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Abstract

The classic light field and lumigraph are two well-known
approaches to image-based rendering, and subsequently
many new rendering techniques and representations have
been proposed based on them. Nevertheless the main limi-
tation remains that in almost all of them only static scenes
are considered. In this contribution we describe a method
for calibrating a scene which includes moving or deforming
objects from multiple image sequences taken with a hand-
held camera. For each image sequence the scene is assumed
to be static, which allows the reconstruction of a conven-
tional static light field. The dynamic light field is thus com-
posed of multiple static light fields, each of which describes
the state of the scene at a certain point in time. This allows
not only the modeling of rigid moving objects, but any kind
of motion including deformations.

In order to facilitate the automatic calibration, some as-
sumptions are made for the scene and input data, such as
that the image sequences for each respective time step share
one common camera pose and that only the minor part of
the scene is actually in motion.

1 Introduction

In recent years the field of image-based rendering has
become a very popular research topic. The light field [4]
and the lumigraph [1] are two similar and often used ap-
proaches for modeling objects or scenes from a set of in-
put images and without prior knowledge of scene geome-
try. One of their advantages over conventional model-based
rendering techniques is that they allow photo-realistic ren-
dering of real scenes or objects, while computation time is
independent of the complexity of scene geometry.

While it is already possible to generate light fields from
real but static scenes and render high-quality images from
them [3], these light fields are not applicable to dynamic
scenes, i.e. scenes that vary over time. Nevertheless a lot of
applications can be thought of where dynamic light fields
would be useful. In endoscopic surgery [10] for instance an
automatically generated light field would allow the physi-
cian to view the organ he is operating from any view point
without having to move the endoscope, thus reducing the
strain on the patient. The problem is that many human in-
testines are permanently in motion so that the static light
field is insufficient to model them.
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We currently focus our research on solutions for appli-
cations like the above, which can be generally described
as real scenes containing periodically moving objects. At
present we also require the scene to have a static back-
ground, while the dynamic part of the scene is smaller than
the rest. The extension of static light fields to dynamic
scenes and objects gives rise to several problems:

• Calibration of scenes including moving objects has to
cope with unreliable point correspondences, requiring
the identification of different time frames and the dis-
tinction of static and dynamic parts of the scene.

• The amount of data to be stored is already large for
static light fields, but dynamic light fields further in-
crease the dimension of the parameter space.

• Extended rendering techniques are required for render-
ing images at arbitrary points in time.

In this contribution we will concentrate mostly on the
first of these problems, the calibration of dynamic scenes.
Many applications, like the one described above, do not al-
low the use of calibration patterns in the scene [1] or the
placement of the camera at specific known positions in the
world reference frame [4]. Therefore we pursue the ap-
proach described in [3], which is to calibrate the cameras
automatically from the input image sequence using struc-
ture from motion algorithms. The required point correspon-
dences are created by automatically extracting and tracking
point features in the scene.

The main problem in automatically calibrating dynamic
scenes is that it cannot be determined whether the move-
ment of a point feature from image to image is due to the
movement of the camera or of an object in the scene. For
being able to use the latter points for calibration, the de-
formation of the scene itself would have to be known very
precisely. Unfortunately this knowledge cannot be gained
if the camera movement is unknown. In order to break out
of this vicious circle we assume that for each time step an
image sequence is available, which is then again of a static
scene. The dynamic light field is thus composed of multiple
static light fields, one for each time step.

The modeling of dynamic scenes and objects is currently
a very active topic of research. Solutions have been pro-
posed for handling multiple rigid moving objects in a scene
[6] or modeling non-rigid objects [8]. While good results
are already reached here, these approaches still need to con-
strain the underlying projection models or the type of object
movement. In our approach on the other hand we can rely



Figure 1: Left: First image of an example image sequence.
Right: Calibration results for this image sequence. Each
pyramid represents a camera, the dots are the 3D points on
the scene surface.

on the relative robustness and quality of established meth-
ods for calibrating static scenes, while the modeling of dy-
namics is done through the combination of the results.

Thus, the main problem we have to address is how to
combine these static light fields and transform them into a
common coordinate system. This article will concentrate on
this registration task, while the rendering of arbitrary views
from the resulting light field will only be addressed briefly.

The registration step will be described in detail in the
next section, followed by a section treating the process of
image rendering. Experimental results will be given in Sec-
tion 4, and Section 5 offers some concluding remarks and
an outlook to future work.

2 Calibrating Dynamic Light Fields

Instead of putting together a dynamic scene from one
static light field for each rigid but moving object, as it was
described in [5], we subdivide the dynamic scene intok
time steps and model each with a complete static light field
of the scene. We are thus able to not only model rigid but
also deformable objects in the scene.

The input images we will use in the following to recon-
struct a dynamic light field need to fulfill two main require-
ments. First, one image sequence must be available for
each time step so that thek static light fields can be recon-
structed from them. Second, for two consecutive image se-
quences the last camera of the first sequence must have the
same pose as the first camera of the second sequence, which
means that the two sequences have one camera in common.
The dynamic light field is reconstructed from this input data
by first calibrating the individual image sequences and then
registering the resulting threads of camera positions with
each other. Finally a refinement step can be applied which
calibrates all cameras together. The assumption which must
be made for this last step to work is that dynamic objects
only influence the lesser part of the visible scene. The three
calibration steps will be described in the following.

2.1 Static Light Field Calibration

Each image sequence is calibrated independently follow-
ing the approach of [2] which involves a three-step process.
The first step is the establishment of point correspondences
between the images through feature tracking. In the sec-
ond step an initial subsequence is calibrated using factor-
ization methods, and in the last step the remaining cameras
are added by using the reconstructed 3-D points as a cali-
bration pattern.

Sequence 1 Sequence 2

Common Camera
Scaling Difference

Scene Surface

Figure 2: Registration of two image sequences. The incor-
rect scaling results in different distances of the scene surface
point clouds from the cameras.

Apart from the projection matrix of each camera the cal-
ibration also yields a set of 3-D points which correspond
to the 2-D feature points used for calibration. The cameras
and 3-D point sets for the calibration of an example image
sequences are shown in Figure 1. The coordinate systems
of the reconstructed cameras of two image sequences now
differ from each other by a rotation, a translation and an
unknown scale factor, and need to be registered with each
other in the following steps.

2.2 Registration

The rotation and translation can be determined by the
fact that two cameras of a pair of consecutive image se-
quences have the same pose. The transformation is done by
first mapping one of the two cameras into the origin of its
coordinate system and then to the pose of the other camera.
The same transformation is then applied to all remaining
cameras of this sequence.

Figure 2 depicts such a registration of two image se-
quences using a common camera. It also shows the effect of
the missing scaling step, which results in different distances
of the two 3-D point clouds from the camera positions.

The scale factor is obtained by considering the center of
mass of the 3-D points in each image sequence. As the se-
quences were taken of the same scene, the centers of mass
are assumed to be roughly at the same position. Further-
more, we require that in two consecutive image sequences
similar features are tracked on the dynamic objects, or that
their movement is small. The scale factor is computed as
the ratio of the distances of the centers of mass from the
two equal cameras of two consecutive sequences. The cam-
eras and 3-D points of the respective second sequence are
then scaled with this factor.

2.3 Refinement

Now that the cameras of all light fields are transformed
to the same coordinate system, a further refinement of the
calibration can be performed. The camera positions form
a 3-D mesh in which neighbours with similar views on the
scene can easily be identified. In order to make sure that
the corresponding images show similar parts of the scene
the viewing direction of two neighbouring cameras must be
similar, too. Values for the allowed distance and viewing di-
rection difference are calculated as multiples of the average
values for all pairs of subsequent cameras.



Using these neighbourhoods a second tracking step is in-
voked. This time, no new features are added but only those
are tracked further that were used for the first calibration.
The calibration process removes outliers and features that
could only be tracked over2 or 3 frames, leaving only the
more robust ones.

Tracking is performed in a two-step loop for each image
sequence:

1. The existing features are tracked to the other image
sequences following the neighbourhood links estab-
lished before.

2. These additional features are now propagated through
the other image sequences. Depending on the effort
to be spent this can be just the preceding and the fol-
lowing image sequence of the current one, or all other
image sequences. The complexity in the latter case of
course increases quadratically with the number of time
steps.

Through this obviously time-consuming process, the for-
merly mostly unrelated sequences – except for the one
frame with each neighbour – are now linked together over
these new feature correspondences.

The disadvantage of these correspondences is that any of
them could be positioned on a moving, i. e. dynamic, part of
the scene. Thesedynamic featurescan be considered equiv-
alent to erroneously tracked points, and could severely per-
turb the calibration process. Nevertheless, by postulating
that only a minor part of the scene is actually in motion the
calibration algorithm proved to be robust enough to handle
these outliers.

The reason is that after the factorization of a subset of
only a few cameras (see Section 2.1) the calibration gets ex-
tended to the rest of the sequences by classical calibration
techniques [9]. In this step the 3-D points acquired through
factorization are used as calibration pattern, which is ex-
tended after calibration of each new image by triangulating
the features found in it. At this point 3-D points with a high
back-projection error are discarded, which is often the case
for dynamic features from two different image sequences.

On the other hand, features on a dynamic part of the
scene are unproblematic as long as they are not tracked to
another image sequence at a different time step.

3 Rendering

Since we are using a hand-held camera for capturing the
images for our dynamic light fields, the camera positions
may be distributed almost arbitrarily in space. Therefore the
most obvious parameterization is that of a free form light
field [3]. Other parameterizations, like using two planes [1],
would require a preceding warping step which decreases
image quality.

For rendering images from a dynamic light field we ex-
tended an already existing hardware-accelerated free form
renderer [7] to handle an arbitrary number of static light
fields. The difference to rendering images from static
light fields is that a timestamp is now required as an ad-
ditional parameter. Rendering images at known time steps,
i. e. those where the image sequences were taken, can thus
be done without additional effort.

Generating views of the scene at arbitrary positions in
time on the other hand is a much more difficult problem, and
many different solutions can be thought of. One approach is
to first render the views for the earlier and later integer time

(a) (b)

(c) (d)

Figure 3: Light field of a toy rotor. Images (a) and (d) are of
integer time steps, (b) and (c) intermediate steps generated
by cross-fading.

steps and then generate images at any intermediate time by
interpolation.

Since the emphasis of our current work is not on the ren-
dering of light fields but on their generation, we only imple-
mented the basic technique of creating new views by cross-
fading the two available images, weighted by their distance
to the desired timestamp. The result can be seen in Figure
3, where images (a) and (d) are of two subsequent integer
time steps, and images (b) and (c) the two steps in between.

Using additional information about the scene, which is
already available through the calibration process, more so-
phisticated methods can be applied as well. The back-
projections of the known 3-D points into the rendered image
can be used as control points for the application of different
kinds of image warping techniques which are widely used
in computer graphics [11].

4 Experiments

The experiments described in the following section were
conducted to analyze the quality of registration of the im-
age sequences. For this purpose three dynamic light fields
were created as described in Section 2. Each of them shows
a different dynamic object in front of a static background.
Rendered example images of each scene are shown in Fig-
ure 4, and column2 of Table 1 states the number of available
time steps for each scene.

A measure for the quality of image sequence registration
is the shift of the background for two rendered images of
different time steps, but as seen with exactly the same cam-
era pose. Putting this shift into numbers is difficult, and
we chose the average absolute pixel difference as a mea-
sure. While this lacks some quantitative expressiveness, it
can still give a good qualitative impression.

Since only the background shift was to be considered,
the dynamic objects in the foreground were removed by
hand-coloring them in black. These and any other colorless
parts of the images were ignored in the difference. Columns
5 and6 of Table 1 show the pixel differences for the simple
image sequence concatenation of Section 2.2 compared to
the value after the refinement described in Section 2.3. In all



Figure 4: Example images from the scenes used for the ex-
periments. The images in the first two rows were rendered
using a constant camera pose, while for the third row the
camera was moved and zoomed simultaneously.

# Image diffs Mean diff
Scene # Seq. concat refine concat refine
Hand 5 10 10 17.3 12.0
Head 6 18 15 30.8 17.6
Rotor 8 30 28 40.3 12.7

Table 1: Comparison of background shifts in the example
scenes using mean pixel difference.

scenes the refinement step clearly improves the registration,
which can be seen in the example in Figure 5.

In order to ensure the validity of this comparison the test
images were always rendered with approximately the same
visible object sizes. An exact match was not possible since
the coordinate systems differ before and after refinement.
The values in columns3 and4 of Table 1 denote the number
of image comparisons performed. These may vary since not
all camera poses generate valid images for every time step,
depending on the distance to reference images.

5 Conclusion and Future Work

In the preceding sections we described a method for re-
constructing a dynamic light field from multiple image se-
quences, each referring to a different time step. The pre-
conditions are that image sequences of consecutive time
steps share a common frame concerning the camera pose
and parameters, and that only the lesser part of the scene
is in motion. By calibrating each image sequence indepen-
dently and concatenating the results, a good registration of
the camera sequences can be achieved. A subsequent refine-
ment step can further improve the quality of registration.

By storing each time step as an individual light field the
modeling of arbitrary movements of the scene is possible.
Images at intermediate time steps can be rendered by cross-
fading images from neighbouring known light fields.

Figure 5: Difference images for time steps4 and7 of the
Rotor sequence from similar camera positions before and
after refinement.

Our future research will focus on the relaxation of the
above requirements, so that the object can be in motion
while being recorded. This could be achieved by regarding
periodic movements and determining their frequency. The
medical applications mentioned in the introduction could
thus be handled.

In addition to that the two issues of rendering images at
any point in time and of efficiently storing dynamic light
fields have to be addressed as well.
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