
FreeStylo: An easy-to-use stylistic device detection
tool for stylometry
Felix Schneider 1¶ and Joachim Denzler 1

1 Computer Vision Group, Friedrich-Schiller-Universität Jena ¶ Corresponding author
DOI: 10.21105/joss.07596

Software
• Review
• Repository
• Archive

Editor: Tristan Miller
Reviewers:

• @sara-02
• @rlskoeser

Submitted: 27 October 2024
Published: 27 January 2026

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Stylistic devices are delibarately chosen linguistic expressions that are used to convey a certain
meaning or effect. They are often used in literature to create a certain atmosphere or to
convey a certain message. Due to this matter, the detection of stylistic devices in text is an
important task in stylometry, the study of linguistic style. Often, finding these stylistic devices
is a tedious and costly process that involves close reading of the texts, ideally by multiple
experts. This is extra costly especially if researchers aim to statistically analyze the usage of
stylistic devices across various texts.

To improve this state, this package provides an easy-to-use command-line interface for detecting
stylistic devices in text. The tool can be configured with a simple configuration file. It is
designed to be usable by both experts and non-experts in programming. For those proficient
in Python, this package also provides a library with a collection of classes to detect stylistic
devices in text, together with customizable text preprocessing (tokenizing, POS tagging, etc.).

The command-line tool is to be used on plain text files. It preprocesses the text, detects
the stylistic devices specified in the configuration file, and writes the annotations to a JSON
file. The classes contained in the library can be used to work with the text in a more flexible
way, e.g. by using different preprocessing methods or already preprocessed text. The resulting
annotations can be saved in a JSON file or directly used as a data structure in Python.
Additionally the library is easily extendable with your custom stylistic device detectors.

Statement of need
Freestylo is a package that provides a collection of approaches to detect stylistic devices in
text. While there exists a great variety of NLP libraries like NLTK (Bird & Loper, 2004), spaCy
(Honnibal et al., 2020), or CLTK (Johnson et al., 2021), and command-line tools like CWB
(Evert & Hardie, 2011) or UCS (Evert, 2005), for the processing and low-level analysis of
text, there is a lack of tools that are specifically designed for the detection of stylistic devices.
Current options in this space for figurative language would be the online tool Figurative Checker
(Ahmad, 2023) or the MMFLD framework (Lai et al., 2023), which is a Python framework.
Other frameworks would be Kühn et al. (2024) for the detection of antithesis, Li et al. (2023)
for the detection of metaphors, Schneider et al. (2021) for the detection of chiasmus, or
Dubremetz & Nivre (2017) for antimetabole detection. Other tools are available – e.g. Coles
(2019) and Marozick et al. (2021) for the detection of rhymes.

However, most of those frameworks are not available as a ready-to-use tool, but as frameworks
or code implementations of papers. Also, many are only available for a specific language. A
commercial tool that was designed as an aid for writers is the ProWritingAid (ProWritingAid
Team, 2025), which seems to be able to find various features of texts. However, the whole
extent of this tool is not visible from its informational material. Another commercial tool

Schneider, & Denzler. (2026). FreeStylo: An easy-to-use stylistic device detection tool for stylometry. Journal of Open Source Software, 11(117),
7596. https://doi.org/10.21105/joss.07596.

1

https://orcid.org/0009-0008-9953-6695
https://orcid.org/0000-0002-3193-3300
https://doi.org/10.21105/joss.07596
https://github.com/openjournals/joss-reviews/issues/7596
https://github.com/cvjena/freestylo
https://doi.org/10.5281/zenodo.18281153
https://logological.org/
https://orcid.org/0000-0002-0749-1100
https://github.com/sara-02
https://github.com/rlskoeser
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.07596


which is able to find stylistic devices such as animalification, similes, imagery, onomatopoeia,
epizeuxis, and anadiplosis is the Literary Device Analyzer (Aussie AI Team, 2025).

Despite the name similarity, this package is not related to the R stylo package (Eder et al.,
2016). The R stylo package is a package for high-level analysis of the writing style in a
stylometric context, e.g. for authorship attribution. While the results of this package can also
be used to compare the styles of different authors, the focus of this package is on the detection
of stylistic devices in text. The resulting detections can be used for various purposes, e.g. for
the comparison of different text genres or time periods, or also for direct stylometry tasks like
authorship attribution.

Information about the usage of stylistic devices is important for many branches of stylometry,
especially for the analysis of literary texts. This package aims to fill this gap by providing an
easy-to-use tool and library for the detection of those stylistic devices. Due to its simple and
easily configurable command-line interface, the tool itself is geared not only to people with
programming knowledge, but also to literary scholars who use distant reading methods in their
research. Additionally, it supports multiple languages by design and is easy to extend to other
languages. The software contained in this package is designed to be used either as a library, in
other Python programs, or as a stand-alone command-line tool.

Design and supported stylistic devices
The package contains a collection of approaches to detect stylistic devices in text. By default,
the preprocessing is done by spaCy (Honnibal et al., 2020) or CLTK (Johnson et al., 2021).
Currently, the supported devices all work on a word level. They rely either on supporting words,
a word pair, or multiple consecutive related words. It would be possible to extend the package
with other stylistic devices that follow similar principles. Additionally, the structure of the
underlying framework is not restricted to these kinds of devices. The same annotation method
could be used to – for example – mark scene boundaries and topic boundaries or changes in
the tense of the text. The following stylistic devices are currently supported:

Chiasmus
This package includes the current state-of-the-art approach by Schneider et al. (2021) to
detect chiasmi in text. A chiasmus is a rhetorical device that consists of two parallel phrases,
where the second phrase is a semantically related inversion of the first phrase. For example,
the phrase “Hard is the task, the samples are few” is a phrase that emphasizes the problem of
missing examples with the oppositional posing of the words “hard” and “few”.

The chiasmus detector contained in this package has been trained using the dataset published
by Schneider et al. (2023). It works for English, German, and Middle High German. It has
been trained with word vectors provided by the German de_core_news_lg model by spaCy
(Honnibal et al., 2020) However, since the model does not use the word vectors directly, but
only their cosine similarity, it can be used with any word vectors, as long as they provide a
vector for each token in the text.

The chiasmus detector needs some special lists to function properly:

• denylist: a list of part-of-speech (POS) tags that are not allowed to be part of a chiasmus.
• allowlist: a list of POS tags that are allowed to be part of a chiasmus. Be careful: if

such a list is given, no other POS tags are allowed to be part of a chiasmus.
• neglist: a list of negations in the target language.
• conjlist: a list of conjunctions in the target language.

For English, German, and Middle High German, defaults for the lists are provided in the
package. However, you can provide your own lists if you want to use the chiasmus detector for
a different language or if you want to use a different set of POS tags, for example.

Schneider, & Denzler. (2026). FreeStylo: An easy-to-use stylistic device detection tool for stylometry. Journal of Open Source Software, 11(117),
7596. https://doi.org/10.21105/joss.07596.

2

https://doi.org/10.21105/joss.07596


Metaphor
The metaphor detection approach in this package has specifically been developed for the
low-resource language Middle High German, but can also be applied to more common high-
resource languages. Specifically, adjective–noun metaphors like “thirsty car” are detected using
a machine learning–based rating model. The detector is based on the publication by Schneider
et al. (2022).

Currently, the metaphor detector is available for English and Middle High German. The word
vectors are expected to be generated by the spaCy model en_core_web_lg for English and by
the provided word vector FastText model for Middle High German.

Alliteration and alliterative verse
The package further contains a detector for both alliteration and alliterative verse. Alliteration
comprise phrases where the initial letters of words are the same. Since alliteration is a simple
stylistic device, the detector is based on a simple rule-based approach that orders all alliterations
in the given text by the number of words that are alliterated in the phrase. Additionally, the
detector can also find alliterative verses, which can contain some additional words in between
the words with the same initial letter. An example for alliterative verse would be “Pondering
on the pending paper, I programmed the Python package.” The user can specify the maximum
number of words that are allowed to be in between the alliterated words, as well as words and
POS tags that do not count towards the non-alliterated words. For example, spaCy also tags
punctuation and newlines, so the user can specify those to be excluded from the alliteration.

Epiphora
An epiphora is a rhetorical device that consists of multiple parallel phrases, where the last
word of each phrase is the same. For example, “I thought of the paper, I wrote the paper,
I published the paper” is an epiphora that emphasizes the importance of the paper. The
way this detector works is by splitting the text into sentences, and then those sentences into
phrases. The detector searches for adjacent phrases that end with the same word. Those
phrase collections are then sorted by the number of phrases in the collection.

Polysyndeton
A polysyndeton is a rhetorical device that consists of multiple parallel phrases, where each
phrase is connected by a conjunction. For example, “I thought of the paper, and then I started
writing it, and then I published it, and then I received a lot of citations” is a polysyndeton
that, in a broader context with a slower feel to it, emphasizes the the process of writing and
publishing a paper. The detector works by getting a list of all conjunctions, or by getting the
POS tag of conjunctions, or by getting both, and then splitting the text into sentences, and
then counting the conjunctions in each sentence, and then sorting the sentences by number of
conjunctions.

Usage
The package can be used both as a library and as a stand-alone command-line tool. Both
from the library and from the command-line tool, the results can be saved in a JSON file. This
JSON file will contain the complete tokenized text. When using the functions from the library,
the result will be a Python container with a similar structure to the JSON file.

The stand-alone version can be configured using a simple JSON configuration file. The file
should specify the language of the text and the stylistic devices to detect. The following is an
example configuration file:

Schneider, & Denzler. (2026). FreeStylo: An easy-to-use stylistic device detection tool for stylometry. Journal of Open Source Software, 11(117),
7596. https://doi.org/10.21105/joss.07596.

3

https://doi.org/10.21105/joss.07596


{

"language": "de",

"annotations": {

"chiasmus": {

"window_size": 30,

"allowlist": ["NOUN", "VERB", "ADJ", "ADV"],

"denylist": [],

"model": "/chiasmus_de.pkl"

}

}

}

You can then run the tool using the following command:

freestylo --config config.json --input input.txt --output output.json

This will read the text from the file input.txt, preprocess (tokenize, POS-tag, etc.) the text,
detect the stylistic devices specified in the configuration file, and write the results to the file
output.json.

Creating your own detectors
The package is designed to be easily extendable with your own stylistic device detectors. The
src folder contains example scripts that show how you can retrain the models for the existing
chiasmus and metaphor detectors. You can also create your own stylistic device detectors by
referring to the existing ones. The Alliteration Detector in particular provides a very simple
example that can be used as a template for your own detectors. Please refer to the FreeStylo
repository for more information on how to create your own detectors and contribute to the
project. If you create and want to contribute your own detecors, pull requests are very welcome!

References
Ahmad, I. (2023). Figurative checker online. https://figurativechecker.com/

Aussie AI Team. (2025). Literary device analyzer. https://www.aussieai.com/editor/literary-
device-analyzer

Bird, S., & Loper, E. (2004). NLTK: The Natural Language Toolkit. Proceedings of the ACL
Interactive Poster and Demonstration Sessions, 214–217. https://aclanthology.org/P04-
3031

Coles, A. (2019). Deep rhyme detection. https://github.com/a-coles/deep-rhyme-detection

Dubremetz, M., & Nivre, J. (2017). Machine learning for rhetorical figure detection: More
chiasmus with less annotation. In J. Tiedemann & N. Tahmasebi (Eds.), Proceedings of
the 21st Nordic Conference of Computational Linguistics (NoDaLiDa 2017) (pp. 37–45).
Linköping University Electronic Press. https://aclanthology.org/W17-0205/

Eder, M., Rybicki, J., & Kestemont, M. (2016). Stylometry with R: A package for computational
text analysis. The R Journal, 8(1), 107–121. https://doi.org/10.32614/RJ-2016-007

Evert, S. (2005). Empirical research on association measures: The UCS toolkit. Phraseology
2005 Conference. https://www.stephanie-evert.de/PUB/Evert2005phraseology.pdf

Evert, S., & Hardie, A. (2011). Twenty-first century Corpus Workbench: Updating a
query architecture for the new millennium. Proceedings of the Corpus Linguistics 2011
Conference. http://www.birmingham.ac.uk/documents/college-artslaw/corpus/conference-
archives/2011/Paper-153.pdf

Schneider, & Denzler. (2026). FreeStylo: An easy-to-use stylistic device detection tool for stylometry. Journal of Open Source Software, 11(117),
7596. https://doi.org/10.21105/joss.07596.

4

https://github.com/cvjena/freestylo
https://github.com/cvjena/freestylo
https://figurativechecker.com/
https://www.aussieai.com/editor/literary-device-analyzer
https://www.aussieai.com/editor/literary-device-analyzer
https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031
https://github.com/a-coles/deep-rhyme-detection
https://aclanthology.org/W17-0205/
https://doi.org/10.32614/RJ-2016-007
https://www.stephanie-evert.de/PUB/Evert2005phraseology.pdf
http://www.birmingham.ac.uk/documents/college-artslaw/corpus/conference-archives/2011/Paper-153.pdf
http://www.birmingham.ac.uk/documents/college-artslaw/corpus/conference-archives/2011/Paper-153.pdf
https://doi.org/10.21105/joss.07596


Honnibal, M., Montani, I., Van Landeghem, S., & Boyd, A. (2020). spaCy: Industrial-strength
natural language processing in Python. Zenodo. https://doi.org/10.5281/zenodo.1212303

Johnson, K. P., Burns, P. J., Stewart, J., Cook, T., Besnier, C., & Mattingly, W. J. B. (2021).
The Classical Language Toolkit: An NLP framework for pre-modern languages. In H. Ji,
J. C. Park, & R. Xia (Eds.), Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing: System Demonstrations (pp. 20–29). Association for Computational
Linguistics. https://doi.org/10.18653/v1/2021.acl-demo.3

Kühn, R., Saadi, K., Mitrović, J., & Granitzer, M. (2024). Using pre-trained language models
in an end-to-end pipeline for antithesis detection. In N. Calzolari, M.-Y. Kan, V. Hoste, A.
Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference
On Computational Linguistics, Language Resources And Evaluation (pp. 17310–17320).
https://aclanthology.org/2024.lrec-main.1502/

Lai, H., Toral, A., & Nissim, M. (2023). Multilingual multi-figurative language detection.
In A. Rogers, J. Boyd-Graber, & N. Okazaki (Eds.), Findings of the Association for
Computational Linguistics: ACL 2023 (pp. 9254–9267). Association for Computational
Linguistics. https://doi.org/10.18653/v1/2023.findings-acl.589

Li, Y., Wang, S., Lin, C., & Frank, G. (2023). Metaphor detection via explicit basic meanings
modelling. ArXiv, abs/2305.17268. https://doi.org/10.48550/arXiv.2305.17268

Marozick, A., Elfandi, A., & Mayer, J. (2021). RapAnalysis: Rhyme detection and analysis
applied to user’s Spotify data. https://github.com/alexmarozick/RapAnalysis

ProWritingAid Team. (2025). ProWritingAid: The storyteller’s toolkit. https://prowritingaid.
com/

Schneider, F., Brandes, P., Barz, B., Marshall, S., & Denzler, J. (2021). Data-driven
detection of general chiasmi using lexical and semantic features. In S. Degaetano-Ortlieb,
A. Kazantseva, N. Reiter, & S. Szpakowicz (Eds.), Proceedings of the 5th Joint SIGHUM
Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities
and Literature (pp. 96–100). Association for Computational Linguistics. https://doi.org/
10.18653/v1/2021.latechclfl-1.11

Schneider, F., Sickert, S., Brandes, P., Marshall, S., & Denzler, J. (2023). Hard is the task,
the samples are few: A German chiasmus dataset. In Z. Vetulani & P. Paroubek (Eds.),
Human Language Technologies as a Challenge for Computer Science and Linguistics – 2023
(pp. 255–260).

Schneider, F., Sickert, S., Brandes, P., Marshall, S., & Denzler, J. (2022). Metaphor detection
for low resource languages: From zero-shot to few-shot learning in Middle High German.
In A. Bhatia, P. Cook, S. Taslimipoor, M. Garcia, & C. Ramisch (Eds.), Proceedings of the
18th Workshop on Multiword Expressions @LREC2022 (pp. 75–80). European Language
Resources Association. https://aclanthology.org/2022.mwe-1.11/

Schneider, & Denzler. (2026). FreeStylo: An easy-to-use stylistic device detection tool for stylometry. Journal of Open Source Software, 11(117),
7596. https://doi.org/10.21105/joss.07596.

5

https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2021.acl-demo.3
https://aclanthology.org/2024.lrec-main.1502/
https://doi.org/10.18653/v1/2023.findings-acl.589
https://doi.org/10.48550/arXiv.2305.17268
https://github.com/alexmarozick/RapAnalysis
https://prowritingaid.com/
https://prowritingaid.com/
https://doi.org/10.18653/v1/2021.latechclfl-1.11
https://doi.org/10.18653/v1/2021.latechclfl-1.11
https://aclanthology.org/2022.mwe-1.11/
https://doi.org/10.21105/joss.07596

	Summary
	Statement of need
	Design and supported stylistic devices
	Chiasmus
	Metaphor
	Alliteration and alliterative verse
	Epiphora
	Polysyndeton

	Usage
	Creating your own detectors
	References

