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ABSTRACT

Deformation monitoring is a crucial task for dam operators,
particularly given the rise in extreme weather events associ-
ated with climate change. Further, quantifying the expected
deformations of a dam is a central part of this endeavor. Cur-
rent methods rely on in situ data (i.e., water level and tem-
perature) to predict the expected deformations of a dam (typ-
ically represented by plumb or trigonometric measurements).
However, not all dams are equipped with extensive measure-
ment techniques, resulting in infrequent monitoring. Persis-
tent Scatterer Interferometry (PSI) can overcome this limita-
tion, enabling an alternative monitoring scheme for such in-
frastructures. This study introduces a novel monitoring ap-
proach to quantify expected deformations of gravity dams in
Germany by integrating the PSI technique with in situ data.
Further, it proposes a methodology to find proper statistical
representations in a data-driven manner, which extends es-
tablished statistical approaches. The approach demonstrates
plausible deformation patterns as well as accurate predictions
for validation data (mean absolute error=1.81 mm), confirm-
ing the benefits of the proposed method.

Index Terms— PSI, Sentinel-1, Deformation prediction,
Dam monitoring

1. INTRODUCTION

The monitoring program for gravity dams comprises a va-
riety of methods to ensure their safety [1]. These methods
typically include plumb and trigonometric measurements. To
assess whether measured movements correspond to expected
deformations, statistical predictions are made about the ex-
pected deformation based on relevant exogenous factors such
as temperature and water level. This is ideally done on a daily
or weekly basis. However, not all dams have extensive mea-
surement techniques (plumbs), allowing only for bi-annually

and expensive monitoring strategies due to time-consuming
field campaigns. This is especially problematic, given that
climate change increases the probability of extreme weather
events, which, in turn, potentionally increase environmental
stress on infrastructure.

In this context, Persistent Scatterer Interferometry (PSI,
[2]) has proven to be a valuable alternative, enabling high-
resolution spatial monitoring of dams with revisit cycles of a
few days [3, 4]. The implementation of this technique into na-
tionwide ground motion services has opened up the possibil-
ity of monitoring dam deformations on a large scale. The Ger-
man Ground Motion Service (BBD) provides freely available
Sentinel-1 PS time series starting in 2015 to detect nationwide
ground motions and deformations [5]. Further, current sta-
tistical models of dam deformation typically utilize multiple
linear regression models to predict the expected deformation
of a dam based on only a few exogenous regressors (water
level and temperature, [6]). While these models provide ro-
bust deformation forecasts, they are unlikely to describe the
dynamics of gravity dams exhaustively.

With this background, this study aims to provide the first
complete example of a monitoring strategy, including data-
driven dam deformation forecasting based on Sentinel-1 PS
time series, complemented with in situ data and appropriate
time series modeling.

2. MATERIALS AND METHODS

2.1. Study Area

The study was conducted on a gravity dam in North Rhine-
Westphalia, Germany. The Lister Dam is located in the Sauer-
land region and is part of the Bigge reservoir with a total
capacity of 171.6 million m³. It primarily serves for water
release into the Bigge reservoir. The arched gravity dam is
42 m high, 264 m long, and collects water from a catchment



Fig. 1. The Lister gravity dam, as seen from the impounded
Bigge reservoir on the downstream side.

area of 68.2 km², creating a reservoir with a capacity of 21.6
million m³ [7]. It is operated by the Ruhrverband, a non-
profit-oriented water management company based on German
public law. The dam is equipped with several measurement
techniques, including trigonometric measurement points, wa-
ter level, and temperature monitoring. However, no plump
system has been installed on the Lister gravity dam, reducing
the deformation monitoring to a few samples yearly. Figure 1
shows the Lister Dam from the downstream side.

2.2. Data

The study period covers almost six years, from April 2015 to
December 2020, with the last 12 months of the time series
used as test data to validate predictions. The PS time se-
ries used in this study were provided by the Federal Institute
for Geosciences and Natural Resources (BGR) and com-
plemented with freely available data from BBD’s WebGIS
platform [8]. Time series were acquired by the Coperni-
cus Sentinel-1 satellites, utilizing the PSI technique. Data
originating from the ascending and descending directions
in the sensor’s line of sight (LOS) were used, starting in
2015. Furthermore, vertical and east-west deformation com-
ponents were analyzed, which are also provided by BBD.
All time series were downloaded at a temporal resolution
of six to 12 days. Finally, in this study, the PS time se-
ries were complemented by in situ measurements provided
by the Ruhrverband. Variables such as water level and air
temperature influence the seasonal deformation pattern of a
gravity dam. They are thus essential for accurate predictions
of dam movements. Both variables were provided at a daily
resolution.

3. METHODS

3.1. Exogenous variables and data preprocessing

As a gravity dam is mainly influenced by the seasonal fluc-
tuations in water level (W ) and temperature (T ), these vari-
ables on the current day are considered as potential exoge-
nous influences on the dam deformation. Further, it was esti-
mated that the immediately preceding values of these exoge-
nous variables (e.g., the day before) might be beneficial for
predicting movements. The recent past of W and T as well as
the mean of the last few days (denoted as WM

n , TM
n , where n

specifies the previous days considered) are additionally con-
sidered as additional exogenous regressors. Next, multiple
equally valid options are considered to represent seasonal cy-
cles beyond what can be inferred from the exogenous vari-
ables. First, Fourier terms (F ), which are defined as follows,
are tested as additional exogenous variables:
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)
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(
2πkt

m

)]
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Here, m specifies the length of the seasonal cycle, and k
is the order of the term. Second, the annual cycle (seasonal
mean) subtraction from all time series to only model the dif-
ferences to the annual cycle is considered. Finally, the differ-
encing order (d) of all time series (subtracting previous values
of itself) is optionally evaluated for models that do not feature
spatial interaction (see below).

To further prepare these regressors as well as the PSI-
time series for modeling, the following preprocessing steps
are performed on every time series that is used during train-
ing: 1. Outliers (measurement errors) are filtered via boxplot
filtering (IQR=2.25) by removing measurements outside the
whiskers. 2. Missing values are linearly interpolated (includ-
ing measurements filtered out before). 3. Every time series is
normalized to lie in the range [0, 1].

3.2. Model classes

To link to previous work on modeling dam deformations (typ-
ically via plumb bobs, [6]), well-established linear regression
models are considered. As there are typically multiple PS-
point time series available and since it is unclear whether uti-
lizing the spatial interaction between the different PS point
deformations can improve prediction, these dynamics are ad-
ditionally considered. This means it is explored whether there
are benefits of considering other PS points as potential re-
gressors. Therefore, the following two model classes are in-
vestigated: The Autoregressive Integrated Moving Average
model with exogenous regressors (ARIMAX) and the Vector-
ized Autoregressive Moving Average model with exogenous
regressors (VARMAX):

Yt =

p∑
i=1

ΦiYt−i +

q∑
j=1

ΘjEt−j +AXt + µt + c+ Et (2)
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Here, Y specifies a multivariate time series. Correspond-
ingly, E specifies a vector of error terms. In the case of ARI-
MAX, Y and E are reduced to scalars. p and q denote the AR
and MA model orders, respectively. Φi, Θi and A are vectors
that hold the parameters of the model. X details a vector that
holds all exogenous variables that are considered. Finally, µ
specifies a linear trend and c a constant. While the ARIMAX
model considers only a single-point PS time series to account
for individual dynamics, the VARMAX model utilizes multi-
ple PS point time series to explore the benefit of using spatial
dynamics. For both model classes, the implementation pro-
vided by Statsmodels is used.

3.3. Model search

Since there are different combinations of exogenous vari-
ables, model classes, and seasonal representations that might
be relevant for a specific PS point, an evaluation of various
combinations is performed, which also includes the evalu-
ation of different model orders (p, q, and d). As a model
selection criteria, a prediction of unseen data (validation
data) and a calculation of the Mean Average Percentage Er-
ror (MAPE) between the prediction and the actual values is
performed. Since each PS time series represents a different
position on the gravity dam, it is estimated that the defor-
mation patterns might vary greatly. An individual model for
each PS point is found to account for this. The specification
with the lowest error for each specific PS point is selected
as the final model. Notably, this model search procedure
extends previous standards such as [6] by selecting the best
statistical representation from many possible candidates in a
data-driven manner instead of formulating a single statistical
model based on expert knowledge.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The following search space was exhaustively evaluated: p ≤
2, q ≤ 2, d ≤ 1, the order k of Fk ≤ 1. T and W are in-
clusively evaluated until a lag of two. For TM and WM , the
mean of the last three and seven days before the PS point mea-
surement was evaluated. All of the named Hyperparameters
are optional, meaning models that exclude these terms com-
pletely were also evaluated down to a null model. All combi-
nations are evaluated with and without the subtraction of sea-
sonal mean. Each combination was scored by predicting the
year 2019, which was excluded during model fitting. In total,
more than 14,000 combinations were evaluated for each PS
point to select the final models. These final models were then
retrained on the complete time series until 2020 and used to
predict the complete year 2020. All predictions are performed
on a six-day resolution. Finally, all PS points of the ascend-
ing and descending direction and the east-west and the verti-
cal components were predicted, performing no sub-selection
of the available PS points. To visualize the prediction quality

Fig. 2. Location of all PS points in ascending direction on the
Lister Dam (top) and their corresponding deformation predic-
tions for 2020 (bottom). For comparison, the best individual
ARIMAX and VARMAX models are shown.

exemplarily, all PS points of the ascending direction and the
corresponding prediction for 2020 are shown for both model
classes in Figure 2. In total, four PS points were detected on
the Lister Dam in the ascending direction. In Figure 3, the
residual distribution for the ascending PS points is displayed.
Additionally, a comparison of exogenous variable usage in the
final models is included in Table 1. Error statistics for all LOS
directions and additional components (east-west and vertical)
are provided in Table 2.

The final selection of models generally provides reason-
able results for all PS-points, with a small mean absolute error
of, in the case of the ascending direction, 2.06 mm. Most im-
portantly, the resulting forecasts are more accurate than what

https://www.statsmodels.org


Fig. 3. Residual plot of the best-performing ARIMAX (left)
and VARMAX (right) model for the Lister Dam for all PS
points in ascending direction.

could be predicted by only using W and T of the current day
(MAE of these models are included in Table 2 for compari-
son). This confirms the benefits of selecting models for spe-
cific PS-point time series in a data-driven manner. Further,
the final specifications of model order, exogenous variables,
and preprocessing differ completely for each PS point, vali-
dating the notion that an individual modeling approach should
be deployed. While most models include the influence of wa-
ter level and air temperature in some form, additional influ-
ences differ from model to model (Table 1). Intuitively, since
the position of the PS points (Figure 2) lies in different dam
sections, this is deemed a valid phenomenon. As a slight ten-
dency, it was observed that the water level seems to have a
more pronounced impact in the final models (Table 1). Fur-
ther studies are, however, required to test whether this obser-
vation also corresponds to actual physical phenomena.

Finally, for many PS points, the performance of the best
VARMAX model is slightly more robust for the year 2020,
suggesting that the PS points hold at least some relevant in-
formation for each other. Especially for PS-point 720808, the
ARIMAX forecasts fail to predict the second half of 2020
properly. While investigating the reason for this bad perfor-
mance, it was found that the steep drop in predicted deforma-
tion can most likely be attributed to a change in water levels at
the Lister gravity dam, which drops strongly simultaneously.
This, however, also means that the relationship between the
PS-point time series and water level was not properly learned.
While this could suggest that the model selection is not opti-
mal in this case, it could also mean that additional PS-point
preselection is necessary for a robust monitoring strategy to
filter out time series that show no relationship to known de-
formation drivers. As the quality of the PS-points time series
can vary with how well they are aligned with the line-of-sight
of Sentinel-1, and there are typically many points available,
this seems beneficial for deploying such a monitoring strat-
egy in practice.

ID 720574 720593 720808 720906

Wt ✓ ✓ ✓ ✓
Tt ✓ ✗ ✓ ✗
Wt−n ✗ ✓ ✓ ✓
Tt−n ✗ ✗ ✓ ✗
WM

3/7 ✗ ✗ ✓ ✓

TM
3/7 ✓ ✗ ✓ ✓

Table 1. Exogenous variables related to either water level or
air temperature that are represented in the final models. For
PS points 720574, 720593, and 720808, results for VARMAX
models are shown, while for PS point 720906, the ARIMAX
model results are shown, as they produce a lower MAE. In-
terestingly, the specific variable selection is PS point specific,
emphasizing the need for an individual model specification.

MAE (mm) Asc. Desc. EW Vert. Total

ARIMAX 2.53 2.32 2.02 1.73 2.15
VARMAX 2.07 1.86 1.80 1.51 1.81
Baseline 4.10 4.21 4.10 2.92 3.83

Table 2. Mean absolute error (MAE) in millimeter over all
points of a specific LOS (ascending and descending) or addi-
tional components (east-west and vertical) for the Lister Dam.

5. CONCLUSION AND OUTLOOK

This work investigated a dam monitoring strategy by predict-
ing deformation patterns based on freely available PS time
series. Combined with a proper representation and selection
of exogenous regressors and preprocessing, it was found that
well-established statistical forecasting models can achieve
sufficient accuracy for this endeavor, especially when de-
ploying a data-driven model selection. It can be concluded
that the approach provides a potential low-cost alternative to
established monitoring strategies. Future work could address
the following three topics: Firstly, while the two main drivers
of dam deformation are clear (water level and air tempera-
ture), other exogenous variables, such as frost, groundwater,
or tectonic movement, might additionally influence the de-
formation pattern of the dam. It is planned to test these addi-
tional influences to potentially increase prediction accuracy.
Secondly, while this work currently only considers linear
relationships between all regressors and the target, other al-
ternative modeling approaches should be tested, which might
allow for even more precise predictions. Specifically, nonlin-
ear relationships and interaction effects might be of great use.
Finally, to determine the flexibility of our approach, we deem
it necessary to extend our analysis to other dams and include
some form of PS-point preselection. With this, we hope that
it will be possible to integrate the approach into real-world
monitoring strategies.
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