
1 of 15European Journal of Neuroscience, 2025; 62:e70252
https://doi.org/10.1111/ejn.70252

European Journal of Neuroscience

RESEARCH REPORT OPEN ACCESS

Directionality of Interpersonal Neural Influence in 
Functional Near-Infrared Spectroscopy Hyperscanning: 
Feasibility of Information–Theoretic Causality Analysis in 
Motor Tasks
Maha Shadaydeh1   |  Vanessa Noering2,3  |  Marcel Franz2  |  Tara Chand4  |  Ilona Croy2,3  |  Joachim Denzler1

1Department of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany  |  2Department of Clinical Psychology, Institute of 
Psychology, Friedrich Schiller University Jena, Jena, Germany  |  3German Center for Mental Health, Halle-Jena Magdeburg, Germany  |  4Department of 
Humanistic Studies, Indian Institute of Technology, Varanasi, India

Correspondence: Maha Shadaydeh (maha.shadaydeh@uni-jena.de)

Received: 19 February 2025  |  Revised: 14 August 2025  |  Accepted: 25 August 2025

Associate Editor: Agustin Ibanez  

Keywords: fNIRS | hyperscanning | imaging | interpersonal synchronization | mutual information decomposition | social interaction | spectral causality

ABSTRACT
Hyperscanning approaches mark a shift from single- to two-person neuroscience, enabling a more profound understanding of the 
neural mechanisms underlying interpersonal synchronization. In this context, functional near-infrared spectroscopy (fNIRS) 
has emerged as a valuable tool for measuring brain activity in a natural, unconstrained environment. While interpersonal syn-
chrony using fNIRS hyperscanning has been well-studied using statistical association analysis, establishing causal relationships 
that elucidate the direction of influence remains challenging. This study aimed to investigate the feasibility of determining the 
direction of influence in dyadic interactions. Since the ground truth of such direction is not available in a natural setting, we 
validated our approach in an experimental setup in which we controlled the direction of influence between two subjects by as-
signing them the roles of “Model” and “Imitator” of specified motor tasks. A total of 22 participants, hence 11 dyads, completed 
the task in a within-subject design. We adapted concepts from spectral causal effect decomposition theories to formulate a new 
measure of the direction and intensity of influence. The results demonstrate that the direction of influence in fNIRS data can be 
detected with an accuracy in the range of 62%–71%. Furthermore, the proposed spectral causality measure was shown to signifi-
cantly reduce spurious causal relationships due to the confounding effects of physiological processes and measurement artifacts 
compared to time domain causal analysis.

1   |   Introduction

Hyperscanning involves the simultaneous recording of brain 
activity from two or more individuals to determine the temporal 
relation between both brains (synchronization). Hyperscanning 
approaches thereby mark a shift from single- to two-person neu-
roscience, allowing a much deeper understanding of the neural 
mechanisms of interpersonal social interactions (Czeszumski 
et  al.  2020). Such research revealed synchronized patterns of 

brain signals in interacting minds, especially in brain regions 
involved in social cognition, emotion, and motor control (for an 
overview, see (De Felice et al. 2025)).

Different hyperscanning measurements such as electroencepha-
lograph (EEG), functional magnetic resonance imaging (fMRI), 
and functional near-infrared spectroscopy (fNIRS) have been 
used to investigate interpersonal synchronization during ver-
bal, semiverbal, and nonverbal interactions (Hakim et al. 2023). 
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Compared to fMRI and EEG, fNIRS offers significant advan-
tages for monitoring neural activity during natural, uncon-
strained, and real-life interactions. Its high temporal resolution 
of oxygenation change and motion tolerance makes it particu-
larly valuable for capturing dynamic neural activity in naturalis-
tic settings (Pinti et al. 2020).

While interpersonal synchrony using fNIRS hyperscanning has 
been well studied using statistical association analysis, for ex-
ample, temporal correlation (Han et al. 2022) or wavelet coher-
ence (Nguyen et al. 2021), establishing causal relationships that 
elucidate the direction of influence in hyperscanning remains 
challenging (for an overview, see (Hakim et al. 2023)). Therefore, 
this study aimed to advance beyond direction-blind statistical as-
sociation to investigate the feasibility of testing the direction of 
influence in dyadic interactions using causal analysis methods.

A central and ongoing debate in the hyperscanning literature 
concerns the causal role of interbrain synchrony (IBS): Do brains 
that synchronize during interaction merely reflect shared sensory 
input and task structure, or does IBS itself facilitate social interac-
tion? While early studies focused on demonstrating the presence 
of IBS during joint tasks (Liu et al. 2016; Nguyen et al. 2020), a re-
cent debate in the field revolves around understanding the source 
and functional significance of IBS (Holroyd 2022); in this sense, 
some authors (Novembre and Iannetti  2021) have questioned 
whether this synchrony is epiphenomenal or mechanistically 
relevant for social behavior. Novembre and Iannetti (Novembre 
and Iannetti 2021), for instance, argue that hyperscanning, due 
to its correlational nature, cannot resolve this question. They 
propose that only interventional approaches, such as dual-brain 
stimulation (DBS), can provide direct causal evidence by actively 
manipulating IBS and observing its effects on social behavior. 
This study aims to contribute to this debate by exploring whether 
causal discovery methods applied to fNIRS hyperscanning data 
can reveal directional dependencies between interacting brains. 
Our work thus complements the broader effort to move from cor-
relation to causation in social neuroscience by providing a data-
driven framework for inferring directional interbrain effects in 
naturalistic settings.

Causal discovery in multivariate time series aims to elucidate 
the cause-and-effect relationships between variables that evolve 
over time. The most well-known classical method is the Granger 
causality (GC) (Granger  1969). GC is based on the idea that 
causes precede and help predict their effects. Recent research has 
increasingly focused on understanding the synergistic effects 
of groups of variables acting as a collective subsystem on other 
groups. This focus is particularly critical in complex systems 
characterized by intricate interdependencies, such as climate–
ecosystem interactions and neural activity across distinct brain 
regions of the same subject (Faes et al. 2022). Notable group cau-
sality methods are the Trace method (Zscheischler et al. 2011), 
the 2GVecCI (Wahl et al. 2023), Vanilla-PC (Janzing et al. 2009), 
and MC-VAR (Ashrafulla et al. 2013). While these methods op-
erate in the time domain, Faes et al. (Faes et al. 2022) built on 
the spectral causality approach of Geweke (Geweke 1982) and 
proposed an information–theoretic framework based on mutual 
information rate (MIR) decomposition to assess the interac-
tions among groups of processes, both within specific frequency 
bands of interest and in the time domain.

fNIRS data are often influenced by various sources of noise 
stemming from measurements and physiological processes, 
for example, breathing, heart rate, and Mayer waves, (Pinti 
et al. 2019). In hyperscanning, these processes typically occur 
at similar frequency ranges in both participants, thus can con-
found the results, leading to spurious associations between par-
ticipants when using time domain statistical or causal analysis. 
Furthermore, the strength of coupling may vary across differ-
ent frequency bands. To address these challenges, we adapted 
the framework of Faes et al. (Faes et al. 2022), to our specific 
research question, subsequently proposing a new measure for 
quantifying the direction and intensity of causal effect relation-
ships in fNIRS data. Since the ground truth of the direction 
of interpersonal influence is not available in a natural setting, 
we validated our approach in an experimental setup where we 
controlled the direction of influence between two subjects. We 
compared the results of different state-of-the-art group causality 
methods to the proposed spectral domain causal effect measure. 
We showed the feasibility of detecting the correct cause–effect 
direction in fNIRS time series data. To our knowledge, this 
paper is the first to provide a comprehensive analysis pipeline 
for identifying the direction of influence in fNIRS data.

2   |   Materials and Methods

2.1   |   Participants

A total of 11 dyads, 22 participants, were recruited from the stu-
dent population, with a mean age of 23.15 and a standard devia-
tion of 2.58. The sample was 21 females and one male. Inclusion 
criteria required participants to be at least 18 years old and re-
port to be neurologically healthy. Participants received research 
participation credits as compensation. The study was conducted 
following the Declaration of Helsinki and approved by the ethics 
review board of the Faculty of Social and Behavioral Sciences of 
the University of Jena (FSV 22/063).

2.2   |   Experimental Design

Participants were invited in dyads to perform a dyadic move-
ment imitation task. Initially, each person was assigned to ei-
ther the role of Model (M) or Imitator (I). Both participants were 
seated opposite each other, so the Model faced a screen behind 
the Imitator, which was invisible to the Imitator. We presented 
two 20-s videos on the screen, one showing hand-tapping and 
the other foot-tapping. For hand-tapping, the video showed a 
person's hand with each finger (excluding the thumb) sequen-
tially tapping on a surface at a rate of approximately 1.5 Hz. For 
the foot-tapping task, the video showed a barefoot-tapping on 
the floor at the same rate. The Model's task was to watch the 
screen and copy the movement with their right hand or foot. The 
Imitator's task was to imitate the movement of the Model.

A fixation cross was displayed for 60 s before each video, serv-
ing as a rest and baseline during which participants were asked 
not to move. Videos were presented in a pseudo-randomized 
order five times each, resulting in ten trials per Model–Imitator 
constellation. After a short break, the Model and Imitator 
switched roles and repeated the experiment with a different 
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stimulus order. The experiment and the video presentation were 
programmed and controlled using the Presentation software 
(Version 23.0, Neurobehavioral Systems, Inc., Berkley, CA).

2.3   |   Data Acquisition

Each participant's cortical hemodynamic activity was recorded 
using a continuous wave fNIRS system (NIRSport2, NIRx, 
Germany) with a sampling frequency fs = 10.17 Hz and 15 op-
todes per participant (eight emitters × 7 detectors). Based on a 
finger- and foot-tapping study by Cockx et al. (Cockx et al. 2023), 
the optodes were placed to cover the left and right primary 
motor cortex (M1) and premotor cortex (PMC) (Figure 1) with 
a distance of 3 cm to allow measurement of cerebral blood oxy-
genation at 2- to 3-cm depth. Additionally, eight short-distance 
channels (SDCs) were placed at each emitter position for later 
offline short-channel correction of nonneuronal signals from 
long-channel data.

2.4   |   Data Preprocessing

The preprocessing of the fNIRS time series was performed using 
the Homer3 MATLAB toolbox (Huppert et al. 2009). The raw op-
tical intensity time series for every subject were converted into 
changes in optical density (OD) using the hmrR_Intensity2OD 
function. To detect motion artifacts, the hmrMotionArtifactBy-
Channel was applied to the OD time series with the parameters: 
AMPthresh=1, SDThresh=10, tMotion = 1, and tMask = 1. We 
used the Spline correction function hmrR_MotionCorrectSpline 
with p = 0.99 (Scholkmann et al. 2010) for motion artifact correc-
tion. Hemoglobin concentration changes (ΔHb) were estimated 
using the modified Beer–Lambert law with the hmrR_OD2Conc 
function. A supplementary wavelet-based visual quality con-
trol procedure (Nguyen et  al.  2021) was implemented before 
the filtering process. Figure  A1 shows examples of good and 

bad quality HbO signals. Ten of the 11 dyads exhibited good 
data quality and were included in the subsequent analysis. 
Finally, using the hmrR_BandpassFilt function, a fifth-order 
Butterworth bandpass filter was applied to ΔHb with a low cut-
off frequency of 0.008 Hz and a high cutoff frequency of 0.2 Hz. 
The phase of the used filter is almost linear in the passband; 
that is, all signal components undergo a similar delay, and thus, 
no influence on causal analysis is expected due to this filtering 
process. This filtering step removes physiological noise, such as 
respiratory fluctuations (≈ 0.25 Hz), cardiac oscillations (≈ 1 Hz) 
(Hakim et al. 2023), and slow drifts in the baseline signal, while 
preserving neural activity in the typical frequency range of in-
terest (≈ 0.029 Hz, depending on the stimulus presentation rate 
(Hakim et al. 2023)).

The averages and variances of the oxygenated hemoglobin 
(HbO) and deoxygenated hemoglobin (HbR) were modelled 
using the block averaging functions of Homer3. Figure 2 illus-
trates these signals for hand-tapping, foot tapping, and baseline 
intervals in a sample channel in each brain motor region: M1, 
PMC, and PMC/M1. The start line is the start of the video on the 
screen visible to the Model only. We show the HbO average for 
the Imitators in the second five trials, where both participants 
became more familiar with the task. We can see an apparent in-
crease in HbO signals during motor tasks compared to the base-
line condition. Residual periodic fluctuations, likely attributed 
to Mayer waves, are observable at ≈ 0.1 Hz (≈ two waves in 20 
s). We calculated the correlation between HbO and HbR to sup-
port our claim that the signal is related to neural activity. This 
negative correlation can also be seen in Figure 2 from the syn-
chronization between the increase of HbO and the decrease of 
HbR in all channels.

The temporal profile of the hemodynamic response (HbO) is 
comparable in shape and peak location to the findings reported 
in (Cockx et al. 2023). However, the onset of activation in the 
present study appears delayed by approximately 2–3 s. This delay 

FIGURE 1    |    The optodes layout used for fNIRS measurements (2D and 3D views). The brain motor regions are M1 (Channels 12, 13, and 17), PMC 
(Channels 4, 5, 6, 8, and 16), and PMC/M1 (Channels 10 and 15).
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can be attributed to the definition of the time axis, where time 
zero corresponds to the start of the video displaying the target 
movement. Participants typically initiated their motor response 
2–3 s after video onset, which plausibly explains the observed 
temporal shift. This delay of the peak is also likely influenced 
by our task duration being 20 s, compared to the 8 s duration in 
Cock et al. (Cockx et al. 2023).

Since our target is to detect the cause-effect relationship, we 
avoided any nonlinear processing of the signals, such as GLM 
modeling or the use of SDCs to further clean data. Our primary 
goal was to preserve the temporal relationship between the 
Model and the Imitator since any nonlinear processing could 
alter this crucial element of our analysis. The methods we se-
lected for filtering, as explained above, and motion correction 
were chosen such that they do not change this temporal rela-
tionship, which could otherwise compromise the causality re-
sults. Our main proposal and recommendation of this paper is 
to work in the frequency domain to remove any causality related 
to motions or physiological artifacts by defining causality at the 
frequency band of interest. Nevertheless, the SDCs were used for 
further motion compensation in terms of causal intensities, as 
will be explained in the following section.

Figure  3 shows the temporal relation between the Model and 
Imitator for the HbO signals. We can notice that the activation of 
the Imitator's HbO follows the HbO activation of the Model. This 
clear delay links to the concept of GC in the temporal sense that 

the cause precedes and helps predict the effect. Interestingly, 
we can also notice how this delay differs in different tasks and 
regions. The delay is larger in the foot tapping task than in the 
hand-tapping task. In contrast, for the HbR signals, this tempo-
ral relation between the Model and Imitator is no longer consis-
tent, as shown in Figure B1.

2.5   |   The Directionality of Neural Influence: A 
Spectral Causality Approach

To identify the direction of influence between the two partici-
pants (Model and Imitator) within each dyad, we adapted the 
Spectral Decomposition of MIR framework of (Geweke  1982; 
Faes et al. 2022), hereafter referred to as spectral MIR (Spectr-
MIR). In the following, we first provide a brief overview of the 
Spectr-MIR method adapted to our problem. We subsequently 
propose our definition of the measure quantifying the intensity 
and direction of the causal effect between the Model and the 
Imitator, along with the statistical significance test used.

2.5.1   |   Spectr-MIR Method

Let X (tn) ∈ ℝ
L×2N be L × 2N matrix representing N time series 

of length L of a specific brain region for both the Model (M) and 
Imitator (I), respectively, where tn = nΔt is the time index in 
iteration n and Δt = 1∕fs. The matrix X (tn) can be represented 

FIGURE 2    |    The average and 50% confidence interval of the oxy-/de-oxygenated hemoglobin time series (HbO/HbR) in red/blue color. The time 
series are averaged for each channel over all dyads and task repetitions for hand-tapping, foot-tapping, and baseline tasks. The start and end of the 
video on the Model's screen in the motor task intervals are marked in vertical lines; the task is performed for 20 seconds.
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as the concatenation of the HbO channels of the Model XM and 
Imitator XI, that is, X (tn) = [XM (tn) XI (tn)]. The information 
shared by the two random processes XM (tn) and XI (tn) per unit 
of time is defined as the MIR as follows (Duncan 1970): 

where MI(X1,X2) denotes the mutual information (MI) shared 
by the two variables X1 and X2 which is defined as follows: 

Here, p(. , . ) and p(. ) denote joint and marginal probabilities, 
and � is the statistical expectation operator. Using the rela-
tion between transfer entropy and MI, it is possible to decom-
pose the MIR into three components, that is (Faes et al. 2022; 
Duncan 1970), 

MIRXM .XI represents the instantaneous information shared be-
tween XM and XI and TX1→X2

 is the entropy transfer from X1 
to X2.

Following the methodology of (Duncan 1970; Faes et al. 2022), 
we utilize a state-space modeling approach to compute all nec-
essary MIR terms. Accordingly, we present the process X (tn) as 
a state-space model, that is, 

S(tn) is the 2N × p state vector of the model, where p is the model 
order; A,C, and K are the state-space model matrices, and W (tn) 

is a white Gaussian innovation noise vector of zero mean and 
covariance matrix �W = �[WnW

T
n ]. Similar to X (tn), W (tn) also 

can be written as W (tn) = [WM (tn)WI (tn)].

Taking the Fourier transform (FT) of the state Equation (4) yields 

where S(�) and W (�) are, respectively, the FTs of S(tn) and W (tn) 
and � is the normalized angular frequency. From Equation (5), 
we can derive the power spectral density (PSD) of X (tn) as 
X (�) =H(�)W (�), where 

with I being the identity matrix. H(�) represents the transfer 
function relating the FT of the innovation process W (tn) to the 
FT of the process X (tn) and can be used together with the inno-
vation covariance matrix to derive the PSD matrix of the process 
X (tn) using spectral factorization. 

The matrix SX (�) can be then factorized to get the power spec-
tral densities of XM and XI, SXM (�) and SXI (�) and the cross-
spectral densities between XM and XI and SXMXI (�) and SXIXM (�). 
A logarithmic spectral measure of the interdependence between 
XM and XI is defined by (Geweke 1982). 

where fXI ;XM (�) is a measure of the total spectral coupling be-
tween XI and XM, which, in analogy to the time domain decom-
position, can be factorized into three components. 

(1)MIRXM;XI = lim
k→∞

1

k
MI

(

XM(tn−k:n−1);XI(tn−k:n−1)
)

,

(2)MI(X1;X2) = �

[

log
p(x1, x2)

p(x2)p(x1)

]

.

(3)MIRXM ;XI = TXM→XI
+ TXI→XM

+MIRXM .XI .

(4)
S(tn+1)=AS(tn)+KW(tn),

X(tn)=CS(tn)+W(tn).

(5)S(�) = AS(�)e−j� +KW (�)e−j�,

(6)H(�) =
(

I2N×p + C[I2N×p−Ae
−j�]−1Ke−j�

)

,

(7)SX (�) =H(�)�WH
∗(�).

(8)fXI ;XM (�) = log
|SXI (�)||SXM (�)|

|SX (�)|
,

FIGURE 3    |    The average of the oxygenated hemoglobin time series (HbO) for the Model (in green) and Imitator (in yellow). The delay between 
Model and Imitator is larger for the foot tapping task than for the hand-tapping task. Different regions exhibited different delays between the Model 
and the Imitator.
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where fX1→X2
(�) is a measure of the density of information trans-

ferred from process X1 to process X2 and fXI .XM (�) is the informa-
tion shared between the two processes at angular frequency �. 
These measures are defined as follows: 

Here, H(⋅)(�) describes the transfer from W(⋅) to X(⋅) in the fre-
quency domain and �W(⋅)

= �[W(⋅),nW
T
(⋅),n

].

In our study, the state-space model, as defined in Equation (4), 
represents only the channels of the two regions of interest in 
the Model and Imitator and not the channels of all regions in 
both participants. We justify our choice by arguing that we are 
only interested in the interdependencies of a specific brain re-
gion in both Model and Imitator, regardless of the intradepen-
dency of other regions in the same person's brain. Moreover, 
focusing on a specific brain region at a time can benefit from 
better model fitting due to lower dimensionality since the in-
tervals of the motor task are only of size 200 samples, which 
is insufficient to accurately fit a higher dimensionality model.

2.5.2   |   Spectral Causal Intensity Measure

Our objective was to measure the intensity and direction of 
the causal effect relationship between a specific region of in-
terest (ROI) in the brain of the Model and the same ROI of the 
Imitator. Model and Imitator are, in principle, two indepen-
dent entities. In our settings, any bidirectional causality and/
or detected cause–effect during baseline intervals presumably 
results from some unobserved factor influencing both partic-
ipants, such as a physiological process occurring at the same 
frequency range, task repetition frequency, or common noise 
occurring during signal measurement and acting as a con-
founder. To eliminate, as much as possible, any causality due 
to confounders, we propose to measure the causal effect of the 
Model on the Imitator in the frequency domain at frequency 
� as follows: 

2.5.3   |   Statistical Significance of Spectr-MIR

To assess the statistical significance of the causal relationships 
identified, we use a frequency domain surrogate data method 
(Theiler et  al.  1992). This approach preserves the amplitude 

spectrum of the original HbO time series while randomizing the 
phase information, effectively breaking the temporal dependen-
cies within the data. The following steps are applied to the HbO 
time series: 1. Compute the FT of the original HbO time series. 
2. Replace the original phase of each Fourier coefficient with 
a random phase drawn from a uniform distribution between 0 
and 2�. 3. Perform the inverse FT to produce a surrogate HbO 
time series. 4. Apply the same causal inference method de-
scribed above to the generated surrogate HbO time series. This 
procedure is repeated several times to produce an ensemble of 
surrogate time series. The spectral causality value of the HbO 
time series data is considered significant at a specific frequency 
only if it exceeds the spectral causality of the surrogate data at 
this frequency.

2.6   |   The Directionality of Neural Influence: Time 
Domain Causal Analysis

2.6.1   |   MIR Method

The causal intensity and direction of the time domain Spectr-
MIR method, hereafter referred to as MIR, can be obtained for a 
specific ROI by the integration of CXM ,XI (�) over a specific band 
of frequencies from �1 to �2

In our experiments, to reduce possible spurious causality 
due to motion as well as the superficial scalp activities cap-
tured by the SDC, we calculated the integral of Equation (14) 
in the range of 0.008–0.08Hz instead of the whole range, as 
motion-related frequencies are more likely be in the higher 
part of the 0.008- to 0.2-Hz range. We define, for each dyad 
and each of the ten trials of each task, the intensity of the 
causal effect as the absolute value of CXM→XI

. The direction 
of the causal effect is from the Model XM to Imitator XI if 
CXM ,XI > Cshort + 𝜖, where � is a very small positive value that 
defines the range of no causality and is set to 0.0001 in this 
study. Here, Cshort = mean(CXsM→XsI

), where CXsM→XsI
 is the 

causal intensity from Model to Imitator calculated using the 
same Spectr-MIR method on the SDCs of the left side of the 
brain, namely, channels (7, 11, and 14). If CXM ,XI < Cshort − 𝜖, 
the direction of influence is from Imitator XI to Model XM. In 
simple terms, we assume that there is causality from Model 
to Imitator if the causal intensity from Model to Imitator of a 
specific ROI exceeds the average value of causality calculated 
from the SDC for each dyad over the 10 trials of this dyad. This 
definition supports the elimination of spurious causal influ-
ence between the Model and the Imitator due to motion and 
physiological processes that the filtering step of preprocessing 
could not eliminate.

2.6.2   |   Time Domain Group Causality Methods

To assess the performance of the time domain causal direction es-
timation using the MIR method, we compare it with the following 
four state-of-the-art time domain group causality methods.

(9)fXI ;XM (�) = fXI→XM
(�) + fXM→XI

(�) + fXI .XM (�),

(10)

fXI .XM (�) = log
|HM (�)�WM

H∗
M (�)||HI (�)�WI

H∗
I (�)|

|SX (�)|
,

(11)fXM→XI
(�) = log

|SXI (�)|

|HM (�)�WM
H∗
M (�)|

,

(12)fXI→XM
(�) = log

|SXM (�)|

|HI (�)�WI
H∗
I (�)|

.

(13)CXM ,XI (�) = fXM→XI
(�) − fXI→XM

(�).

(14)CXM→XI
=

1

4� ∫
�2

�1

CXM ,XI (�)d�.
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-	 Vanilla-PC (Janzing et  al.  2009): A framework for in-
ferring causal directions between groups of variables by 
applying a series of conditional independence tests.

-	 Trace (Zscheischler et al. 2011): This method infers whether 
linear relations between two high-dimensional variables X  
and Y  are due to a causal influence from X  to Y  or from Y  to 
X .

-	 2GVecCI (Wahl et  al.  2023): A nonparametric approach 
for inferring the causal relationship between two vector-
valued random variables from observational data based on 
a series of conditional independence tests.

-	 Canonical GC (MC-VAR) (Ashrafulla et  al.  2013): This 
method combines ideas from canonical correlation and GC 
analysis to yield a measure that reflects directed causal-
ity between two regions of interest using optimized linear 
combinations of signals from each ROI to enable accurate 
causality measurements.

3   |   Results

3.1   |   Spectral Causal Analysis Results

To evaluate the performance of the Spectr-MIR method in the 
frequency domain, we applied the method for each motor task 
and for each of the brain motor regions of interest, namely, M1 
(Channels 12, 13, and 17), PMC (Channels 4, 5, 6, 8, and 16), 
and PMC/M1 (Channels 10 and 15) separately. We chose to work 
with an interval length of 204 samples, equal to the samples of 
the task interval (20s × 10.17Hz ≈ 204 samples), starting 1 s (10 
samples) before the start of the video of the targeted movement. 
The state-space model of Equation (4) is used to model the HbO 
time series in the brain ROI of both Model and Imitator for the 
20-s intervals of each task, each trial, and each dyad. The spec-
tral causality components (Equation  (9)) are then calculated 
for all repetitions of each motor task and then averaged over 
all dyads.

In all our experiments, time series were first normalized. We 
then used the MATLAB toolbox for the Spect-MIR method of 
Faes et  al., (Faes et  al.  2022) to calculate the different com-
ponents of spectral causality as detailed in Section 2.5.1. The 
model order p was estimated for each trial using the Minimum 
Description Length (MDL) criterion (Rissanen 2010). We set 
the maximum model order to max(p) = 2 for the state-space 
model to be able to capture the short delay between Model and 
Imitator, which could be as low as one or two samples only 
(100-200 ms). Experimental results for the spectral group cau-
sality analysis using the Spectr-MIR method and for different 
brain regions are shown in Figure  4. These results indicate 
that the average spectral causality from Model to Imitator is 
higher than from Imitator to Model in hand tapping and foot 
tapping in almost all brain regions of interest. In contrast, 
we see almost equal spectral causality in both directions in 
baseline intervals of all brain regions. The statistically signif-
icant spectral causality in both directions during all intervals 
can be attributed to the confounding effect of measurement 
and physiological processes in all intervals. The causal in-
tensity at a specific frequency can be measured as defined 

by Equation (13) or directly from the difference between the 
green and orange lines.

Region-wise, we can notice in Figure 4 that the hand tapping 
intervals have the highest average causal intensity (the area be-
tween the two orange and green curves) in the M1 region, while 
the causal intensity due to the foot tapping task is the highest 
in the PMC region. This difference in causal intensity between 
regions could be because the M1 covers more lateral parts and 
the hand region is better represented in the lateral areas than 
the foot region (Metman et al. 1993), while the PMC better rep-
resents the foot activities (Cockx et al. 2023).

Spectral causality results for the HbR signals are shown in 
Figure C1. In contrast to HbO results, the average spectral cau-
sality from the Model to the Imitator is only higher than that 
from the Imitator to the Model in the foot tapping task.

3.2   |   Time Domain Causal Analysis Results

In this section, we compare the Accuracy of estimating the di-
rection of influence using MIR, the time domain Spectr-MIR 
(Section  2.6.1), with the time domain group causality base-
line methods described in Section  2.6.2: Trace (Zscheischler 
et al. 2011), Vanilla PC (Janzing et al. 2009), MC-VAR (Ashrafulla 
et al. 2013), and 2GVecCI (Wahl et al. 2023).

The time domain causal intensity and direction for the Spectr-
MIR using the integral of Equation (14) is calculated to include 
only statistically significant values in the frequency range 
0.008–0.08 Hz. The statistical significance for each dyad was 
estimated using the frequency surrogate data method described 
in Section  2.5.3, averaged over 10 surrogates. To evaluate the 
performance of all time domain group causal analysis methods, 
we calculated the Accuracy. For motor tasks, Accuracy is the 
ratio of intervals where the causal link from the Model to the 
Imitators is correctly detected. For baseline intervals, Accuracy 
is the ratio of intervals where the absence of causal link is cor-
rectly detected.

Results using HbO time series are shown in Figure  5 for the 
brain regions PMC, M1, and PMC/M1, along with the aver-
age Accuracy across all these motor regions. For the hand 
tapping task, the best result of the MIR method is for the M1 
region (Accuracy= 62%), and the worst is for the PMC region 
(Accuracy= 0.55%). Conversely, for the foot-tapping task, the 
best results of MIR are from the PMC region (Accuracy= 71%), 
and the worst is from the M1 region (Accuracy= 63%). These 
ROI-wise results of the MIR method are consistent with sim-
ilar differences in spectral causal intensity results in PMC/
M1 and M1 regions, as discussed in Section  3.1. For baseline 
intervals, the absence of causality is best detected in the M1 
region (Accuracy  = 93%) and worst in the PMC/M1 region 
(Accuracy = 88%).

On average, Accuracy is higher for the foot-tapping task than 
the hand-tapping task. The higher Accuracy for foot tapping is 
probably due to a longer delay in HbO activation between the 
Model and the Imitator. As noted earlier, Figure 2 shows that 
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the reaction time is longer for the foot than for the hand. This 
longer delay, which can also be seen in Figure 3, made it easier 
for causality methods to detect who leads (the cause) and who 
follows (the effect).

The MIR method demonstrates comparable or superior 
Accuracy to other time domain methods during motor task in-
tervals, as shown in Figure 5. While the Trace method shows 

higher accuracy in the M1 region for motor tasks, it also exhibits 
a higher rate of false positives, incorrectly identifying causality 
during baseline intervals. The high Accuracy or low false posi-
tives of the proposed causal intensity measure of MIR, based on 
the subtraction of the Spectr-MIR spectral causality fXI→XM

(�) 
from fXM→XI

(�), allowed the removal of spurious causal effects 
that could be attributed to measurement artifact or physiological 
processes.

FIGURE 4    |    The average and 95% confidence interval of the spectral causality of the normalized HbO time series from Model to Imitator (green 
plots) and from Imitator to Model (orange plots). The average is calculated for each type of event of all dyads for regions: (a) Premotor cortex (PMC), 
(b) Primary motor cortex (M1), and (c) PMC/M1. The statistical significance is shown in the dotted black line, which is the average spectral causality 
of the frequency domain surrogate data. Only spectral causality values higher than this line are considered statistically significant.
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Time domain causal analyses of the deoxygenation time series 
(HbR signals) are presented for all methods in Appendix D. The 
MIR method showed about 10% drop in Accuracy compared to 
that of HbO signals. This finding is consistent with the MIR 
method's reliance on a stable temporal relationship between the 
Model and Imitator, a relationship that, as depicted in Figure B1, 
is less consistent for HbR than for HbO signals. Despite this, the 
MIR method's average Accuracy for HbR signals remains com-
parable or higher than other baseline methods. Finally, similar 
to HbO results, all methods yield, on average, higher Accuracy 
for the foot compared to the hand tapping task.

3.3   |   Discussion

Spectral and time domain causal analysis of HbO time series 
showed that causality can be accurately derived from fNIRS' 
hyperscanning of a motor task. Our causality measure of MIR 
achieved 62% and 71% Accuracies in detecting the causal in-
fluence from Model to Imitator in hand and foot motor task 
intervals, respectively (Figure 5d). Moreover, the proposed cau-
sality measure significantly reduced the false positive rate in 
baseline intervals compared to time domain baseline causality 
methods. This reduction indicates that the proposed measure 
enabled the removal of spurious causal effects that might result 
from task repetition, measurement, or physiological processes. 

The feasibility of detecting causality in fNIRS based on spec-
tral causal analysis (MIR) was above chance and higher than 
the Accuracy of four other tested time domain methods. The 
average spectral cause–effect plots in Figure 4 showed a higher 
causality from the Model to Imitator than Imitator to Model for 
hand- and foot-tapping for all regions of interest. Our paradigm 
was not ambiguous regarding who leads and who follows in the 
interaction. It was consistent with 10 well-defined onset blocks 
of a standardized motor test, typically evoking large responses. 
The motor imitation task was deemed a good testing paradigm, 
as it allows for valid control of causality, as only the Model saw 
the instruction, the Imitator's movement was dependent on the 
Model. The extracted HbO time series supported the validity 
of the task: The motor tasks led to an evident signal rise in the 
expected brain areas. We see evident activation of the averaged 
HbO time series during the motor tasks compared to baseline 
(Figure 2).

We observed a clear negative association between HbO and HbR 
signals Figure  2 during motor task intervals, consistent with 
findings in fNIRS research under conditions of neural activa-
tion (Kinder et al. 2022). This inverse relationship reflects the 
typical hemodynamic response, where increased neural activity 
leads to a rise in HbO and a concurrent drop in HbR due to neu-
rovascular coupling and increased cerebral blood flow. Hence, 
this negative association proves that the observed blood flow 

FIGURE 5    |    Accuracy (mean ±0.5 std) of the time domain cause–effect analysis of the normalized HbO time series using the time domain method 
MIR in comparison with four baseline methods: Vanilla-PC (Janzing et al. 2009), 2GVecCI (Wahl et al. 2023), Trace (Zscheischler et al. 2011), and 
MC-VAR (Ashrafulla et al. 2013) for the three different regions: (a) premotor cortex (PMC), (b) primary motor cortex (M1), and (c) PMC/M1; panel 
(d) shows the mean ±0.5 std of the Accuracies of the three motor regions. The significance level value for the conditional independence test-based 
methods is p ≤ 0.05.
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changes (HbO, HbR) result from neural activation during motor 
task intervals.

Figure  3 clearly showed the delay in HbO activation of the 
Imitator relative to the Model, with the Model HbO activation 
consistently preceding that of the Imitator. In contrast, the HbR 
signal had less consistent temporal dependencies between Model 
and Imitator(Figure B1) in Appendix B and consequently, about 
10% drop in Accuracy compared to the HbO signals (Figure D1).

Overall, the findings of this study contribute to the ongoing 
debate about the nature and detectability of causality in inter-
brain dynamics. While Novembre and Iannetti (Novembre and 
Iannetti 2021) argue that hyperscanning alone cannot provide 
definitive causal evidence—due to its inherently correlational 
nature—our results demonstrate that analytical approaches 
still yield meaningful insights into the directionality of interper-
sonal neural influence, especially under well-controlled exper-
imental conditions. In contrast to naturalistic paradigms, our 
motor imitation task provided a clear causal structure: Only the 
Model received the instruction, and the Imitator's behavior was 
contingent on the Model's actions. This unidirectional setup al-
lowed us to validate the performance of our method against a 
known ground truth.

As Holroyd (Holroyd 2022) critically points out, the field of IBS 
research is currently challenged by a lack of conceptual clarity, 
theoretical grounding, and methodological rigor. Our study ad-
dresses some of these concerns by explicitly operationalizing 
causality in a controlled setting and applying a methodologi-
cally robust spectral domain approach. While our findings do 
not challenge the necessity of interventional methods such as 
dual-brain stimulation (DBS) (Novembre and Iannetti  2021) 
for establishing mechanistic causality, they highlight the com-
plementary role of data-driven causal discovery in advancing 
the field. When applied to structured paradigms with known 
causal direction, analytical methods can serve as a bridge be-
tween purely correlational hyperscanning and experimental 
manipulation. In this sense, our work aligns with Holroyd's call 
for more rigorous operationalization and with Novembre and 
Iannetti's emphasis on the need for causal testing.

Future work may build on our method to explore its applicability 
in more naturalistic settings, where causal direction is less con-
strained and signal-to-noise ratios are lower. Moreover, integrat-
ing our approach with interventional designs, such as DBS or 
neurofeedback during naturalistic settings (Gvirts Provolovski 
and Perlmutter 2021), also referred to as hyperfeedback, could 
help move the field toward a more mechanistic understanding of 
IBS and its role in social interaction. In hyperfeedback, feedback 
is derived from a shared neural parameter (e.g., IBS) across two 
or more individuals, requiring coregulation of neural activity to 
achieve a common goal. In DBS, neural oscillations in two indi-
viduals are exogenously modulated via transcranial Alternating 
Current Stimulation (tACS), which allows researchers to assess 
whether synchrony facilitates social interaction. This method 
flips the traditional logic of hyperscanning: Instead of observ-
ing synchrony as a consequence of social interaction, synchrony 
becomes the independent variable whose effects on behavior are 
measured.

A hyperfeedback or DBS study based on the causal inference 
framework presented here could serve as a controlled inter-
vention paradigm. It would allow researchers to test whether 
modulating interbrain synchrony causally affects social be-
havior. This would directly address the call for interventional 
evidence in the causality debate, help bridge the gap between 
correlational hyperscanning and mechanistic models of social 
interaction, and provide a promising path forward in the ongo-
ing causality debate in IBS.

4   |   Conclusion

This study aimed to test whether the direction of influence 
in dyadic interaction can be derived from fNIRS hyperscan-
ning. To this end, we amended the frequency domain MIR de-
composition frameworks of Geweke (Geweke 1982) and Faes 
et al., (Faes et al. 2022) to fNIRS data of the motor imitation 
task. We then defined a measure for the direction and inten-
sity of neural influence in frequency and time domains and 
compared the performance of this measure with four state-
of-the-art time domain causal analysis methods. Our study 
showed that detecting the direction and intensity of neural 
influence is feasible based on fNIRS data. However, it should 
be noted that the generalizability of the results of this study is 
limited by the small sample size of 100 trials for each motor 
task. The usability of the proposed approach in a natural 
or uncontrolled setting might also face new challenges that 
need further investigation. The varying magnitude and tem-
poral delay in HbO activation in response to different tasks 
make it more challenging for the causal discovery methods 
to detect the correct causal effect patterns in a natural set-
ting where several motor or nonmotor tasks might co-occur. 
We argue that using multimodal imaging or different sources 
of information is vital for causal discovery in fNIRS hyper-
scanning. Including emotional influence analysis using fa-
cial expressions in dyadic interaction (Shadaydeh et al. 2021), 
body-part-tracking, or verbal signal analysis as additional syn-
chronization measures might support the validation of hyper-
scanning measurements-based causal discovery results.
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Appendix A

fNIRS Data Visual Quality Check Using Wavelet Transform

FIGURE A1    |    fNIRS data visual quality check using Wavelet transform plots before any filtering: (a) a good quality data with a clear separation 
between the heart rate at the period of ≈ 1sec and the lower frequencies (higher periods) and (b) a bad quality data where high wavelet values occur 
at all frequencies and all time samples.
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Appendix B

The Temporal Relation Between the Model and the Imitator for HbR Time Series

FIGURE B1    |    The average of the deoxygenated hemoglobin time series (HbR) for the Model (in green) and Imitator (in yellow). There is no con-
sistent pattern for the delay between the Model and the Imitator.
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Appendix C

Spectral Causality (Spectr-MIR) Results of the HbR Signals

FIGURE C1    |    The average and 95% confidence interval of the spectral causality of the normalized HbR time series from Model to Imitator (green 
plots) and from Imitator to Model (orange plots). The average is calculated for each type of event of all dyads for regions: (a) Premotor cortex (PMC), 
(b) Primary motor cortex (M1), and (c) PMC/M1. The statistical significance is shown in the dotted black line, which is the average spectral causality 
of the frequency domain surrogate data. Only spectral causality values higher than this line are considered statistically significant.
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Appendix D

Time Domain Causality Results of the HbR Signals

Appendix E

Matlab Code for Data Preprocessing

data_nirs = SnirfClass([pname, fname]); %read snirf file 'pname/fname'

acquired = data_nirs1;

intensity_nirs = acquired.data.copy;

dod = hmrR_Intensity2OD(intensity_nirs);

% Detect Motion Artifacts

% PARAMETERS:

tMotion = 1;

tMask = 1.0;

STDEVthresh = 10;

AMPthresh = 1.00;

[tIncAuto, tIncAutoCh] = hmrR_MotionArtifactByChannel(dod, acquired.probe,

[], [], [], tMotion, tMask, STDEVthresh, AMPthresh);

%Correct Motion Artifacts

dodMC = hmrR_MotionCorrectSpline(dod.copy, [], tIncAutoCh, 0.99);

%Convert Optical Densities to Hemoglobin Concentration Changes

dhb = hmrR_OD2Conc(dodMC, acquired.probe, [1,1]);

% Bandpass Filtering

dhbFilt = hmrR_BandpassFilt(dhb, 0.008, 0.2);

FIGURE D1    |    Accuracy (mean ±0.5 std) of the time domain cause–effect analysis of the normalized HbR time series using the time domain meth-
od MIR in comparison with four baseline methods: Vanilla-PC (Janzing et al. 2009), 2GVecCI (Wahl et al. 2023), Trace (Zscheischler et al. 2011), 
and MC-VAR (Ashrafulla et al. 2013) for the three different regions: (a) premotor cortex (PMC), (b) primary motor cortex (M1), and (c) PMC/M1; 
(d) shows the mean ±0.5 std of the Accuracies of the three motor regions. The significance level value for the conditional independence test-based 
methods is p ≤ 0.05.
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