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Abstract—Automatic recognition of biological structures like
membranes or synapses is important to analyze organic processes
and to understand their functional behavior. To achieve this,
volumetric images taken by electron microscopy or computed
tomography have to be segmented into meaningful semantic
regions. We are extending iterative context forests which were
developed for 2D image data for image stack segmentation. In
particular, our method is able to learn high order dependencies
and import contextual information, which often can not be
learned by conventional Markov random field approaches usually
used for this task. Our method is tested for very different and
challenging medical and biological segmentation tasks.

I. INTRODUCTION

Extracting specific regions in volume images is an im-
portant task in medical image processing and a prerequi-
site for quantitative analysis of biological data (Fig. 1). For
example, X-ray computed tomography (CT) is a common
tool in medical imaging and the electron microscopy (EM)
is used to investigate biological processes or structures in
organic and inorganic specimens. However, manual annotation
of 3D data is challenging and often requires a huge amount
of time and expertise. Therefore, the aim of the paper is to
present a method, which is easy to implement, to use, and
can be applied to generic volume data by learning from a
small number of previously annotated volumes. Being able
to automatically segment semantic regions in volume data
does not only save time, but it also allows for quantitatively
analyzing a large number of volumes, important for providing
applied researchers with robust statistics.

Our proposed method labels every single voxel in the
volume and is able to capture context information along every
axis of the volume. We show that the use of relatively simple
feature extraction methods on channels for color and gradient
values is sufficient to obtain a decent segmentation of volume
images.

The outline of the paper is as follows: In Section II, we give
an overview of related work. Section III and IV continue with a
description and discussion of the proposed method. In Section
V, we present segmentation results for different data sets. We
conclude with a discussion of the results in Section VI.

II. RELATED WORK

The task of semantic volume segmentation for image
data provided by CT imagery or EM microscopy is of great
interest in computer vision [1], [2], [3]. Related works most
often propose segmentation techniques to find and reconstruct
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Fig. 1: Volume images used in our experiments: (a) an electron
microscopy stack of neural tissue and (b) a CT scan of a sponge

objects of a specific class, e.g., synapses or membranes in
neural tissue. A popular tool for segmentation is the graph-
cut algorithm. The method in [3] uses a gradient flux term
in the energy function and incorporates information from
different sections by applying the SIFT flow algorithm [4].
In [1] a modified energy function is presented which omits
the gradient flux term. Instead, perceptual grouping constraints
for contour completion are introduced. It can be useful for
the segmentation of thin elongated structures. However, the
authors argue that this term may also lead to false positive
membrane segmentations due to textures. Instead the final
energy function consists of a data term, a directional energy
term for smoothness, a penalty for discontinuities, and a term
that incorporates information from adjacent sections.

In [2], the correspondence between nearby areas is trans-
formed into a fusion problem. First, an RDF classifier is
trained to obtain the probability of each pixel belonging to the
cell boundary. Watershed transformation is applied to obtain
segmentations for each section. After that, 3D links between
these sections should connect segments of different slices.
Finally, a fusion problem of 2D segments and 3D links is
defined that identifies each neuron.

CT images typically show objects of a larger scale. As
the authors of [5] show, semantic segmentation can also help
with localizing organs in a human body. The authors are
using so-called entangled-decision forests to model context
between nearby organs in CT scans which usually have a fixed
composition.

In our approach we do not model the connection between
different sections explicitly, but use auto-context features [6]
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Fig. 2: Framework of our method: First, slices of a image stack are processed in order to compute feature maps. Feature extraction
methods applied to these maps are used to train the ICF by finding good splits at the current level t. The ICF learned so far
is applied to the training slices in order to create class probabilities for each pixel. Then, these probability maps are add to the
pool of feature maps in the training step t+ 1.

within an iterative pixelwise labeling approach. Moreover,
we are using easy to compute features like gray-values and
gradients in a cubic neighborhood. Therefore, we extend the
iterative context forests (ICF) of [7] to 3D data which was
previously limited to 2D images and multi-channel images
occurring in remote sensing applications.

More common applications for semantic segmentation are
urban scenes and images of landscape, persons, or animals.
In these settings typical constellations like car on street, sky
above building or sheep on grass are observable as well. Many
methods in this field of application are using either random
decision forests (RDF) [8], [9], [10], [7] or conditional random
fields (CRFs) [11], [12], [13] which is a common technique to
model context. As we show in this paper, in contrast to CRFs,
our approach is not restricted to pairwise potentials and is able
to learn high order dependencies.

III. ITERATIVE CONTEXT FORESTS FOR IMAGE STACKS

The proposed approach for semantic segmentation consists
of two fundamental parts: feature extraction and pixel classifi-
cation. In this section, we focus on the classification framework
which is based on the popular random decision forests. Details
on the efficient computation of features will follow in the next
section.

A. Random Decision Forests

The core of ICF [7] is a random decision forest (RDF) [14],
which has been specifically adapted to semantic segmentation.
The concept of decision trees is well known, so we will not
elaborate on how they work and refer the interested reader
to [14]. In order to explain iterative context forests, we give
a short introduction to random decision forests. The RDF
approach in general aims at overcoming drawbacks of original
decision trees, like over-fitting and long training times, with
two concepts of massive randomization during training.

The first concept is known as bagging and trains several
decision trees individually with a random subset of the training
data. Furthermore, a second randomization concept is applied
determining binary splits in inner nodes. Instead of computing

all available features in each inner node only a random subset
is drawn from the set of all possible features, which we will
refer to as feature pool. Among them the best feature and split
is determined by maximizing the impurity criterion, which in
our case is the information gain.

In our case, we are confronted with different types of
features (see Sec. IV for more details) with each of them
having a number of parameters (e.g., position, used feature
map, etc.). To sample a specific feature, we first sample the
feature type and we then sample the parameters in a second
step. This guarantees that the learning is not biased towards
feature types with a larger parameter space. The whole random
selection process is exactly what renders learning in our case
with millions of features tractable.

Although finding a good split in a single tree node makes it
necessary to test various randomly chosen splits, the training
of random decision forests is still fast. Learning an RDF is
a matter of minutes, while convolutional neural networks for
instance need several days on a GPU for such a task [15].
The classification of test images is even faster. Each pixel of
an example is traversing the trees of the trained RDF until it
reaches the leaf nodes. The empirical distributions in all leaves
are then combined in order to estimate class-wise probabilities.

B. Incorporating Context Knowledge

Applying RDFs for pixel- or voxelwise classification di-
rectly has two disadvantages: first, for each pixel the tree has
to be traversed down to the leafs, and second, feature extraction
is limited to a local neighborhood and is unable to integrate
high-order dependencies.

To address the second issue, [7] proposed to sequentially
traverse the tree level by level for all pixels in each image.
This allows for using outputs of the previous level as an
additional source for features. At each level of the random
forest class probability maps for the current image (or volume)
are computed. On a lower level these information allow the
extraction of contextual features in order to model relational
dependencies like one class is above another. This concept was
introduced in [6] and is called auto-context. See Fig. 2 for an
overview of our our pixel-wise classification framework.
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Fig. 3: Feature extraction methods for a 3D neighborhood of side length d around a voxel (blue): (a) pairs of voxels, (b) a
smaller cuboid of arbitrary size or (c-d) different types of 3D Haar-like features where the feature value is the difference of the
voxel intensity sums of red and orange regions. (e) Eight references are necessary to compute the sum of an arbitrary cuboid
within the integral volume image.

Furthermore, during testing time the structure of ICFs also
addresses a trade-off between accuracy and time needed for
inference. In some applications it might be sufficient to have
a rough approximation of the best obtainable result after a
short time. Since ICFs are built in breadth-first manner, a
prediction on each level of the trees can be done by returning
the empirical class distribution stored at inner nodes.

As observed in our experiments, each depth-level gives a
more accurate classification result than the one before until
saturation is reached. Stopping at an earlier level will give
only rough results depending on fewer features but will also
save time. The ability of an algorithm to allow for iterative
refinements during testing is usually referred to as anytime
classification [16].

IV. EFFICIENT FEATURES IN VOLUMETRIC IMAGES WITH
ICF3D

In this section, we describe how computation of specific
features is achieved. In the first part we broach the issue
of creating a large feature pool with millions of possible
features. After that, a fast method for computing such features
is presented.

A. Creating a large feature pool

The ICF classifier allows inputs to have an arbitrary number
of channels. Depending on the application, the algorithm
can make use not only of raw color channels but additional
layers like gradient images, resulting probabilities of other pre-
learned classifiers, or unsupervised segmentation outputs. The
relevance of these feature maps is automatically determined
by the RDF classifier, since all binary splits are evaluated by
an impurity measure and automatically selected.

The extraction of features from these maps is done in
our case with simple operations performed in a neighborhood
of the current center pixel: (a) Single values extracted from
neighboring voxels, (b) sum or difference of two neighboring
voxels, (c) sum of values within a cuboid and (d) 3D Haar-
like features given by the difference of two or more cuboids.
Visual examples can be found in Fig. 3.

With the size of the neighborhood the feature pool grows
exponentially and it is not possible to compute all of the
possible features in the training step. As a consequence, we

only draw a fixed number of features. From this subset of
features, the best split in each level of a decision tree is chosen
by the impurity criterion.

B. Fast computation of 3D features

In order to compute 3D features in a fast manner, it is
possible to use an intermediate representation. In the case of
2D images the so called integral image (or summed area table)
is used [17], [18]. It contains at location (x, y) the sum of
the pixel values above and to the left of the same location in
the original image . The computation of rectangle features as
for instance Haar-like features benefit from this representation.
The sum of a rectangle area of arbitrary size can be computed
by only four points in the integral image.

This idea can be easily extended to integral volumes. In
consequence, an integral volume image V contains at location
(x, y, z) the sum of gray values from the voxels above, to the
left and in front of its location in the input image I as well
as the gray value of the voxel (x, y, z) itself:

V(x, y, z) =
∑

x′≤x, y′≤y, z′≤z

I(x′, y′, z′) . (1)

With the integral volume of an image, any sum of values
in a cuboid can be be computed by eight array references.
Analogously to [18], the values of the cuboids to the left, on
top and in front of the currently processed volume have to
be removed. Otherwise these region would be incorporated
twice in the final computation. Consider a cuboid C with an
arbitrary position inside a larger cuboid, i.e., the whole integral
volume image V . The eight corners of C are p1, ..., p8 with
pi = (xi, yi, zi) being the locations in V . Location p6 marks
the lower right back corner and p2 the upper right front corner
of C. Then, the integral volume VC of C can be computed as:

VC = p1 + p4 + p6 + p7 − p2 − p3 − p5 − p8 . (2)

A corresponding visualization showing the eight reference
points can be found in Fig. 3(e). With this method cuboid
features and especially the 3D Haar-like features can be
computed very efficiently. Now that we have extended the
ICF framework with 3D features and added the possibility to
analyze volume images, we will henceforth call it ICF3D.
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Fig. 4: Results for the sponge CT data: The first row depicts slice #85 of the testing stack and corresponding segmentation results
by ICF [7] and ICF3D with labeled classes canal (red), tissue (green) and background (gray). Second row shows an enhanced
comparison of slice #259. Our ICF3D approach improves segmentation results of subtle canal structures. Figures are best viewed
in color.

V. EXPERIMENTS

We evaluate our method on two different datasets. For a
qualitative demonstration of ICF3D, we use data of a CT scan.
A quantitative comparison with other approaches using an EM
stack of neural tissue is done after that.

A. CT data of a sponge

We are using CT scanning data of a sponge with an
isotropic resolution of 3.4 micrometers per pixel. The reso-
lution of each slice is 1536 × 1536 pixels. The task is to
distinguish between the classes canals, tissue, and background.
There is a stack of eleven labeled slices and a stack of
351 unlabeled slices. We used the former stack for training
and the second one for testing. All images feature noise and
artifacts from the recording procedure. The training slices were
accurately labeled by a biologist. In Fig. 4 (a) you can find a
typical image. According to the expert, all dark gray structures
belong to the class canals, even the tiny ones. A magnified part
of another slice can be seen in Fig. 4 (d).

Because the resolution of this data is in all dimensions
the same, a 2D window of the neighborhood for each pixel
can be simply replaced by a cube with the same side length.
In consequence, we can run the experiments with ICF [7]
and ICF3D with comparable parameter configurations. We use
feature maps originating from gray values and gradients. Color
information is not available for this data.

Figure 4 demonstrates the potential of our volume segmen-
tation method. Images (c-e) and (f-h) each show a slice of the

test stack and the voxel classification results of [7] and ICF3D.
As can be seen our approach shows improvements when it
comes to subtle structures. Without using 3D information
from nearby slices the segmentation is more coarse and fine
structures get lost.

B. EM stack of neuronal tissue

We use the freely available Drosophila first instar larva
ventral nerve cord (VNC) data [19] of the ISBI 2012 challenge.
A stack with 30 slices is labeled to distinguish between the
classes membrane and interior of neurons. The resolution of
these stacks is 4× 4× 50 nanometers, which is rather coarse
in z-direction.

To account for this setting, we adapt the neighborhood in z-
direction in an analogous way. The length of the neighborhood
cuboid in z-direction is only 10% of the length in the other
two directions, which are of higher resolution. For instance, a
neighborhood of size d = 50 represents a 50× 50× 5 cuboid
in the image volume. In consequence, only two slices in front
of and behind the current slice are used in the process.

We report results for the measures pixel error and rand
error and compare our performance with selected methods of
the challenge. The former one is a common measure in binary
classification of pixels and is also referred to as accuracy or
overall recognition rate. The second measure is related to the
well known F-score, which is the harmonic mean of precision
and recall. However, in this specific task the so-called Rand
index is used for the computation. It is a measure of similarity
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Fig. 5: Qualitative comparison of the neural tissue dataset using different types for the feature extraction. When only using pixel
pair features the results appear to be cluttered. Especially in the larger interior areas the labels of nearby pixels are not consistent.
Furthermore, synapses are labeled as cell membrane. These issues lessen or even vanish when Haar-like features and context
features are added.

between two clusters or segmentations. The most important
measure in the ISBI 2012 challenge is the rand error and we
therefore also sort our results by this measure (see Table I).

In order to model the textural differences between mem-
brane and mitochondria in the data not visible in the gradients
maps, we incorporate local binary patterns (LBP) [20] as
additional feature maps. They are a powerful tool in texture
classification and increased the performance slightly in our
case.

As can be seen in the rand error column, we are not able to
produce state-of-the-art results. When taking the actual pixel
errors into consideration ICF3D performs decently. It is a
typical binary segmentation task, where modeling of context
is hardly possible. However, we achieve comparable results
to [1] and the patch-based SVM of [21]. The convolutional
network approach of [15] shows best performance for this data.
Note, that we are not using task specific knowledge (e.g. shape
information) or applying any post-processing for smoothing.

C. Analysis of feature types

In a third set of experiments, we analyzed the influence
of different feature types (see Sec. IV-A) for the segmentation
of neural tissue. For this task, we only used the training data
of the ISBI 2012 challenge data, because ground truth labels
are available. We split the 30 slices of the training stack into
six stacks of five slices each to do a 6-fold cross-validation.
This allowed us to analyze performance without using the
evaluation server.

In Fig. 5, we show a qualitative comparison of two slices
taken from two different cross-validation runs. While the first

Method Rand error
[·10−2]

Pixel error
[·10−2]

CNN [15] 4.8 6.0
Dense correspondence [3] 6.4 8,3
Watershed Tree [22] 8.4 13.4
Perceptual Grouping [1] 8.4 15.7
CellProfiler [23] 9.0 10.0
Segment features [24] 13.9 10.2
Two-step class. [25] 15.3 8.8
Contextual Grouping [26] 16.2 10.9
Patch-based SVM [21] 23.0 15.0

ICF [7] 28.1 13.5
Ours: ICF3D w/o LBP 24.1 12.4
Ours: ICF3D w/ LBP 22.9 12.4

Table I: Results of some competitors and our generic method
on the ISBI 2012 challenge data [19].

two columns depict original input images and their corre-
sponding ground truth annotation the other three columns show
results with different feature extraction methods. It can be seen
that the use of pixel pair differences is sufficient to segment cell
membranes. However, synapses are also labeled as membrane
and areas of cell interior are not very homogeneous. This is
due to the limitation of single pixel values instead of average
values in feature maps across whole regions.

When rectangle features and Haar-like features are added,
some parts of the synapses are not labeled as membrane
anymore. Furthermore, the inhomogeneity in the cell interiors
is less. Both issues even improve when context features taken



from probability maps are incorporated and some wrong
labeled synapses even vanish.

For a quantitative evaluation we used the provided script
of the ISBI 2012 challenge. When only pixel pair differences
are allowed the pixel error is 15.6% (average of 6-fold cross-
validation). With incorporated rectangle and Haar-like features
the error decreases to 14.2%. The best result of 13.5% with
respect to the pixel error can be achieved when context features
are used.

VI. CONCLUSIONS

In this paper, we presented a fast method for volume image
segmentation. We extended an existing semantic segmentation
method that incorporates context information. Our proposed
algorithm is able to segment even subtle structures in CT data.
The method is also applicable to EM stacks, as we have shown
for the ISBI 2012 challenge data.

We also did some more experiments with data of EM stacks
and CT scans and discovered that incorporating information
from nearby slices can also be misleading. Whether segmen-
tation performance improves with these information highly
depends on the quality of the data and on the recording method
itself.

While CT imagery usually creates volume images with
isotropic resolution and similar illumination at each slice, EM
stacks often have a coarse resolution in z-dimension as well
as illumination and contrast changes. On the other hand, CT
scans usually contain artifacts or noise. These things have
to be considered when working with such stacks to attain
improvements over sequential 2D slice segmentation.
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[7] B. Fröhlich, E. Rodner, and J. Denzler, “Semantic segmentation with
millions of features: Integrating multiple cues in a combined random
forest approach,” in Proceedings of the Asian Conference on Computer
Vision (ACCV), 2012, pp. 218–231.

[8] G. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and
recognition using structure from motion point clouds.” in Proceedings
of the European Conference on Computer Vision (ECCV), 2008, pp.
44–57.

[9] C. Zhang, L. Wang, and R. Yang, “Semantic segmentation of urban
scenes using dense depth maps.” in Proceedings of the European
Conference on Computer Vision (ECCV), 2010, pp. 708–721.
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