discount factor and Q repre-
sents the value of any pair (s,a). By updating Q-values af-
ter rewards, the greedy policy as-well as the value function
change frequently. Under the condition that all states are ex-
plored sufficiently, these updates are guaranteed to converge
to a Q-function that correctly represents the environment.
Based on this Q-function, a policy will be formed by greed-
ily sampling the action with the highest Q-value at every
step. Traditionally, the Q-function was implemented as a ta-
ble. However, it is possible to approximate it with a neural
network. This method is known as Deep Q-learning. When
using a function approximator for the Q-function, the defini-
tion of an update changes since it is only possible to update
weights of the network and not specific Q-values directly.
An update for a Deep Q-network (DQN) is therefore defined
as:

target = R(s, a, s′) + γmax
a′

qk(s
′, a′)

td =
[
(qθ(s, a)− target)2

]
θk+1 ← −α ∗ ∇θEs′ P (s′|s,a)td

∣∣∣∣
θ=θk

(2)

where θ represents the network weights and s′ and a′ are
the state and action in the timestep t+1. When a network is
updated according to Formula 2, an issue arises. Data that
is acquired by an agent interacting with an environment is
quite different from a fixed dataset that is normally used to
train neural networks. Today, Replay Buffers, a method to
save experience and reuse it during model training, and tar-
get networks, a method to make the target of the update more
stable, are used to counter these issues. By applying these
two methods to Deep Q-learning, (Mnih et al. 2013) opened
the field of Deep Reinforcement Learning. Their method
will be the baseline RL method for the course of this work.

The Transformer Architecture
The Transformer model is a sequence to sequence archi-
tecture (seq2seq) which was initially developed to perform
translation tasks in NLP, and which relies heavily on the
Attention mechanism. A seq2seq structure is defined as a
model that takes in a sequence of signals and returns a se-
quence of outputs. Also, the Transformer is an Encoder-
Decoder structure that splits into two distinct submodels.
An Encoder, that transforms an input sequence into an en-
coded representation and a Decoder that generates, based on
the encoded representation, a new sequence as an output.
Since the proposed architecture is based on the Encoder of
the classic Transformer (Vaswani et al. 2017), its structure
will be discussed further. The Transformer Encoder takes
in some word tokens and transforms them into the same

Figure 1: The standard Transformer Encoder layer

number of encoded representations. To do this efficiently,
the Transformer stacks several identical blocks on top of
each other. These blocks are called Encoder layers. Addi-
tionally, the Encoder features an Embedding layer and a
positional encoding of the input sequences which both are
added before the first layer. A single Encoder layer is con-
structed out of two main components. An Attention block
and a feed-forward network. Additionally, residual connec-
tions and normalization are added. Fig. 1 shows the structure
of the Encoder layer. Note that the input and the output of the
Encoder have the same dimension. This makes layer stack-
ing possible. The computation that takes place in a single
Encoder layer is defined as:

out1 = Norm(Attention(X) +X)

out2 = Norm(FF (out1) + out1)
(3)

where X represents an input tensor with the shape (batch
size, input sequence length, model dimension). Typically,
Dropout is deployed after the Attention block and after the
feed-forward block.

The Attention mechanism
Attention is a mechanism that understands the importance
of specific inputs for other inputs and combines these into a
new vector that includes this information. This mechanism
does not rely on a hidden representation that includes all past
information but attends directly to the full inputs. This helps
Attention to perform better than RNN-based approaches in
many cases, especially when long-term dependencies are
present and relevant. Based on Attention, Multi-Head Atten-
tion is performed by multiple Attention operations in paral-
lel on sub-parts of the inputs. This allows attending multiple
sub-areas of inputs at once. The Transformer features the
use of Scaled Dot Product Attention as well as Multi-Head
Attention to understand dependencies. Scaled dot product
Attention is defined as the operation on three inputs. Keys
(K), Queries (Q), and Values (V):

out1 = QKT

out2 = out1/
√
dimkey

out3 = softmax(out2)V

(4)



Where Q, K, V are input matrices, and dimkey is the last
dimension of K. Intuitively, this can be understood as a way
to scale and add the content of V by a factor that is a com-
bination of Q and V. Through this channel, V attends to the
information that is included in Q and K and is altered ac-
cordingly. To perform Multi-Head Attention, the initial input
vector is simply split. When performing Multi-Head Atten-
tion in the Encoder, the embedded input sequence represents
K, Q, and V. This specific form of Attention is called Self-
Attention, since the input sequence attends to itself. It is a
key component that allows the Encoder to encode the input
sequence efficiently.

Transformers for Q-learning
Transformer-based Q-Networks
This paper proposes to use an altered version of the Trans-
former Encoder as a Q-network for a Q-learning agent.
However, the original structure has to be altered slightly to
be usable. To map to Q-values at the end of the model, the
output of the Encoder has to be mapped to the Q-value di-
mension which is achieved by adding a fully connected layer
after the last Encoder layer. Also, the embedding layer of
the classic Transformer has to be replaced by a fully con-
nected layer that maps from the state dimension to the model
dimension. After these two steps, a Transformer-based Q-
network (TBQN) that can map from states to Q-values is
obtained. It can be examined in Figure 2.

The literature (Parisotto et al. 2019), (Upadhyay et al.
2019), (Mishra et al. 2017) suggests, that a Q-learning agent
using the proposed TBQN would be very hard to optimize
and most likely unstable. To preemptively counter this, a
method variation search space was constructed which in-
cludes three categories. Firstly, changes to the model struc-
ture itself. Secondly, the application of additional methods
for DQNs and Transformers. Both of these categories rep-
resent small model or method variations that are proposed
in the literature and might be able to improve the perfor-
mance of TBQNs. Thirdly, a selection of possible impactful
Hyperparameters is included. This search space was then fil-
tered to find a method variation that is easier to optimize and
more stable than a base Q-learning agent featuring the base
TBQN.

Transformer layer variations
Since the original publication of the Transformer (Vaswani
et al. 2017), many Transformer layer variations were in-
troduced in the literature. These structural changes are ex-
clusively made to make the Transformer more stable dur-
ing training. From this literature, several Transformer layer
variations were selected to be tested as the core layer for
TBQNs.

Dropout free models (layer type 2) Since Transformers
were initially developed for NLP, they feature the usage of
Dropout layers. Typically implemented to counter overfit-
ting, the usage of Dropout in RL is not popular. Due to this,
a layer without Dropout was tested. Additionally, all layer
variations are tested with and without Dropout after the final
layer. This layer variation is displayed in Figure 3a.

Figure 2: The proposed Transformer-based Q-network

Identity Map Reordering (IMR) (layer type 3) A layer
variation that was described in (Parisotto et al. 2019). It
features the positional change of the normalization layer to
the start of each sub-layer. Furthermore, an additional ReLU
activation after every sub-layer was added to prevent two
linear layers in a row. Its implementation can be observed in
Figure 3b.

Pre layer Normalization (layer type 4) Very similar to
IMR, this variation described in (Xiong et al. 2020) changes
the position of the layer normalization to the beginning of
each sub-layer. While this is identical to IMR, this variation
does not feature an additional ReLU activation. Its imple-
mentation can be observed in Figure 3c.

Output gate connections (layer type 5) Also described
in (Parisotto et al. 2019) this variation based on IMR addi-
tionally replaces the residual connection with a gated layer.
While residual connections were initially implemented to
improve the training of deep neural networks, they seem
to make training Transformers more unstable. They are re-
placed with the following gate formulation, where W and b
are trainable parameters:

gl(x, y) = x+ σ(W g
l x− b

g
l )� y (5)

This variation was also already tested for Transformer-
based methods in RL and it will be used as it was proposed
in (Parisotto et al. 2019).

GRU gate connections (layer type 6) Finally, another
variation will be tested which features the usage of a differ-
ent gating mechanism based on a GRU unit. Again, this vari-
ation was introduced in (Parisotto et al. 2019) and is based
on IMR. Noteworthy is that this model variation combined
with Maximum a Posteriori Policy Optimization (Song et al.



(a) Layer type 2 (no dropout) (b) Layer type 3 (IMR)

(c) Layer type 4 (norm first) (d) Layer type 5/6 (gated)

Figure 3: The Transformer Encoder layer variations

2019) achieved SOTA results for DMLab-30. It remains to
be seen if this is also the case for Q-learning. The mecha-
nism is defined by Formula (6). W and U are trainable pa-
rameters.

H = tanh(WH
l y + UHl (R� x))

Z = σ(WZ
l y + UZl x− b

g
l )

R = σ(WR
l y + URl x)

gl(x, y) = (1− Z)�+Z �H

(6)

Additional methods and Hyperparameters
Additionally to these layer variations, the following meth-
ods and Hyperparameters were included categorically in the
search space to test their effect on the performance of a
TBQN:

• Double Q-learning

• Target update period

• Target update (τ ) (Lillicrap et al. 2015)

• Gradient Clipping

• Learning rate schedules

• Depth-Scaled Initialization (Zhang, Titov, and Sennrich
2019)

• Depth-Scaled Initialization of the last Layer (Zhang,
Titov, and Sennrich 2019)

• Number of Attention Heads

• Initial collection steps

• Loss function

• Environment normalization

• Epsilon Greedy

• Replay Buffer size

• Future reward discount (γ)

• Batch size

• Learning rate

• Encoder type (whether or not dropout is used outside of
the Encoder layers)

Experiments
Baseline performance
To motivate the method variation search and to set a base
performance of TBQNs, a Q-learning agent with the pro-
posed base TBQN and with no special additions (except a
Replay Buffer and a Target Network) was evaluated. The
agent was trained on four environments (MountainCar-v0,
Acrobot-v1, CartPole-v1, and LunarLander-v2) for 150k
steps. All these environments are implemented by OpenAI
GYM (Brockman et al. 2016). The average episode return
over 10 episodes can be examined in Figure 4 . Two training
runs per environment were executed (For Acrobot-v1, only
one is displayed to guarantee the visibility of the results).
The agent was not able to solve any environment sufficiently,
had a high fluctuation, and even diverged on some occasions
(denoted by a graph ending before 150k steps). For these ex-
periments, the following Hyperparameters were used. Initial
collect steps: 1000, mean squared loss, 4 Attention Heads,
epsilon greedy: 0.1, Replay Buffer length: 100000, batch
size: 32, learning rate: 1e-5. The rest of the parameters were
not used. It shows quite clearly, that TBQNs need additional
help to perform.

Selecting the optimal method variation
While it would be ideal to test every possible method varia-
tion, this is unfeasible due to computational complexity. Due
to that, a two-step method based on two distinct studies was
constructed to find a well-performing method variation.

Study one - Parameter importance The first study fo-
cused on narrowing down the method search space signifi-
cantly. This was achieved by estimating the Mean Decrease
Impurity Importance Score for all parameters in the method
search space. Based on these scores, parameters with low
importance were excluded entirely. Furthermore, parameters
with high importance were further evaluated to select the
best performing values and exclude the rest from the search
space. To estimate these scores, the method search space had
to be sampled and evaluated. Since grid search was infeasi-
ble, a Tree-Structured Parzen Estimator, which was firstly
described in (Bergstra et al. 2011), was used to sample



(a) LunarLander-v2 (b) Acrobot-v1

(c) MountainCar-v0 (d) CartPole-v1

Figure 4: Average return during training of a base Q-learning
agent with the proposed TBQN base in four different envi-
ronments.

from the search space. Every method search space sample
was trained for 15k steps. As a final performance score, the
average return of the last 10 episodes was used. To guar-
antee generality, the study was conducted independently in
three different environments (CartPole-v1, Acrobot-v1, and
LunarLander-v2) and the final importance score for every
parameter was averaged between these environments. All
studies were performed on a single GPU (Nvidia1080Ti).
Further information can be found in Appendix B.

Study two - Final selection After having narrowed down
the method search space significantly, the remaining search
space samples were evaluated further to find the model
variation with the best performance. Two methods were
used to determine the effect of certain parameter values on
the performance of TBQNs and to select a final method
variation: On one hand, the mean reward of the last ten
episodes between all samples where a certain parameter
value was present was calculated. On the other hand, the
search space samples with the highest rewards for every
environment were extracted. This was done to determine
whether combinations of specific parameter values per-
formed especially well. Again, the study was conducted in
three different environments (CartPole-v1, Acrobot-v1, and
LunarLander-v2) to guarantee generality. All search space
samples were trained for 75K steps in the environments
CartPole-v1 and AcroBot-v1 and for 150k steps in the envi-
ronment LunarLander-v2. All experiments were conducted
on a single Nvidia GPU(1080ti). Further information can be
found in Appendix B.

Results
Based on the two studies, the method variation represented
by Table 1 was selected as it performed well in all environ-
ments and proved to be stable during training. The parame-
ters initial collect steps, Environment normalization, Replay
Buffer size, τ , double Q-learning, and the Encoder type had

Parameter Value Category
Gradient Clipping True Fixed
Batch size 32 Fixed
Learning rate 1e-4 Fixed
Layer type 3 Fixed
Custom lr schedule ”No” Fixed
Depth-Scaled Initial-
ization

1 Fixed

Target upate period 10+ Semi-fixed
Num Heads 4/2 Semi-fixed
Epsilon Greedy (0. - 1.) Environment

dependent
Depth-Scaled Initial-
ization (last layer)

(T/F) Environment
dependent

Loss function (Huber,
Squared)

Environment
dependent

γ (.99, .95) Environment
dependent

Table 1: Final method variation

low importance for control environments and are not speci-
fied. The following comments should be made to accompany
this selection:

• The optimal values for several parameters are
environment-dependent. This means the performance of
a Q-learning agent using a TBQN relies strongly on the
right value selection. The optimal values however change
from environment to environment.

• Surprisingly, IMR layers (layer type 3) perform the best
while GRU-gated layers (layer type 6) were excluded
early due to frequent divergence.

• While being very important for NLP, learning rate sched-
ules are not required for TBQNs. It is estimated that
TBQNs with layer variations do not require learning rate
schedules which makes them obsolete.

• Depth-Scaled Initialization (Zhang, Titov, and Sennrich
2019) is beneficial. Models that were initialized with it
tended to diverge less and achieved higher average re-
wards at the end of training.

• Gradient Clipping is very important for TBQNs. Since the
Transformer has problems with divergence in the RL set-
ting, Gradient Clipping helps to mitigate destructive up-
dates.

• Several parameters are not important for model perfor-
mance (Assuming no abstruse values). During the param-
eter search, they showed no significant impact on the per-
formance of TBQNs.

Performance in control environments
To evaluate the performance of the method variation speci-
fied in table 1, its average return during training was com-
pared to the average return during training of an optimized
classic Q-learning agent in four Environments (CartPole-v1,
Acrobot-v1, MountainCar-v0, and LunarLander-v2). The
method was extracted from Rl-zoo baselines (Raffin 2018),



a collection of Hyperparameter optimized methods. Addi-
tionally, the final method variation was tested with different
values for history length, model dimensions, and the num-
ber of layers (Appendix C) to secure that it is stable and
performs consistently when scaled up or down. By examin-
ing Figure 5, it is visible that the performance of the pro-
posed model is consistent over different model sizes. While
the method variation is consistent for CartPole-v1, only one
variation is displayed to keep the visibility of the results.
Furthermore, when comparing Figure 5 with Figure 6, it is
visible that the average return during training of these differ-
ent approaches is largely comparable. Noteworthy, the pro-
posed method variation seems to have problems to converge
for CartPole-v1. The frequency in which the maximum re-
ward is achieved seems to however increase over time.

(a) LunarLander-v2 (150k steps) (b) Acrobot-v1 (150k steps)

(c) MountainCar-v0 (150k steps) (d) CartPole-v1 (150k steps)

Figure 5: Average return during training of the final model
variation with different model dimensions on control envi-
ronments

Performance in ATARI environments
Additionally to the control environments, the proposed
method variation was trained in two environments (”MsPac-
man” and ”Asteroids”) of the popular ATARI benchmark.
Two parameters that are not included in 1 were scaled up
from their initial values to match the complexity of the new
environment and to keep them in reasonable ranges. The ini-
tial collect steps were increased from 1000 to 5000. Addi-
tionally, the Replay Buffer size was increased from 100k to
200k. For both environments, the RAM state which consists
out of 128 pixels was used as the state vector for training.
The proposed method was trained on MsPacman for 4 and 5
million timesteps and on ”Asteroids” on 5 million timesteps.
The best average return during training was compared to the
reported results from (Mnih et al. 2015) (classic DQN per-
formance), and (Hausknecht and Stone 2015) (RQN perfor-
mance). Both studies trained their methods for 10 million
timesteps before reporting their final average returns.

When tracking the method state with the best average re-
turn during training for the ”Asteroids” environment, the

(a) LunarLander-v2 (200k steps) (b) Acrobot-v1 (100k steps)

(c) MountainCar-v0 (100k steps) (d) CartPole-v1 (100k steps)

Figure 6: Average return during training of a HP optimized
classic Q-learning agent

(a) Atari Asteroids (b) Atari MsPacman 1

(c) Atari MsPacman 2

Figure 7: Average return during training on Atari

proposed method variation performs quite well. After only 5
million timesteps, the Q-learning agent achieved a higher av-
erage return than the reported RQN-based and DQN-based
methods. However, during training, the model performance
fluctuates strongly which makes the final Q-learning agent
perform quite bad. For the ”MsPacman” environment, no su-
perior performance can be reported. Additionally, the train-
ing behavior does vary significantly. The same TBQN-based
Q-learning agent was trained twice. The first try (7b) shows
consistent learning over the whole training period. The sec-
ond one (7c) shows no increase in performance over the
whole training. While TBQN based methods can perform
in ATARI environments, it is still a challenging task. More
experiments must be conducted to form a final conclusion.
It is also suspected that conducting the parameter search in
control environments, might have had a negative effect on
the performance of TBQNs in ATARI environments. We are



positive, that this challenge can however be overcome by
committing more computational resources in the future.

Methods Asteroids MsPacman
DQN2 1629 +/- 542 2311 +/- 525
DQN1 1070+/-345 2363 +/-735
RQN1 1020 +/-312 2048+/-653
TBQN 1813+/- 396 1555+/-696

Table 2: Reported average returns of different methods on
Atari. 1 = (Hausknecht and Stone 2015), 2 = (Mnih et al.
2015)

Conclusion
During this work, the interaction of Transformer architec-
tures and Deep Q-learning was evaluated. The goal of this
work was to craft a new RL method based on the com-
bination of Deep Q-learning and Transformer-based mod-
els which was successful. Through an extensive method
variation search, a Transformer-based Deep Q-Learning
method was constructed which leverages developments
around Transformers as well as Q-learning. The proposed
model can match the performance of an optimized classic
Q-learning agent on control environments while showing
potential on selected Atari environments. Despite these suc-
cesses, the testing of the proposed final method variation on
more environments and especially environments that require
a deep understanding of past states is still essential to form
a final conclusion. The results of this work are complemen-
tary to (Parisotto et al. 2019) and another step to a better un-
derstanding of Transformer architectures in RL. This work
defies past results that neglect Transformer architectures in
RL and shows that they can perform when handled care-
fully. While the proposed method is connected to the one
that was used in (Parisotto et al. 2019), it represents a differ-
ent version of a Transformer-based RL method that can be
deployed, tuned, and tested more easily. To further encour-
age this, the code base of this research can be accessed under
(Stein 2020). It is hoped that this work can help to support
new studies on the topic of Transformers in RL and leverage
them to RL mainstream.

Appendix
A. Model specifications
Throughout this work, the TBQN dimensions specified in
Table 3 were used.

Specification Control Atari
History horizon 5 steps 4 steps
Encoding Dimension 64 64
Number of Layers 3 2
Dff Dimension 256 256

Table 3: TBQN dimensions throughout this work

B. Study specifications
Table 4 and Table 5 hold additional information concerning
the studies that were conducted to arrive at a final method
variation.

Specification Value
Number of evaluated search
space samples

30

Number of environments 3
Runs per sample 2
Training steps 15k

Table 4: Additional information for study 1

Specification Value
Remaining search space
samples

24

Number of environments 3
Runs per sample 2
Training steps 150k / 75k

Table 5: Additional information for study 2

C. Model dimension variants
During the evaluation of the final TBQN variation, the model
dimensions were altered to test for stability when scaling
TBQNs up or down. The following variations were tested:

• History horizon: 5, Dimensions: 64/256, Layers: 3

• History horizon: 5, Dimensions: 64/256, Layers: 6

• History horizon: 3, Dimensions: 64/256, Layers: 3

• History horizon: 7, Dimensions: 64/256, Layers: 3

• History horizon: 5, Dimensions: 128/512, Layers: 3

D. Additional comments
All experiments and studies were conducted on a single
GPU (Nvidia1080Ti). Specific parameters that are not ex-
plicitly defined are set to the default values of TensorFlow
(Abadi et al. 2015) or are defined in the experiment scripts
available at (Stein 2020)
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enberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.;
Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever,
I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.;
Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke,
M.; Yu, Y.; and Zheng, X. 2015. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. URL http:
//tensorflow.org/. Software available from tensorflow.org.

http://tensorflow.org/
http://tensorflow.org/


Bergstra, J. S.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011.
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