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Abstract

In this paper, we show how to learn transform-based domain
adaptation classifiers in a scalable manner. The key idea is to
exploit an implicit rank constraint, originated from a max-margin
domain adaptation formulation, to make optimization tractable.
Experiments show that the transformation between domains can
be very efficiently learned from data and easily applied to new
categories. Source code can be found at: https://github.
com/erodner/liblinear-mmdt.

1. Introduction
There has been tremendous success in the area of large-scale

visual recognition [3] allowing for learning of tens of thousands
of visual categories. However, in parallel, researchers have dis-
covered the bias induced by current image databases and that
performing visual recognition tasks across domains cripples per-
formance [12]. Although this is especially common for smaller
datasets, like Caltech-101 or the PASCAL VOC datasets [12], the
way large image databases are collected also introduces an inher-
ent bias.

Transform-based domain adaptation overcomes the bias by
learning a transformation between datasets. In contrast to clas-
sifier adaptation [1, 13, 2, 8], learning a transformation between
feature spaces directly allows us to perform adaptation even for
new categories. Especially for large-scale recognition with a large
number of categories, this is a crucial benefit, because we can
learn category models for all categories in a given source domain
also in the target domain.

In our work, we introduce a novel optimization method that
enables transform-learning and associated domain adaptation
methods to scale to “big data”. We do this by a novel re-
formulation of the optimization in [6] as an SVM learning prob-
lem and by exploiting an implicit rank constraint. Although
we learn a linear transformation between domains, which has a
quadratic size in the number of features used, our algorithm needs
only a linear number of operations in each iteration in both fea-
ture dimensions (source and target domain) as well as the number
of training examples. This is an important benefit compared to
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kernel methods [9, 4] that overcome the high dimensionality of
the transformation by dualization, a strategy impossible to apply
for large-scale settings. The obtained scalability of our method
is crucial as it allows the use of transform-based domain adap-
tation for datasets with a large number of categories and exam-
ples, settings in which previous techniques [9, 4, 6] were unable
to run in reasonable time. Our experiments show the advantages
of transform-based methods, such as generalization to new cate-
gories or even handling domains with different feature types [10].

2. Scalable Transformation Learning
Our new scalable method can be applied to supervised do-

main adaptation, where we are given source training examples
D = {(xi, yi)}ni=1 and target examples D̃ = {(x̃j , ỹj)}ñj=1. Our
goal is to learn a linear transformation Wx̃ mapping a target
training data point x̃ to the source domain. The transformation
is learned through an optimization framework which introduces
linear constraints between transformed target training points and
information from the source and thus generalizes the methods of
[11, 9, 6]. We denote linear constraints in the source domain us-
ing hyperplanes vi ∈ RD for 1 ≤ i ≤ m. Let us denote with ỹij
a scalar which represents some measure of intended similarity
between vi and the target training data point x̃j . With this gen-
eral notation, we can express the standard transformation learning
problem with slack variables as follows:

min
W,{η}

1

2
‖W‖2F + C̃

∑m,ñ

i,j=1
(ηij)

p

s.t. ỹij
(
vTi Wx̃j

)
≥ 1− ηij , ηij ≥ 0 ∀i, j .

(1)

Note that this directly corresponds to the transformation learn-
ing problem proposed in [6]. Previous transformation learning
techniques [11, 9, 6] used a Bregman divergence optimization
technique [9], which scales quadratically in the number of target
training examples (kernelized version) or the number of feature
dimensions (linear version).

Learning W with dual coordinate descent We now re-
formulate Eq. (1) as a vectorized optimization problem suitable
for dual coordinate descent that allows us to use efficient opti-
mization techniques. We use w = vec (W) to denote the vector-
ized version of a matrix W obtained by concatenating the rows
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of the matrix into a single column vector. With this definition, we
can write ‖W‖2F = ‖w‖22 and vTi Wx̃j = w

T vec
(
vi · x̃T

j

)
. Let

` = m(j−1)+ i be the index ranging over the target examples as
well as the m hyperplanes in the source domain. We now define
a new set of “augmented” features as follows d` = vec

(
vi · x̃T

j

)
and t` = ỹij . With these definitions, Eq. (1) is equivalent to
a soft-margin SVM problem with training set (d`, t`)

ñ·K
`=1 . We

exploit this result of our analysis by using and modifying the ef-
ficient coordinate descent solver proposed in [7]. The key idea
is to maintain and update w =

∑m·ñ
`=1 α` t` d` explicitly, which

leads to a linear time complexity for a single coordinate descent
step. Whereas, for standard learning problems an iteration with
only a linear number of operations in the feature dimensionality
already provides a sufficient speed-up, this is not the case when
learning domain transformations W. When the dimension of the
source and target feature space is D and D̃, respectively, the fea-
tures d` of the augmented training set have a dimensionality of
D · D̃, which is impractical with high-dimensional input features.
For this reason, we show in the following how we can efficiently
exploit an implicit low-rank structure of W for a small number
of hyperplanes inducing the constraints.

Implicit low-rank structure of the transform To derive a low-
rank structure of the transformation matrix, let us recall the rep-
resentation of w as a weighted sum of training examples d` in
matrix notation:

W =
∑m,ñ

i,j=1
α` vi · x̃T

j =
∑m

i=1
vi

(∑ñ

j=1
α` x̃

T
j

)
.

Thus, W is a sum of m dyadic products and therefore a matrix
of at most rank m, with m being the number of hyperplanes in
the source used to generate constraints. Note that for our exper-
iments, we use the MMDT method [6], for which the number of
hyperplanes equals the number of object categories we seek to
classify. We can exploit the low rank structure by representing
W indirectly using βi =

∑ñ
j=1 α` x̃

T
j . This is especially useful

when the number of categories is small compared to the dimen-
sion of the source domain, because [β1, . . . ,βm] only has a size
of m × D̃ instead of D × D̃ for W. It also allows for very ef-
ficient updates with a computation time even independent of the
number of categories. Details about the algorithm and further
speed-ups achieved with caching are given in [10]. A summary
of the asymptotic time needed in each iteration of the solver is
shown in Table 1.

3. Experiments
We only give a brief summary of our experimental results here

and refer the reader to [10] for details:

1. An evaluation on the Bing/Caltech dataset of [2] shows that
our algorithm is several orders of magnitude faster than [9,
5, 4, 6]. Furthermore, it achieves the same performance as
[6] and therefore outperforms [9, 5, 4] in terms of accuracy
(Figure 1).

α` update Indirect W update

Our approach O(D̃) O(D̃)

Direct rep. of W O(D · D̃) O(D · D̃)

Bregman opt. (kernel) [9] - O(n · ñ)
Bregman opt. (linear) - O(D · D̃)

Table 1. Asymptotic times for one iteration of the optimization, where a
single constraint is taken into account. There are n source training points
of dimension D and ñ target training points of dimension D̃.
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Figure 1. Medium-scale experiment: recognition rates and learning times
when using the first 20 categories of the Bing/Caltech256 (source/target)
dataset. Times of ARC-t [9] and HFA [4] are off-scale (12min and 55min
for 10 target points per category).
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Figure 2. Results for object classification with given bounding boxes and
scene prior knowledge: columns show the results of (1) SVM-Source,
(2) SVM-Target, and (3) transform-based domain adaptation using our
method. Correct classifications are highlighted with green borders. The
figure is best viewed in color.

2. Experiments on a new ImageNet/SUN domain adaptation
challenge show significant performance gains of our adap-
tation algorithm, especially when transferring new category
models to the target domain.

3. The approach is even able to handle different feature dimen-
sions in source and target domain.

Figure 2 shows some results from a bounding box recognition
task, where category models are adaptated from ImageNet. Note
that running previous methods [9, 6] is impossible in this sce-
nario, because of the large number of categories and examples.

4. Conclusions
We briefly showed how to extend transform-based domain

adaptation towards large-scale scenarios with a large number of
examples and feature dimensionality. The method is easy to im-
plement and to apply and achieves significant performance gains
in several different adaptation tasks.
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