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Abstract

Data analysis and model-data comparisons in the environmental sciences require diagnos-

tic measures that quantify time series dynamics and structure, and are robust to noise in

observational data. This paper investigates the temporal dynamics of environmental time

series using measures quantifying their information content and complexity. The measures

are used to classify natural processes on one hand, and to compare models with observa-

tions on the other. The present analysis focuses on the global carbon cycle as an area of

research in which model-data integration and comparisons are key to improving our under-

standing of natural phenomena. We investigate the dynamics of observed and simulated

time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems

that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magni-

tudes of GPP time series, both observed and simulated, vary substantially on different tem-

poral and spatial scales. We demonstrate here that information content and complexity, or

Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical

and model benchmarking tools for evaluating the temporal structure and dynamical proper-

ties of simulated or observed time series at various spatial scales. At continental scale, we

compare GPP time series simulated with two models and an observations-based product.

This analysis reveals qualitative differences between model evaluation based on ITQ com-

pared to traditional model performance metrics, indicating that good model performance in

terms of absolute or relative error does not imply that the dynamics of the observations is

captured well. Furthermore, we show, using an ensemble of site-scale measurements

obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model

mismatches as indicated by ITQ can be attributed to and interpreted as differences in the

temporal structure of the respective ecological time series. At global scale, our
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understanding of C fluxes relies on the use of consistently applied land models. Here, we

use ITQ to evaluate model structure: The measures are largely insensitive to climatic sce-

narios, land use and atmospheric gas concentrations used to drive them, but clearly sepa-

rate the structure of 13 different land models taken from the CMIP5 archive and an

observations-based product. In conclusion, diagnostic measures of this kind provide data-

analytical tools that distinguish different types of natural processes based solely on their

dynamics, and are thus highly suitable for environmental science applications such as

model structural diagnostics.

Introduction

Understanding the feedback between terrestrial ecosystems and changing environmental con-
ditions is a key prerequisite to model the impact of global change. Of particular relevance are
changes in the global carbon (C from now on) cycle, i.e. in land-atmosphere fluxes and thus
biosphere carbon stocks (e.g. [1]). Today, empirical and process-based models of varying struc-
tural and numerical complexity are used to assess and predict past, present and future ecosys-
tem-atmosphere carbon exchange (e.g. [2]).

The state of current process-based understanding is in part implemented in terrestrial bio-
sphere models. The process representations in these models differ widely, which is in part due
to insufficient mechanistic understanding of the underlying processes or uncertain parameter
estimates. This lack of consensus leads to major uncertainties in the predictions [3]. The start-
ing point to reduce uncertainties in modelled fluxes or physiological state variables is to quan-
tify their mismatch with observations [4].

Model benchmarking seeks to quantify this mismatch and to rank the models accordingly
[5–9]. Obviously, model rankings depend on the metric(s) considered; it is unlikely that one
single model will rank best with respect to multiple metrics that may emphasize different
aspects.

Activities such as the International Land Model Benchmarking Project (ILAMB, http://
ilamb.org) have formalized this idea by providing a range of benchmarks. In order to standard-
ize the benchmarking approaches further, several platforms for automatic benchmarking have
been developed [2, 7]. Most of the metrics used for benchmarking so far are straightforward,
for instance focusing on long-term mean values per variable and pixel (or region), or the ampli-
tude of some specific seasonal cycle (e.g. of some land-atmosphere flux). However, metrics of
this kind can only provide a limited insight into the dynamics of the models under scrutiny.
Consequently, latest benchmarking efforts intend to consider relevant observed and simulated
patterns, such as process efficiencies or turnover-rates [10], i.e. these approaches attempt to
derive a pattern-oriented strategy to model evaluation and model-data integration [11–13].
Hence, various initiatives to land surface model benchmarking are still working towards devel-
oping a widely acceptable set of benchmarks [8] that target various relevant aspects of model
behaviour.

One difficulty in model benchmarking is that reference data are potentially affected by
observational noise or biases. Ideally, models should exhibit similar dynamics as the observa-
tions on a range of time scales [14]. Disagreements of models and observations indicate either
inaccurate parameter estimates, structural deficits, or other inadequacies of the models; or they
originate in low quality of the reference observations, with e.g. noise contamination at high fre-
quencies and sensor ageing processes at long time scales. Hence, in any model-data comparison
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such as benchmarking, a distinction between signal and noise is necessary. In the interpretation
of data analysis, signal extraction from the noise background is key; process-oriented models
should be able to reproduce the signal but not the noise part of observations.

Here, we contribute to the discussion of model evaluation and benchmarking by investigat-
ing the potential of Information Theory Quantifiers (ITQ) as an additional set of benchmarking
tools, with a special focus on the dynamics and structure of model simulated vs. observed time
series. For example, questions such as ‘How much information do the observations reveal about
the dynamics of the underlying system or processes? Do observed time series resemble stochastic
or deterministic processes? Are models reproducing the observed process classes?’ arise naturally
from an Information Theory perspective and could potentially be tackled using ITQ. These
measures draw a distinction between deterministic and stochastic processes, are complemen-
tary to the present set of tools and might thus provide a balanced investigation of model evalua-
tion, e.g. sensu [6].

Among the set of variables established to describe C dynamics, the gross CO2 uptake of ter-
restrial vegetation from the atmosphere (‘Gross Primary Productivity’, or GPP) is of particular
importance for terrestrial ecosystems. GPP can be derived from in-situ measurements of net
ecosystem exchange fluxes of CO2. GPP is predominantly controlled by radiation, but likewise
sensitive to temperature, CO2 concentrations, water availability and the phenological status of
the vegetation, amongst other factors [15]. GPP is routinely obtained as the difference of Net
Ecosystem Productivity (NEP) measurements and estimates for ecosystem respiration (Reco) at
individual sites as part of a global monitoring network [16]. GPP is expected to show seasonal
variation; abrupt changes or systematic trends in GPP can be induced by land use change,
extreme events, and changing climate, among other factors. Numerous attempts to quantify
GPP at larger spatial scales exist, but many of these rely on dynamical global vegetation and
biogeochemical models. Based on assumed biological and physical processes, the latter either
try to reconstruct historical GPP time series, based on observed precipitation, radiation, tem-
perature and other drivers, or project the future dynamics of GPP using climate scenarios (Rep-
resentative Concentration Pathways, RCPs [17]). Generally, GPP simulations respond globally
to transient climate change, but locally and regionally also to abrupt land use changes, or
extreme hydrometeorological anomalies [18, 19].

This study aims to introduce and interpret ITQ in the context of environmental time series
analysis with particular emphasis on model evaluation and benchmarking of GPP dynamics at
site, continental and global scale. The paper is organized as follows: the Section Quantifiers
from Information Theory” provides an introduction to the field of ordinal pattern statistics
and the associated Information Theory Quantifiers. “Data Sets Investigated” introduces the
data: observations and model simulations of GPP at the site, continental and global scale; and a
remotely sensed widely used proxy for vegetation activity (‘Fraction of Absorbed Photosynthet-
ically Active Radiation’ (FAPAR)). The subsection “An Information Theory perspective on
spatio-temporal environmental datasets” provides an intuitive introduction to ITQ in the con-
text of environmental science using i) a FAPAR dataset at continental-scale and high spatial
resolution; and ii) in-situ GPP measurements from flux tower sites to illustrate the effects of
temporal resolution from the FLUXNET database, cf. http://fluxnet.fluxdata.org [16]. Then, we
proceed by comparing the complexity and information content of GPP time series simulated
by two process-based ecosystem models and an observations-based dataset at continental scale
in a spatially explicit manner; these results are augmented with site-scale flux tower measure-
ments. In “Global analysis of land surface models”, ITQ calculated from global-scale model
simulations of GPP obtained from a climate model intercomparison project (CMIP5) compris-
ing both historical reconstructions and climate scenario runs (1861-2090; ‘scenarios’) are eval-
uated to diagnose model structure. Finally, we conclude on the suitability of Information
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Theory Quantifiers for environmental science applications, such as diagnosing model structure
or model benchmarking.

Quantifiers from Information Theory

Given a time series or other observational data, a natural question arises: how much informa-
tion are these data revealing about the dynamics of the underlying system or processes? The
information content of data sets is typically evaluated via characterizing a value distribution or
a probability density function (PDF) P describing the apportionment of some measurable or
observable quantity [20]. These quantifiers represent metrics on the space of PDFs for data
sets, allowing to compare different sets and to classify them according to the properties of
underlying processes—broadly, stochastic vs. deterministic. Here, we refer to stochastic pro-
cesses like correlated noise on one hand, and to deterministic chaotic maps which do not con-
tain any noise on the other. Time series generated by these two categories of processes are
difficult to discern by conventional analysis, but are clearly separated by ITQ [21].

In our case, we are interested in the temporal dynamics of GPP, and our data are time series
x(t). Thus, we are mostly interested in metrics which take the temporal order of observations
explicitly into account; i.e. the approach is fundamentally a causal rather than a statistical one.
In a purely statistical approach, correlations between sucessive values from the time series are
ignored or simply destroyed via construction of the PDF; while a causal approach focuses on
the PDFs of data sequences.

The quantifiers selected are based on ordinal pattern statistics (cf. e.g. [22]). For an application
of alternative quantifiers based on Symbolic Dynamics to environmental data, we refer to [23].
The quantifiers used here belong to either of two broad categories: those which quantify the infor-
mation content of data versus those related to their complexity on one hand; and metrics related
to global properties of the appropriate PDFs versus ones which take local properties into account.
Note that we are referring to the space of probability density functions here, not physical space.
For the sake of clarity and simplicity, we introduce Information Theory quantifiers that are
defined on discrete PDFs in this section, since we are only dealing with discrete data (time series).
However, all the quantifiers also have definitions for the continuous case [24, 25].

The Shannon entropy as a measure for information content

The permutation Shannon entropy is a measure for the information content of the time series
[24] and quantifies uncertainty, disorder, state-space volume, and lack of information [26]. Let
P = {pi; i = 1, . . ., N} with

PN
i¼1
pi ¼ 1, be a probability distribution, withN possible states of

the system under study. The Shannon information measure (entropy) reads

S½P� ¼ �
XN

i¼1

pi ln ½pi� : ð1Þ

The Shannon entropy is minimal when all but one of the pi’s vanish, and maximal when all
pi’s are equal, i.e. for the uniform distribution Pe ¼ fpi ¼ 1

N ; 8i ¼ 1; . . . ;Ng. In this case,
S½Pe� ¼ S max ¼ lnN. However, these two situations are extreme cases, unlikely to occur in
any natural phenomenon considered here. In the following, we focus on the ‘normalized’ Shan-
non entropy, 0 � H � 1, given as

H½P� ¼ S½P�=S max : ð2Þ
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Statistical complexity measures

Contrary to information content, there is no universally accepted definition of complexity.
Here, we focus on describing the complexity of time series and do not refer to the complexity of
the underlying systems. In fact, “simple” models might generate complex data, while “compli-
cated” systems might produce output data of low complexity [27].

An intuitive notion of a quantitative complexity attributes low values both to perfectly
ordered data (i.e. with vanishing Shannon entropy) as well as to uncorrelated random data
(with maximal Shannon entropy), as both cases can be well described in a compact manner.
For example, the statistical complexity of a simple oscillation or trend (ordered), but also of
uncorrelated white noise (disordered) would be classified as low. Hence, linear transient trends
and measurement noise of some geophysical variable would exhibit small complexity values,
but the two processes would differ considerably in their Shannon entropy (Fig 1). Between the
two cases of minimal and maximal entropy, data are more difficult to characterize and hence
the complexity should be higher. We seek some functional C½P� quantifying structures present
in the data which deviate from these two cases. These structures relate to organization, correla-
tional structure, memory, regularity, symmetry, patterns, and other properties [28].

One suitable way to guarantee the desired properties for a complexity measure is to build
the product of a measure of information and a measure of disequilibrium, i.e. some kind of dis-
tance from the uniform (‘equilibrium’) distribution of the accessible states of a system. In this
respect, in [29] an effective Statistical Complexity Measure (SCM) C was introduced, that is
able to detect and discern basic dynamical properties of datasets.

Based on the seminal notion advanced by Lopez-Ruiz et al. [30], this statistical complexity
measure [29, 31] is defined through the functional product form

C½P� ¼ QJ ½P; Pe� �H½P� ð3Þ

of the normalized Shannon entropy H, see Eq (2), and the disequilibrium QJ ½P; Pe� defined in
terms of the Jensen-Shannon divergence J ½P; Pe�. The latter is given by

QJ ½P; Pe� ¼ Q0J ½P; Pe� ¼ Q0fS½ðP þ PeÞ=2� � S½P�=2 � S½Pe�=2g; ð4Þ

whereQ0 is a normalization constant chosen such that 0 � QJ � 1:

Q0 ¼ � 2
N þ 1

N
ln ðN þ 1Þ � ln ð2NÞ þ lnN

� �� 1

: ð5Þ

The inverse of this value is obtained for the non-normalized Jensen-Shannon divergence when
one of the components of P, say pm, is equal to one and the remaining pj’s are zero.

The Jensen-Shannon divergence quantifies the difference between probability distributions
and is especially useful to compare the symbolic composition of different sequences [32]. Note
that the above introduced Information Theory quantifier depends on two different probability
distributions: one associated with the system under analysis, P, and the other the uniform dis-
tribution Pe. For the latter, other reference distributions can be chosen to test whether an
observed distribution is close to a target distribution. It has been shown that there are limit
curves for complexity: for a given value of H and any data set, the possible C values vary
between a minimum CminðHÞ and a maximum CmaxðHÞ, restricting the possible values of the
complexity measure [33].

An alternative measure which is local in distribution space is the Fisher Information Mea-
sure (FIM). For calculating FIM, we use probability amplitudes as a starting point [25] and
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obtain a discrete normalized FIM, 0 � F � 1, convenient for our purposes [34]:

F ½P� ¼ F0

XN� 1

i¼1

½
ffiffiffiffiffiffiffi
piþ1

p
�

ffiffiffiffi
pi
p
�
2
: ð6Þ

Here the normalization constant F0 reads

F0 ¼
1; if pi� ¼ 1 for i� ¼ 1 or i� ¼ N and pi ¼ 0;8i 6¼ i�;

1=2; otherwise :
ð7Þ

(

The general behavior of the this discrete version of the FIM (Eq (6)) is opposite to that of
the Shannon entropy, except for periodic motions. The local sensitivity of FIM for discrete
PDFs is reflected in the fact that it depends on the specific ‘i–ordering’ of the discrete values pi

Fig 1. Illustration of causal Information Theory quantifiers as data-analytical tools. The causality entropy–complexity plane exhibits upper and lower

limit curves, and the distances to these can be used to classify relevant processes. For all calculations, D = 6, τ = 1, and n = 104 were chosen.

doi:10.1371/journal.pone.0164960.g001
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[34, 35]. The summands in Eq (6) can be regarded as a ‘distance’ between two contiguous prob-
abilities. Thus, a different ordering of the patterns would lead to a different FIM-value, demon-
strating its local nature. In the present work, we follow the so-called Keller sorting scheme [36]
for the generation of the Bandt and Pompe PDF discussed in the next section.

The Bandt and Pompe approach to generate a causal PDF

The quantifiers from Information Theory rely on a probability distribution associated to the
time series. The determination of the most adequate PDF is a fundamental problem because
the PDF P and its sample space O are inextricably linked. The usual histogram technique is
inadequate since the data are treated purely stochastic and the temporal information is
completely lost. Bandt and Pompe (BP) [22] introduced a simple and robust symbolic method-
ology that takes into account time ordering of the time series by comparing neighboring values
in a time series. The symbolic data are created by first ranking the values of the series within
windows of a fixed length, and then reordering these embedded data in ascending order. This
is tantamount to a phase space reconstruction with embedding dimension (pattern length)D
and time lag τ (see Text 1 in S1 File for a more detailed description). In this way, it is possible
to quantify the diversity of the ordering symbols (patterns) derived from a scalar time series.
Note that the appropriate symbol sequence arises naturally from the time series, and no
model-based assumptions are needed. As such, it allows to uncover important details concern-
ing the ordinal structure of the time series [21] and can also yield information about temporal
correlation [37].

This type of analysis of a time series entails losing details of the original series’ amplitude
information. However, the symbolic representation of time series by recourse to a comparison
of consecutive (τ = 1) or nonconsecutive (τ> 1) values allows for an accurate empirical recon-
struction of the underlying phase-space, even in the presence of weak (observational and
dynamic) noise [22]. Furthermore, the ordinal patterns associated with the PDF are invariant
with respect to nonlinear monotonous transformations; nonlinear drifts or scaling artificially
introduced by a measurement device will not modify the estimation of quantifiers, a nice prop-
erty if one deals with experimental data (see, e.g., [38]). The only condition for the applicability
of the BP method is a very weak stationarity assumption: for k� D, the probability for xt< xt
+k should not depend on t. For a review of the BP methodology and its applications to physics,
biomedical and econophysics signals, see [39].

Regarding the selection of the parameters, Bandt and Pompe suggested working with 4�
D� 6 for typical time series lengths, and specifically considered a time lag τ = 1 in their corner-
stone paper [22]. For the artificially generated time series shown below (Figs 1 and 2), we chose
D = 6 and follow the Lehmer-permutation scheme [35] to calculate the Fisher Information. For
the measured and modelled time series analyzed here, the embedding dimension is chosen as
D = 4 throughout due to time series length requirements (S1 File), in particular at coarse tem-
poral resolution, and to achieve comparability across the different analyses. In all cases, the
delay parameter has been set to τ = 1.

Incorporating amplitude information: Weighted ordinal pattern

distribution

Recently, the permutation entropy was extended to incorporate also amplitude information
[40]. Hence, a potential disadvantage of ordinal pattern statistics, namely the loss of amplitude
information, can be addressed by introducing weights in order to obtain a ‘weighted permuta-
tion entropy (WPE)’. In the context of environmental time series, which typically exhibit a pro-
nounced seasonal cycle and thus seasonally varying signal to noise ratios, this idea might be
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particularly useful to address (noisy) low-variance patterns (e.g. during dormancy periods in
winter).

Weighting the probabilities of individual patterns according to their variance alleviates
potential issues regarding to ‘high noise, low signal’ patterns, because low-variance patterns
that are stronlgy affected by noise are down-weighted in the resulting ‘weighted ordinal pattern
distributions’. For example, [40] show that a weighted entropy measure is sensitive to sudden
changes in the variance of the time series. Here, we extend the idea of WPE following [40] to
derive a weighted permutation entropy (Hw), weighted statistical complexity (Cw), and
weighted Fisher Information (Fw).

Fig 2. Illustration of the causality Shannon-Fisher plane plane (H� F ) as data-analytical tool. H� F is used to classify relevant processes, such as

constant/periodic signals, white and coloured noise (noise with a power spectrum proportional to 1/f k), and deterministic signals (e.g. chaotic maps), similar

to Fig 1. For all calculations, D = 6, τ = 1, and n = 104 were chosen.

doi:10.1371/journal.pone.0164960.g002
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Non-normalized weights are computed for each temporal window for the time seriesX,
such that

wj ¼
1

D

XD

k¼1

ðxjþk� 1 � XD
j Þ

2
: ð8Þ

Here, the embedding dimension is denoted by D and XD
j denotes the arithmetic mean of the

time series in the current window with index j. Thus, the weight of each window of length D is
given by its variance in the equation above. The weights wj are then used to modify the relative
frequencies of each ordinal pattern pjðXD

j Þ, with N − D + 1 windows, given by
XD
j ¼ ðxj; xjþ1; :::; xjþD� 1Þ, for a time series of lengthN [40]:

pwðpiÞ ¼

PN� Dþ1

j¼1
dpi ;pj

wj
PN� Dþ1

k¼1
wk

ð9Þ

The denominator of this equation provides the normalization, and the Kronecker delta δπi πj
in the enumerator serves to indicate which pattern occurs in each window j:

dpi ;pj
¼

(
1; if pi ¼ pj;

0; if pi 6¼ pj:

After having calculated the appropriate πi for each i = 1, . . ., D!, the same Eqs (2), (3) and (6)
are applied to obtain the weighted versions Hw, Cw and Fw of the ITQ.

The weighting of the ITQ can be considered as noise filter, provided that noise is character-
ized by relatively low variance, and thus enhances the signal contained in the time series. In
any case, rare patterns are suppressed in favour of more frequent ones.

Obviously, the window-based variance is but one out of many weighting recipes, others are
easily conceivable. There is also a connection to the celebrated Rènyi entropy ([41])

HqðXÞ ¼
1

1 � q
log 2

XD!

i¼1

pqi

 !

where the Rènyi exponent q suppresses low-frequency patterns for q> 1; for q = 1, the Shan-
non entropy is obtained. The resulting ‘Rènyi ordinal pattern distribution’ could be considered
as a special case of the weighted pattern distribution, characterized by a single exponent; this
has not been investigated so far, however.

Summarizing, ITQ computed based on an appropriately weighted form of the ordinal pat-
tern distribution are suitable to analyse data sets with considerable amplitude information (e.g.
seasonal variation) from an information-theoretic viewpoint. Since this is an issue for the time
series investigated here, we will mostly perform our ITQ analysis using the weighted versions
described here.

Causal information planes

A particularly useful visualization of the quantifiers from Information Theory is their juxtapo-
sition in two-dimensional graphs (‘causal information planes’), e.g. a) The causality entropy–
complexity plane, H� C, or its variance-weighted variant Hw � Cw, is based only on global
characteristics of the associated time series PDF (both quantities are defined in terms of Shan-
non entropies); while b) the causality Shannon-Fisher plane, H� F , or its variance-weighted
variant (Hw � Fw), is based on global and local characteristics of the PDF. In the case of H�
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C (or its weighted version) the value range is ½0; 1� � ½CminðHÞ; CmaxðHÞ�, while in the causality
plane H� F (or with weights) the range is presumably [0, 1] × [0, 1]; no limit curves have
been shown to exist so far.

These diagnostic planes are particularly efficient to distinguish between the deterministic
chaotic and stochastic nature of a time series [21, 34] since the permutation quantifiers have
distinct behaviours for different types of processes, see Figs 1 and 2, respectively.

Chaotic maps have intermediate entropy H and Fisher F values, while their complexity C
reaches larger values, very close to the upper complexity limit [21, 34]. For regular processes,
entropy and complexity have small values, close to zero, while the Fisher information is close
to one. Uncorrelated stochastic processes have H near one and C, F near zero, respectively. It
has also been found that correlated stochastic noise processes with a power spectrum propor-
tional to 1/f k, where 1� k� 3, are characterized by intermediate permutation entropy and
intermediate statistical complexity values [21], as well as intermediate to low Fisher informa-
tion [34]. In both causal information planes (H� C, see Fig 1 and H� F , see Fig 2), stochastic
data are clearly localized at different planar positions than deterministic chaotic ones. These
two causal information planes have been profitably used to visualize and characterize different
dynamical regimes when the system parameters vary [34, 35, 42–51]; to study temporal
dynamic evolution [52–54]; to identify periodicities in natural time series [55]; to identify
deterministic dynamics contaminated with noise [56, 57]; to estimate intrinsic time scales and
delayed systems [58–60]; for the characterization of pseudo-random number generators [61,
62]; to quantify the complexity of two-dimensional patterns [63]; and for ecological [45], bio-
medical and econophysics applications (see [39] and references therein).

Quantification of distance between models and observations

The overall objective of this paper is to provide a methodology for analyzing time series and
comparing models with data based on Information Theory Quantifiers. However, the quantifi-
cation of visually observed differences in causal information planes is not completely straight-
forward. Since the information planes are not Euclidean spaces, the Euclidean distance
between pairs of points is not suitable. We need a distance metric that takes the nonlinear
structure of the manifold into account. As we are working in the space of ordinal pattern distri-
butions, a distance measure between PDF’s is appropriate. We quantify the discrepancy
between observations and the model outputs by calculating the Jensen-Shannon divergence
[64] between them:

J ½Pobs; Pmod� ¼ S½ðPobs þ PmodÞ=2� � S½Pobs�=2 � S½Pmod�=2; ð10Þ

where Pobs and Pmod are the ordinal pattern distributions of the observations (or ‘observation-
based products’, see next section) and the model outputs, respectively.

We note that a model evaluation based on Information Theory Quantifiers directly on the
model residuals (Xt,Mod − Xt,Obs) is not meaningful in itself: the ordinal pattern distribution of
the model residuals for a poor, but noisy model with high variance would exhibit low complex-
ity and high entropy values (‘white noise’)—despite an inadequate model structure in this sim-
ple example. That model residuals exhibit white noise behaviour is not an indicator for a good
model performance per se.

Data analysis and software

The open source R-package “statcomp” (Statistical Complexity Analysis) has been written to
facilitate an easy access to ITQ’s and is available on CRAN (http://CRAN.R-project.org/
package = statcomp) and R-Forge (http://r-forge.r-project.org/projects/statcomp/). A short
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installation guide, links to a detailed manual and a code tutorial to reproduce Figs 1 and 2 are
given in S1 Code.

Data Sets Investigated

A remotely sensed vegetation activity proxy: FAPAR

The ‘Fraction of Absorbed Photosynthetically Active Radiation’ (FAPAR) is a variable that
describes the ratio of absorbed to total incoming solar radiation in the photosynthetically active
wavelength range at the land surface [65]. As the solar radiation is the driver for photosynthetic
activity, FAPAR is used to diagnose vegetation productivity (e.g. [66]) and a so-called essential
climate variable for global monitoring of the land surface and the terrestrial biosphere [67].
Here we use the JRC-TIP FAPAR data set [65] to provide an intuitive introduction and inter-
pretation of continental-scale gradients and structure as obtained from analyses using ITQ (cf.
above). This FAPAR product is derived (together with a set of further land surface variables
such as the effective Leaf Area Index and the albedo of the soil background) by the Joint
Research Centre Two-Stream Inversion Package (JRC-TIP), which is based on a one-dimen-
sional (Two-Stream) representation of the canopy-soil system. The products were retrieved in
an inversion procedure that combines the information in the MODIS broadband albedo prod-
uct and prior information on the model’s state variables. For the purpose of our analysis it is
worth noting that the prior information is constant in space and time with the exception of
snow events, i.e. the spatio-temporal structure in the FAPAR data set is solely imposed by
observations from space. The use of the two-stream model ensures physical consistency of all
derived variables, as long as the products are used in the native resolution of the albedo input
product [68], which in our case is 1km. In the temporal domain, as for the output of the terres-
trial model (see below) we use monthly averages.

GPP time series at site-scale: Flux tower measurements

Fluxes across the atmosphere-biosphere boundary (directly above the canopy) are measured
routinely in a global network of flux tower sites (FLUXNET) using the Eddy-Covariance (EC)
method [16]. Net ecosystem fluxes of carbon were partitioned into GPP and ecosystem respira-
tion by using nighttime data that consist only of respiratory fluxes [69].

In this study, the dynamics of GPP time series from an ensemble of European FLUXNET
sites with each more than five years of continuous measurements are investigated at monthly
resolution. In addition, three sites are selected to illustrate the effect of temporal resolution (i.e.
aggregation from half-hourly to monthly resolution) on complexity and entropy of the respec-
tive time series. These three sites represent different major European climate regions, i.e. Medi-
terranean evergreen broadleaf (Puechabon, France), temperate and boreal evergreen needleleaf
(Tharandt, Germany and Hyytiälä, Finland, respectively) forest sites. A table containing
detailed information about all investigated sites is available (Table 1 in S1 File).

Continental-scale estimates of GPP: comparison of model runs and an

observations-based product

Model Tree Ensembles (MTE). An empirical upscaling of GPP fluxes from the site scale
to global scales was conducted by [70]. These authors used Fluxnet site measurements with
local meteorological observations and remotely sensed vegetation indices to train an ensemble
of model trees. In a subsequent step, the model trees were used to predict spatially explicit,
fully data-driven GPP fluxes (at 0.5° spatial and monthly temporal resolution, 1982-2011)
using global, gridded meteorological data and remote sensing observations. These interpolated
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and upscaled GPP fluxes comprise the ‘observations’, as opposed to the model runs described
in the following paragraph which are ‘simulations’. Two variants of the MTE dataset are used
in this study, which differ in the method applied for partitioning the tower-based net flux mea-
surements (Net Primary Productivity, or NPP) into GPP and ecosystem respiration, Reco.
These include the widely used extrapolation of night-time respiration into daytime [69]
(‘MTE-MR’), and a separation method that uses a light response curve [71] (‘MTE-GL’).

LPJml. The Lund-Potsdam-Jena managed Land dynamic global vegetation model
(LPJmL) simulates dynamic vegetation development and structure of 10 natural plant func-
tional types, two of which are herbaceous and eight are woody [72]. The human land use
scheme consists of 13 crop functional types, including both grazing lands and agricultural
crops [73]. Photosynthetic carbon assimilation in LPJmL follows the process-oriented coupled
photosynthesis and water balance scheme of the BIOME3 model [74]. Photosynthesis is simu-
lated at the canopy scale depending on seasonally varying nitrogen content and carboxylation
capacity, which are functions of absorbed photosynthetically active radiation, temperature,
atmospheric CO2, day length, and canopy conductance (ibid.).

JSBACH. The Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg (JSBACH)
is a modular land surface scheme based on the ‘Biosphere Energy-Transfer and Hydrology
Model’ (BETHY, [75]). It comprises 13 natural plant functional types that are distinguished by
plant (eco-) physiological properties, and the relevant spatial characteristics are prescribed as
maps [76]. The model operates internally with 30 minutes temporal resolution. Model grid
cells are covered by at most four different plant functional types [77]. Additionally, five vegeta-
tion phenotypes are specified, namely managed (non-forest) lands, grassland, raingreen forest
or shrubland, evergreen and summergreen. Photosynthesis is simulated using distinct physio-
logically based submodules for C3 and C4 plants [78], and includes an explicit representation
of the interdependence between the carbon assimilation rate and stomatal conductance [76].
Both variables are a function of temperature, soil moisture, water vapour, CO2 concentration
and the absorption of visible solar radiation, the latter of which is resolved in three canopy
layers.

Modelling Protocol. Both vegetation model simulations (LPJmL and JSBACH) were con-
ducted at 0.25° spatial resolution and at the daily time scale for Europe [79]. Subsequently, the
output was linearly aggregated to the monthly time scale and 0.5° spatial resolution for compa-
rability with the MTE dataset. It is important to note that aggregation (taking mean values)
and decimation (thinning to the desired resolution) of the time series are operations with very
different consequences for the complexity analysis: whereas aggregation increases correlation,
decreases Shannon entropy and in general induces a shift in the entropy-complexity plane to
the left and upwards, decimation diminishes correlation, increases Shannon entropy and leads
to a shift in the opposite direction.

Global-scale simulated GPP dynamics: CMIP5

In order to evaluate the influence of different model structures vs. different climatic scenarios
and trends on GPP dynamics, the behaviour of global GPP dynamics as simulated in the Fifth
Climate Model Intercomparison Project (CMIP5) multimodel ensemble [3] is analyzed. The
two representative concentration pathways (RCPs) 4.5 and 8.5 [17] are used in 13 different
models and model variants (i.e. ensemble members) in monthly resolution from 1860-2099
(see Table 2 in S1 File for a detailed overview).

ITQ are calculated for each land grid cell in each of 59 model simulations (comprising com-
binations of model variants, different emission scenarios and ensemble members) and for each
of the twenty-one 30-year periods within 1860-2099, yielding in total 1239 simulated 30-year
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periods. In addition, the two MTE datasets for the period 1982-2011 are included in the com-
parison. Subsequently, for each 30-year period, all grid cells are visualized in the causal infor-
mation planes (see S6 and S7 Figs for an example), where each model-scenario combination
generates a point cloud in the causal information plane.

To compare these point clouds in a rigorous manner, i.e. to take the different local point
densities into account, the planes are rasterized using a regular grid of 25x25 pixels. Subse-
quently, the number of land grid cells that fall into each of the respective (up to 625) ‘causal
information classes’ are counted and then normalized (to account for different spatial resolu-
tion), yielding one count ‘vector’ for each model-scenario combination. Note that due to the
existence of the limit curves in H� C, some of the pixels are empty by necessity. All pixels with
no points across all 1239 vectors are omitted, which yields an effective reduction in the vector’s
dimensionality. Then, a principal component analysis (PCA) is conducted on these vectors
that is used to illustrate in a simple manner the separation of CMIP5 models and scenarios
along the first and second principal component. For H� F , we proceed in a similar manner.

Results and Discussion

In this section, we first illustrate and interpret continental-scale gradients in ITQ as obtained
from a high-resolution vegetation productivity proxy (FAPAR) and proceed by investigating
the effect of temporal resolution on ITQ at site scale. Subsequently, we compare two models
and an observations-based product, including an interpretation that might offer hints for
model improvements. Finally, a global-scale application of complexity measures based on
CMIP5 model simulations is presented.

An Information Theory perspective on spatio-temporal environmental

datasets

Continental-scalegradients in Information TheoryQuantifiers. ITQ from time series
of vegetation activity proxies such as FAPAR show a large variety of spatial patterns from local
to continental scales due to differences in vegetation type, land use, climate, and other factors.
For example, the Weighted Permutation Entropy (Hw) for monthly FAPAR time series over
Europe shows large spatial gradients that are mainly related to the regularity of the seasonal
cycle in vegetation activity (Fig 3, upper panel). Western parts of the continent and many
coastal regions show rather high entropy values, e.g. over the British Isles, North-Western
France, and the Netherlands, indicating a relatively stochastic behaviour of the respective time
series. On the other hand, (North-)Eastern parts of the continent, but also seasonally dry
regions like the Iberian peninsula, Southern Italy and North Africa exhibit low entropy values
and thus monthly time series appear to be predictable. However, in Fig 3 it becomes already
obvious that a quantification of entropy alone is not able to distinguish between climatologi-
cally and ecologically well-separated regions such as Southern Spain and Eastern Europe (both
displaying low entropy).

Therefore, additional ITQ are needed and useful to distinguish further features in the time
series, e.g. related to the separation of stochastic vs. deterministic processes [21]. Therefore, we
exemplify the potential of combining several ITQ in the context of environmental time series
in an RGB color image (Fig 3, bottom panel), where three ITQ (Weighted permutation
entropy, statistical complexity, and Fisher Information) are encoded in the red, green, and blue
channel, respectively (Fig 3, bottom panel). This picture (Fig 3, bottom panel, see S3 Fig for a
high-resolution version, maps of individual ITQ are available in S1 and S2 Figs) illustrates that
ITQ indeed capture a large amount of structure in environmental time series: Continental-
scale gradients are clearly visible, but now structurally distinct regions (e.g. Southern Spain vs.
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Eastern Europe, see above) become well separated. Moreover, regional structures related to
ecosystem type, vegetation seasonality, and topography (e.g. mountain ranges) appear. It
should be noted that the patterns and gradients obtained result from dynamical behaviour, i.e.
quantify properties of vegetation in time, whereas the relation to other aspects like water avail-
ability, soil type, climate zone, or topography is non trivial and they do not enter the calculation
at all. This is a demonstration of the strength of the link between dynamical properties and
environmental conditions for plant communities (the basis of plant biogeography). These
results thus highlight the potential of ITQ as indicators of ecological structure, and for model-
data comparison exercises (see next subsection).

The influence of seasonal and diurnal oscillations on statistical complexity. Temporal
resolution strongly affects the position of time series with oscillatory components in causal
information planes. This property is illustrated for GPP time series from the boreal, temperate
and Mediterranean climate regions (Fig 4). At the highest temporal resolution (half-hourly),
GPP time series have a high Hw and correspondingly small Cw value, but this is distinctively
different from the purely random case. At first, aggregating increases the complexity, until the
strong daily cycle of the series is ‘detected’ at a resolution of 6 hours (due to D = 4, when one
window covers just one day). The simple oscillatory behaviour reduces the complexity. The
random extreme (Hw close to one, Cw close to zero) in the entropy-complexity plane is almost
reached at daily resolution. Further aggregation increases Cw and reduces Hw; at monthly reso-
lution, we find an Hw value around 0.65 only. We expect the classification in Hw � Cw to be

Fig 3. ITQ derived from monthly time series from the JRC-TIP FAPAR dataset. (top) Weighted Permutation Entropy, (bottom) RGB

plot of weighted permutation entropy (Hw, red channel), weighted complexity (Cw, green channel), and weighted Fisher Information (Fw,

blue channel). An intense color indicates a high value of the respective ITQ.

doi:10.1371/journal.pone.0164960.g003

Fig 4. The effect of seasonal and diurnal oscillations on ITQ. GPP dynamics at three flux tower measurement sites from half-hourly to monthly

resolution as quantified by a) Hw � Cw, and b) Hw �Fw.

doi:10.1371/journal.pone.0164960.g004
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most sensitive in this region in the center of the plane, since the difference between upper and
lower limit curves is largest here. Thus, the monthly scale seems to be especially suitable for the
subsequent regional assessment. It is not possible to further aggregate the series due to the
length requirements—but at 3 months resolution, the annual cycle would be found, and
another ‘loop’ in the diagram would be expected.

Similar to Hw � Cw, the position of a time series in the Shannon-Fisher plane (Hw � Fw)
strongly depends on the temporal resolution (Fig 4). At the highest temporal resolution, the
observed, EC-based GPP time series has a high Hw ’ 0:95 and a very small Fisher information.
Aggregation decreases entropy and increases Fw (Fig 4, upper part), until again the daily cycle
of the series comes into reach at a resolution of 6 hours. Further aggregation increases entropy
and decreases Fisher information, towards the “random corner” (Hw close to one, Fw close to
zero) which is almost reached at daily and two-daily resolution. Aggregating further leads to a
more and more steep increase in Fw, where the slope of this part of the curve resembles that of
the k-noise shown in Fig 2.

Model-data comparison using ITQ

ITQ calculated from long-term GPP time series (1982-2011) at monthly resolution across
Europe from two models and an observations-based product are shown in Fig 5 (Hw � Cw and
Fig 6 Hw � Fw), using a 2-dimensional colour scheme for visualization in a single map [80].
The observations-based product (MTE reconstructions, upper panels) indicate large, compara-
tively homogeneous regions across major biogeographical gradients, where the entropy of GPP
time series is intermediate and their complexity medium to high. In the Mediterranean and in
North Africa, the entropy is higher and the complexity and Fisher Information lower.

In the context of this comparison, MTE results are considered as “surrogate observations”
or benchmarking datasets to be reproduced by the land surface models—a typical scenario in
carbon cycle research [81, 82]. Accepting this assumption for the sake of comparison, models
are considered “realistic” if their output is close to the MTE results (Figs 5 and 6). The first
observation is that JSBACH produces a spatially very homogeneous ITQ field, whereas LPJmL
exhibits a pronounced North-South gradient. A striking difference between the models is that
JSBACH is more or less reproducing the ITQ from MTE, whereas LPJmL generates output
which appears with higher information content than MTE. However, in seasonally dry regions
such as southern parts of the Iberian Peninsula and North Africa, MTE and LPJmL seem to
point in a similar direction towards higher entropy time series, whereas JSBACH does not
show this feature. Thus, in these regions LPJmL performs better. These patterns likewise
become obvious when looking at the density of points in the planes (insets), where JSBACH
has much lower density in the high-entropy and low-complexity/low Fisher Information
region than the observations; for LPJmL, the reverse holds true.

An interesting question in the context of model-data comparison using ITQ relates to
whether the derived mismatch patterns (Figs 5 and 6) would be reproduced by traditional
model performance metrics (e.g. the root mean squared error, RMSE).

In Fig 7, colour-coded Jensen-Shannon divergences for the ordinal pattern distributions
between the observation dataset MTE-MR and either of the two models are visualized and can
be seen as an ITQ-based model performance metric. These maps demonstrate that JSBACH
model output is rather close to the MTE-reconstructions in large parts of Central and Eastern
Europe, but shows some deviations in Scandinavia, North-West Russia, and Northern Africa.
In contrast, LPJmL is in better agreement with the MTE in Scandinavia, but LPJmL deviates
from MTE in the Mediterranean and in several temperate European regions. Overall, LPJmL is
the model with higher entropy values (at the monthly time scale) having a bias towards the
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random case (at least relative to MTE). JSBACH largely reproduces the behaviour of the MTE
dataset, although it overemphasizes deterministic components in the Mediterranean and in the
northern boreal.

While this analysis is useful to investigate deviations in the dynamics, as quantified by the
ordinal pattern distributions, we emphasize that it can complement, but not replace traditional
model evaluation metrics. This is because the ITQ analysis performed here cannot account for
biases in the mean, variance or higher statistical moments of model output. A direct

Fig 5. Model-Data comparison of simulated and observations-based GPP over the European continent. Colour-coded Hw � Cw (top right), as

obtained from (top left) MTE-MR, (bottom left) JSBACH, and (bottom right) LPJmL. The causal information planes illustrating the point densities are given in

the insets.

doi:10.1371/journal.pone.0164960.g005
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comparison between a conventional model evaluation metric (root mean squared error,
RMSE) and the complexity-based metrics (i.e. Jensen-Shannon divergence) reveals that the lat-
ter indeed complements traditional model evaluation tools (Fig 7): For the majority of simu-
lated grid cells, the two metrics behave opposite to each other, i.e. the model with a lower
RMSE performs worse on the dynamics (i.e. higher Jensen-Shannon divergence), and vice
versa (S4 Fig). Yet, the two metrics are not strongly anticorrelated (R = −0.296) and thus not
redundant to each other.

Fig 6. Model-Data comparison of simulated and observations-based GPP over the European continent. Colour-coded Hw �Fw (bottom right), as

obtained from (top left) MTE-MR, (bottom left) JSBACH, and (bottom right) LPJmL. The causal information planes illustrating the point densities are given in

the insets.

doi:10.1371/journal.pone.0164960.g006
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Fig 7. Model-Data comparison of simulated and observed GPP over the European continent. Jensen-Shannon Divergence between (A)

JSBACH and MTE-MR, and (B) LPJmL and MTE-MR. RMSE between (C) JSBACH and MTE-MR, and (D) LPJmL and MTE-MR.

doi:10.1371/journal.pone.0164960.g007

GPP Dynamics and Information Quantifiers

PLOS ONE | DOI:10.1371/journal.pone.0164960 October 20, 2016 19 / 29



Given the observed qualitative discrepancies between the “surrogate observations” and both
models in their representation of GPP dynamics using ITQ, a crucial question arises:Can these
findings be explained or interpreted in an ecologically meaningful way?

To this end, we focus on the Mediterranean region because here the qualitative differences
are most pronounced (Figs 5–7). Fig 8 shows an ensemble of Mediterranean flux tower obser-
vations (all sites with more than 5 years of continuous data, see Table 1 in S1 File), in addition
to the respective pixels in MTE and the two models. The ensemble of sites in Hw � Cw and
Hw � Fw (Fig 8) largely confirms the observed (spatial) pattern: In the Mediterranean,
JSBACH simulations are very homogeneous, close to MTE, and these two point clouds cluster
towards the more deterministic parts of the causal information planes. On the other hand,
LPJmL tends to produce time series with higher information content, leading to a poor ITQ-
based performance relative to MTE (see above). Surprisingly though, site-based GPP measure-
ments tend to fall closer to LPJmL than to the other two datasets in the planes. This indicates

Fig 8. ITQ-based model-data comparison at site scale for Mediterranean flux tower sites. (A) Hw � Cw, and (B) Hw � Fw. (C) Time series of GPP at

Puechabon, France.

doi:10.1371/journal.pone.0164960.g008
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that the observations-based MTE product (and JSBACH) do not necessarily match the site-
level GPP measurements from an ITQ perspective. However, a ‘process-oriented’ interpreta-
tion of these ITQ-based patterns and discrepancies is feasible, considering, for example, the
monthly GPP time series of an evergreen broadleaf forest site (Puechabon, France, Fig 8, bot-
tom panel): Here, MTE and JSBACH indicate a very simple seasonal oscillation with only one
(summer) peak per season. In contrast, flux tower measurements and LPJmL exhibit a two-
peaked seasonal structure, with an early summer peak, subsequent GPP reduction due to water
limitation, followed by a (smaller) autumn peak once water limitation ceases. Hence, in the
model-data comparison presented above, ITQ readily diagnose these two contrasting dynam-
ics, which can thus be used as a starting point to improve or optimize models and observa-
tions-based datasets.

In summary, these results show that model evaluation and improvement based solely on
absolute or relative error metrics could be misleading if the dynamics are misrepresented in the
model; in contrast a joint consideration of a variety of benchmarking metrics might provide
useful hints to scrutinizing various aspects of model behaviour.

Global analysis of land surface models

The CMIP5 runs allow a detailed evaluation of the relative importance of the model choice and
the scenario used (cf. Table 2 in S1 File). Global maps of the Weighted Permutation Entropy
(S6 Fig) and the causal information planes for one of the 30-years periods and all 59 model
runs are shown in S7 and S8 Figs. These plots show a large diversity of patterns and point den-
sities in Hw � Cw across the runs. Some of the models extend over the whole entropy range,
others are more constrained to higher entropy values. Although looking quite similar at first
glance for most of the 59 model simulations, it is obvious that the local density of points is
rather different between them. None of the simulations is very close to the upper limit curve,
i.e. do not achieve the highest complexity possible, which would be the realm of deterministic
dynamical systems. This might be explained by the fact that these models are not autonomous
dynamical systems, but driven by stochastic drivers such as precipitation. In Hw � Fw, many
simulations exhibit a “fork” structure, or a separation of the values into (at least) two different
“curves” with two different slopes (S8 Fig). The width of the point clouds around these “curves”
is, however, rather different between the simulations. Global maps of the Weighted Permuta-
tion Entropy confirm that different models indeed show considerable differences in the simu-
lated dynamics of GPP across various regions of the globe (S6 Fig). Using the rastering
presented in the Methods section, we performed a PCA of the point clouds. The result for the
first two dimensions is given by Fig 9. This figure shows that the entropy and Fisher informa-
tion measures separate models according to model structural properties, and not scenarios,
which is the core result of this section. Note that in all cases where clusters contain points of
different colours, the colour-encoded models are actually variants of each other, for example,
differing in spatial resolution or with or without a module for atmospheric chemistry. The clas-
sification is not sensitive to the two scenarios, which were identical for all models. The linear or
bow-shaped structures of the points for some of the models indicate a systematic development
during the simulation period.

Conclusions

The main intention of the current paper was to test the usefulness of Information Theory
Quantifiers as tools for data analysis and model benchmarking in the environmental sciences,
and thus to reach a wider dissemination of these tools. Time series of simulated and observed
GPP as a key ecosystem variable were investigated to show that the dynamics varies as a

GPP Dynamics and Information Quantifiers

PLOS ONE | DOI:10.1371/journal.pone.0164960 October 20, 2016 21 / 29



function of the underlying generating model or process, spatio-temporal scale and climate and
ecosystem type, reflecting that this variable has an intricate temporal behaviour and is relevant
for applications on local to global scales. Hence, statistical complexity measures can be used as
model and data analytical tools that diagnose the short-term dynamics of the underlying time
series. This is complementary to most conventional model diagnostics quantifying global sta-
tistical properties of the data, such as bias, correlation, variance, or higher statistical moments,
which are in part insensitive to the temporal order (non-causal).

Three central results were presented in the present paper: First, ITQ derived from time series
of remotely sensed vegetation activity proxies (FAPAR in our case) show both climate- and eco-
system-related continental-scale gradients and regional structures, and thus might serve as useful,
efficient and robust data-analytical tools. Second, a model-data comparison based on ITQ reveals
qualitatively different results compared to traditional model evaluation metrics; e.g., as demon-
strated for European GPP simulations, a model with low absolute or relative error does not nec-
essarily reproduce the dynamics of the observations well, and vice versa. A striking result is that
the GPP data set that is constructed by the MTE approach has different, much more determin-
istic ITQ than the EC observations that enter the MTE procedure. Discrepancies between models
and/or data provide useful hints to model structural deficiencies (as shown for Mediterranean
FLUXNET sites). Third, the complexity of model simulated GPP is highly sensitive to model
structure (i.e. differing between models), but largely insensitive to external climate forcing,

Fig 9. Differentiating model structure with statistical complexity measures. The different models are coded by different colours, filling indicates the

analyzed time period for all grid cells of the globe.

doi:10.1371/journal.pone.0164960.g009
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atmospheric greenhouse gas concentrations or land use changes, as demonstrated for global- and
biome-scale GPP simulations from the CMIP5 archive. These results highlight the benefits of
model benchmarking and evaluation against a variety of model evaluation metrics, including
model structural diagnostics such as the ITQ presented here.

ITQ allow a ranking of models according to their ability to reproduce the observed dynam-
ical behaviour within the time span given by the embedding dimension and the delay parame-
ter. The crucial limiting factor for this time span is the length of the time series. In the future,
the complexity indicators could serve as objective functions to improve model performance,
e.g. in an iterative or machine-learning setting to find optimal parameter sets or model struc-
tures (Ilie et al., submitted to Geoscientific Model Development) or in a data assimilation system
(see e.g. [83]). In general terms, the methods employed here analyze and compare data sets, not
models. They are close to non-parametric—the choice of the embedding dimension is dictated
by the length of the time series—and do not make any specific assumptions about properties of
the data, statistical or otherwise. Our results indicate that for land surface models, it is likely
not sufficient to change the parameters of the model to reproduce the observed behaviour;
rather, the model structure has to be revised, since the same model structure produces similar
patterns independent of e.g. their initialization and the details of the parametrization.

Finally, a broad range of future applications of Information Theory Quantifiers in environ-
mental science is conceivable: These could consist of efficiently diagnosing satellite data
streams of very high spatio-temporal resolution in an increasingly data-rich era, as well as to
use statistical complexity of environmental variables for classification purposes. Therefore, we
propose that these tools could be taken up more widely by the community for model evaluation
and benchmarking activities.
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