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Learning with Few Examples for Binary and Multiclass Clésation Using
Regularization of Randomized Trees

Erik Rodnet, Joachim Denzler

Chair for Computer Vision, Friedrich Schiller University of Jena, Germany

Abstract

The human visual system is often able to learn to recognifieuli object categories from only a single view, whereas
automatic object recognition with few training examplestii a challenging task. This is mainly due to the human
ability to transfer knowledge from related classes. Thmeefan extension to Randomized Decision Trees is intro-
duced for learning with very few examples by exploiting netass relationships. The approach consists of a maximum
a posteriori estimation of classifier parameters using @r plistribution learned from similar object categories.- Ex
periments on binary and multiclass classification tasksvsignificant performance gains.

Key words. object categorization, randomized trees, few examplésidlass transfer, transfer learning

1. Introduction 2 in multiple dimensions. From a mathematical point of
»s  view, this results in an ill-posed optimization problem,

During the last few decades, research in machine ggpecially in cases with only a few training examples.
learning and computer vision has led to many new ob-

jectrepresentations and improved algorithms for numgr-  Therefore the only possibility to solve this problemiis
ical classification. Despite the success of this devel@p- {0 regularize the optimization using prior knowledge. In

ment, there is still an unanswered question: how ddes Previous algorithms this prior knowledge was often de-
one learn object models from few training examples?® r|ve_d from abstract assumptions or was man_ually tun_ed
On the one hand, this question is motivated from if- during the devel_opment. However psychological studies
dustrial demand. In many applications, gathering hua- (Jones and Smith, 1993) suggest that a key component
dreds or thousands of training images is either expensive©f the human ability to recognize a class from a limited
or nearly impossible (Platzer et al., 2008). Building rg- number of examples is the conceptioferclass trans-
bust classification systems in those settings therefore'te-€- This paradigm is also known &sowledge transfer,
quires complex specialized methods, that indirectly ifi- 1€arning tolearn or transfer learning. It states that prior
corporate human prior knowledge about the task. ~ knowledg_e from preV|og§Iy Iea}rned ob!ect categories is
On the other hand, progress on learning with few ex- the most mportant additional information source wheq
amples is an important challenge and an essential step/arning object models from weak representations (Fei-
towards closing the gap between human and compd@terFe'* 2006). To give an illustrative example of this idea,
vision abilities. The human visual recognition systemds consider the recognition of a new animal class such as
often easily able to learn a new object category, suchas@n 0kapi. With the aid of our prior knowledge from re-
a new animal class, from just a single view. « lated animal classgs (gﬁ‘g, zebra, antglope, .etc.), we
At first glance, this observation seems to contraditt '€ able to generalize quickly from a single view.
to the classical theory. The parameters of object models In this work, a concept is presented how prior
often exceed the available number of training examples knowledge of related classes (often also called support
« classes) can be used to increase the generalization abil-
“Corresponding author a8 @ty of a (_jiscriminative (_:Ia_ssifier. Th(_e underlying idea
Email addresses: rodner@informatik.uni-jena.de (Efik 4 IS @ maximum a posteriori (MAP) estimation of param-
Rodner)denzler@informatik.uni-jena.de (Joachim Denzler) s eters using a prior distribution estimated from similar
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object categories. Furthermore, the application of this  Our work on regularized decision trees using transfer
idea to Randomized Decision Trees, as introduced.by learning is related to the approach of Lee and Giraud-
Geurts et al. (2006), is demonstrated. The paper is basedCarrier (2007). The key idea of their method is the
on our previous work in Rodner and Denzler (2008) that reusability of a decision tree structure from a related
concentrates on multiclass classification. Studies ara#x-binary classification task. In contrast, this paper intro-
tended by showing the applicability of the approachito duces atechnique that also reuses estimated class proba-
binary classification. An additional experimentalso em- bilities in leaf nodes and performs a re-estimation based
phasizes that the information transferred is not generic on a Bayesian framework.
prior knowledge unrelated to interclass relationships.
The remainder of _the paper is organ_ized as follows. 5 Bayesian Interclass Transfer

After previous work in the field of learning with weak
representations is briefly reviewed, it is shown that  The interclass transfer paradigm leads quickly to two
Bayesian estimation using a prior distribution is a well important questions: What type of information can be
founded possibility to transfer knowledge from related transferred, and how can this be done using machine
classes (Bayesian Interclass Transfer). This is followed learning techniques? The first question is answered in
by a detailed description of an extension to Randomized Section 4.2. Here we concentrate on the description of
Decision Trees in Section 4, which can be regarded:.as how prior knowledge can be incorporated.
an application of Bayesian Interclass Transfer. Experi- Let a setS of support classes and a clgssith few
ments in binary and multiclass classification settings us- training examples be given. In the remainder of this pa-
ing publicly available image databases demonstrate theper, classy is called the new class. The overall goal
benefits of the proposed algorithm in Sections 6 to 9. A of Bayesian Interclass Transfer is to estimate an ob-
summary of our findings and a discussion about further ject modelé(y) (parameters of a distribution, parame-
research steps conclude the paper. ters of a classifier, etc.) with the help of prior knowl-

edge from related object modeéd§) wherei € S. Us-

ing the Bayesian principle, this can be formulated as the
2. Related Work following maximum a posteriori estimation

Previous work on interclass transfer varies signifi- MAP () = argmaxp(T? 16) p(6 | T5) . (1)
cantly in the type of information transferred from re- 0
lated classes. An intuitive assumption is that similar whereT” denotes the training data of the new class and
classes share common intraclass geometric transfoima-T< denotes the training data of all support classes. The
tions. TheCongealing approach of Miller et al. (2000);; fundamental assumption is that it is possible to estimate
therefore tries to estimate those transformations andussea suitable prior distribution and use it to regularize the
them to increase the amount of training data of a new parameter estimation of a related class.
class. For example, a single training image of a letter  The application of the principle of Bayesian Inter-
in a text recognition setting can be transformed using class Transfer (or Generative Transfer Learning) was
typical rotations estimated from other letters. 12 limited to generative approaches (Fei-Fei et al., 2006).

Another idea is to assume shared structures in fea- As we show in this paper it is also possible to en-
ture space and estimate a metric or transformation fiem hance a discriminative classifier. The key idea is the
support classes (Fink, 2004; Quattoni et al., 2007). Ter- re-estimation of parameters of a discriminative classi-
ralba et al. (2007) used a discriminative boosting tech- fier by MAP estimation.
nique that exploits shared class boundaries within fea- For this reason we propose to estimate the parame-
ture space. In contrast, Fei-Fei et al. (2006) devel- tersé(i) (i # y) using a state-of-the-art discriminative
oped a generative framework with MAP estimation &f approach and only recompute the parameters of the new
model parameters using a prior distribution estimated classf(y) with further regularization. Figure 1 gives an
from support classes. A similar idea in the context.af overview of this concept.
shape based image categorization is presented in Stark
et al. (2009). In gener_all thg concept of shared priorslfg)r 4. Regularized Randomized Trees
a set of related classification problems can be used to
extend several classification techniques to multi-taskap-  This section describes how to apply the previous idea
proaches, such as generalized linear models (Lee etal. of Bayesian Interclass Transfer to decision tree classi-
2007) or Gaussian processes (Bonilla et al., 2008). s fiers. Although the approach can be easily applied to
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few examples Figure 2: General principle and terms of decision trees.gBims
GMAP illustrate the posterior distribution within each leaf odraversal of
the tree (nodes filled with grgyellow color) is done using features
stored within each split node.

[ discriminative classifier J

12 Instead of evaluating every feature and threshold, the
Figure 1: Overview of our approach using Bayesian IntescEmns- 2 training time is reduced by an approximate search for
fer for parameter estimation within a discriminative cléisation ap- 1« the most informative weak classifier in each node. The
proach. 15 Selection is made by choosing the weak classifier with

1 the highest gain in information from a random fraction
of features and thresholds.

Given enough training data for each clasthe gen-
eralization performance can be improved by learning an
ensemble oM decision trees (often called a forest) us-
ing a random subset of the training data. From the final
leaf nodes of the forest = (ny,...,ny), the overall
posterior can be obtained by voting with equal weights:

arbitrary decision tree approaches, the Randomized De-
cision Forest (RDF) approach is used, because of its su-
perior generalization performance and its widely use in
different applications (Marée et al., 2005; Shotton et al.,
2008). In this section, we review RDF before providing
a step-wise description of our method.

4.1. Randomized Decision Trees 1M
) 3 _ P In) == > p(@iIng) . 2)
Decision tree classifiers are commonly binary trees M~

with two types of nodes. Each inner node represents a
weak classifier (one-dimensional feature and threshetd) This special case of Bagging (Breiman, 2001) reduces
which defines a hyperplane in feature space and tysthe over-fitting &ects without the need for additional
determines the traversal of a new example within the tree pruning.
tree. The traversal of the tree ends in a leaf nade . .
We usen or nf with | = 1...mto denote the event® 4.2. Transfer Learning Using RDF
of an example reaching a single leaf node of a decisien  The transfer learning idea can be applied to each tree
tree. This event also corresponds to the infinite set of-all of the forest individually; therefore, the details of our
such examples (feature vectors). The total numberof method are explained using only a single decision tree.
all leaf nodes in a single decision tree is denotedrby.s  Two different types of information are transferred: a dis-
Each leaf node is associated with a posterior distributien criminative tree structure and a prior distribution on leaf
p(€i | n), which is an estimate of the probability of class probabilities.
i given that this specific leaf is reached. We denot@by
the event of an example belonging to the clasEhese = 4.2.1. Recycling of Decision Trees
general principles and terms are illustrated in Figure:3.  The selection of discriminative features in high di-
Standard decision tree approache$esufrom two se-10  mensional spaces using few examples is a highly ill-
rious problems: long training time and over-fitting. The posed problem. Therefore, we construct a discrimina-
RDF approach solves both issues by random sampling.tive tree structure using all the available training data of
3
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all classes. This concept has also been used in Hoigm 102

et al. (2007) and Lepetit et al. (2005), to recycle fedg

tures and to reduce computation time. The assumpti@n
of shared discriminative features (or weak learners) g
closely related to the use of shared features in the woask
of Torralba et al. (2007).

4.2.2. Re-estimation of leaf probabilities

Although decision tree approaches can be considered

as discriminative, they are closely related to individual
density estimation. The tree structure is a partitioning of
the whole feature space into several callsepresented

by leaf nodes. This corresponds to an approximatiomof
a class distribution using a piecewise constant density
or discrete probability distribution. The leaf probabik=
tiesgl = p(n' | Q) are the maximum likelihood (ML}
estimates of a multinomial distribution estimating the
density of each cell:

In' T
IT'|

o' (i) = (3)
Note thatjn' n T'| is the number of examples of class
i reaching a node, during the training step. It should

be noted that with a careful implementation of decision

trees, which store those unnormalized values instead of

the posterior probability, a complicated recursive com-
putation of leaf probabilities as presented in Rodner &nd
Denzler (2008) is not necessary. #e
It is obvious that with only a few training examplé¥
x € T?, the vecto®™" (y) is sparse and is unable to pré*
vide a good approximation of the underlying distribti*
tion. The overall goal of our approach is to re-estim&fe
6(y) by using maximum a posteriori estimation, whiéh
leads to a smoother soluti@YAP(y). Since the leaves™
of a decision tree induce a partitioning in disjoint sub-
setsn', each instance of the parameter ve@ds a dis-
crete multinomial distribution. For this reason any stift-
able distribution of discrete distributions can be usedo
model the prior distribution. =

228

229

4.3. Constrained Gaussian Prior

We propose to use a constrained Gaussian distribu-
tion (CGD), which is a simple family of parametric dis-

fixed point iteration
newton iteration i

9.6
9.3

9 Il Il Il
0 3000 6000 9000

no. of iterations

12000

Figure 3: Comparison between the convergence of the newsbimat
and a simple fixed point iteration.

S|mplex of all feasible discrete distributions. The use of
ol as a covariance matrix is an additional assumption
that will be useful in deriving anfécient MAP estima-
tion algorithm (Section 4.4).

This simple model allows us to estimate hyper-
parameterg® ando in an usual way. Because the sim-
plex is a convex set, the mean vecjor can be esti-
mated analogously to a non-constrained Gaussian.
our application on decision tregs; is estimated using
the leaf probabilities of the support classes:

-5 Za(l)

€S

In

(%)

Our choice to model the unknown distribution by a
Gaussian parametric family is mostly due to practical
computational considerations rather than theoretical re-
sults. Of course, one could argue, that using a sym-
metric Dirichlet prior leads to the same set of parame-
ters as a CGD and is additionally a conjugate prior. In
our application for Regularized trees, we expect a sym-
metric Dirichlet prior to yield similar results. But in
our opinion the use of a constrained Gaussian prior is
scientifically interesting and we will show in the fol-
lowing that even without a conjugate prior, one can de-
rive a simple inference method using an easy to solve
one-dimensional optimization problem. An investiga-
tion and analysis of other parametric distributions and
more sophisticated priors would be an interesting topic
for future research.

tributions and can serve as an alternative to a staneard4.4. MAP Estimation using a CGP

Dirichlet distribution. For alll : 6
defined as

> 0 the density is

232
233

Yol @l

p(OITS) o« N(0] p°, o-zl)é(l -
|

236
The factor ofs (6(0) = 1,Yx # 0 : §(X) = 0) is essentialz-

to ensure that the support of the density function is the
4

The process of MAP estimation using complex para-
metric distribution often requires nonlinear optimiza-
tion techniques. In contrast to these approaches we
briefly show that by using our constrained Gaussian as
a prior of a multinomial distribution, it is possible to
derive a closed-form solution of the global optimum de-
pending on a single Lagrange multiplier.



We start by writing the objective function of the MAR,
estimation as a Lagrange function of our simplex cea-
straint and the posterior:

241

242

L(6. 1) = log(p(T”16) p(oIT*))
+2 (Z 6 — 1] .
|

The likelihood has a simple multinomial form and de:
pends on a discrete histogram= ()", representing
the number of samples of each component:

p(1716) « [ | (@)°
|

243

244

(6)

246

247

( 7 ) 248
249

250

In our application to leaf probabilities of decision trqu,
the absolute number of examples reaching a repde ,,

In' N T”| is used, wheren is the number of all leaves,,
With the CGD prior in equation 4 we obtain the overgl)
objective function

2

255

(C| log(6)) - T;(QI - m)? + /16’|) -1.

This objective function is convex and therefore has a !

unique solution. Setting the gradiek ) (6, 1) to zero
leads to thanindependent equations
C

2= 2.0

6 20' (8)

m)+ A
Note that we get a non-informative prior, which reduces
MAP to ML estimation agr? — co. With positive dis- 2
crete probabilitiesg > 0), it is possible to obtain as;
simple quadratic equation #h: 258

259

(9) 260

A stationary point withg, = 0 is only possible with™"
¢ = 0 oro? — 0, which is also reflected by the abové
equation. Therefore the optimization problem has onfy
a single non-negative solution dependingion 2

A02\?
+\/(’u'+20—) +02¢ .

This solution depends on the Lagrange multiplier, for
which an optimal value can be found using a simpfe
fixed point iteration: o

1 +Ag2\?
:@[1—22 J(l%) +O'2C|] . e

(11) 276
5

0= 0|2+6?| (- — 20%) - 0% .

265

266

(10) 267

268

W+ Ao?
2

0 =

272

273

,ljJrl 274

As an initial value, it is possible to use the optimal
Lagrange multiplier in the case of no prior knowledge
and maximum likelihood estimation. Figure 3 shows
the convergence of our technique compared to that of
a Newton iteration, which converges much slower than
our simple recursion formula of Equation (11).

5. Binary and Multiclass Transfer Learning

Transfer learning for binary classification relies on a
set of support tasks that try to separate a clamsd a
background clas$. Regularized trees can be applied
straight-forwardly to this setting if a single support elas
sification task is given. After building a random forest
using training data fron$ = {i} and8, we can apply the
re-estimation method as explained in Section 4.4 using
the mean vectorS = 6(i). Finally the class probabili-
ties ofy are substituted for all probabilities afso the
decision tree now tries to separate betwgamds.

In contrast to previous work, which often concen-
trate on the binary case (Fei-Fei et al., 2006), Regular-
ized Trees are even suitable for multiclass classification
problems. Given the leaf probabiliti@#for each class
i and leafl and prior probabilitiep(€;) for each class,
one can easily calculate the needed posterior probabil-
ties for each class in the multiclass problem:

p(ny | €) p(L)
2 p(ni | Q) p(Q))

p(Qi | ny) = (12)

Reducing Confusion with Support Classes. All ma-
chine learning approaches using the interclass paradigm
within a multi-classification task have to cope with a
common issue: transferring knowledge from support
classes can lead to confusion with the new class. For
example, using prior information from camel images
to support the class dromedary enables us to transfer
shared features like fur color or head appearance. How-
ever, the we have to use additional features (e.g. shape
information) to discriminate between both categories.
To solve this problem, we propose to build additional
discriminative levels of the decision tree after MAP es-
timation of the leaf distributions. Starting from a leaf
noden' with non-zero posterior probabilitg(®, | n'),
the tree is further extended by the randomized training
procedure described in Section 4.1. The training data
in this case consists of all samples of the new class and
samples of all support classes which reached theleaf
All of the training examples are weighted by the val-
ues of the posterior distributiop(Q; | n') of the leaf
n'. This technique allows us to find new discriminative
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features especially between the new class and the sup-automatically would be optimal to provide support class

port classes. We observed that often only one additiaaal subsets. Regarding the selection of support classes as a

level can be build using the few examplesyof 2z model selection problem allows to use cross-validation
»s Or leave-one-out estimates (cf. Tommasi and Caputo

s (2009)). However, this can be ratheffaiult and results

a0 iN ill-posed problems themselves. Hence, we leave the

. . s, estimation of a set of similar classes as a task for future
The approach presented is evaluated expenmenggllyresearch

to analyze the benefits and the limitations of all our as-
sumptions. Three experiments are performed to provide
empirical proof of the following statements:

3

R

6. Experimental Setup and Overview

s 7. Experiment 1: Multiclass Classification
1. Regularized Trees lead to a significant perfor-

mance gain for multiclass classification with few ) ) ) )
training examples (Exp. 1, Sect. 7). a3 This experiment shows the benefits of our method in a

2. The performance of binary classification can e high-level image categorization task and a simpler letter
' improved by our method (Exp. 2, Sect. 8) s recognition task. We explain all features used and give

3. Our method uses prior knowledge that relies on’h. a detailed discussion of all results in section 7.3.

sual similarity, and is thus not related to generic
prior knowledge (Exp. 3, Sect. 9). ws 7.1 Letter Recognition

For the comparative analysis, three types of public . ) , ,
datasets with dierent characteristics are used: a data&et 1he database of Fink (2004) is a collection of im-
of handwritten Latin letters provided by Fink (2004)°4 29€S contamm_g handwritten Lat_|n letters resu_ltmg in 26
combination of the bird and butterfly datasets used‘in CPJ€Ct categories. For each object class 60 images are
Lazebnik et al. (2004, 2006) and a dataset for binty provided. For classification an ensemble of 10 decision
classification using im:alges from the database of méfn- trees is used and the following classification scenario is
mals presented in Fink and Ullman (2008). us  Selected: new classand support classesb,c,d.

The evaluation criteria are the unbiased average

recognition rates of the whole classification task and Features. The images in this database are binary, so
single recognition rates of the new class. Monte Caflo 3 very simple feature extraction method is used. The
analysis is performed by randomly selectingxamples.,,, - whole image is divided into an equally spacegx w,

of the new class for training and the remainder for tegt- grid. In each cell of the grid, the ratio of black pixels to
ing. To estimate the recognition rates for a fixed valye 3| pixels within the cell is used as a single feature. This
of f the results of multiple runs are averaged. This al30 |eads to a feature vector witl,wy dimensions. In all

averages out the influence of our randomized classifigr. experiments, the values, = 8 andwy, = 12 are used.
The experimental evaluation aims to analyze the gain

of our transfer learning approach compared to the RDF
classifier Geurts et al. (2006). We do not focus on the 7.2. Image Categorization
development of new feature types that would be suitable
for special recognition tasks. For this reason, our chaice To demonstrate the behavior of the method on a
of features is not optimized. The variancgofthe CGP == high-level image categorization task, we combine the
is an important parameter of our method, which we fix birds (Lazebnik et al., 2006) and the butterflies dataset
to the value of 10° in all experiments. It controls the inss  (Lazebnik et al., 2004) into one single multiclass clas-
fluence of the prior distribution and therefore, indirectly  sification task. The object categories can therefore be
our assumption of how much the new class is relateeldo divided into two diferent semantic sets. The category
support classes. We decided to use a constant valuesforblack swallowtail is used as a new class and all the
this parameter, because cross-validation is impossibleother butterfly categories serve as support classes
with a single training example. w1 Thus, training data consists of a variable number of

Furthermore we select support classes manually irsall training images fot and 26 images for each of the re-
the experiments. Our main assumption in Equation#£1) maining classes. This classification task is morf@-di
is that those categories have to share common featutescult than our letter recognition setting. For this reason
shape or appearance. Estimating the class similaritiesan ensemble of 500 decision trees was used.

6
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Figure 4. Example images of all datasets used for experahemaluation: Top row: combined bird and butterfly datasétazebnik et al. (2006,
2004). Middle row: latin letter dataset of Fink (2004). Bwit row: zebra and okapi images used for binary classificatimtained from the
mammals dataset of Fink and Uliman (2008) and google imagreise

Features. A standard approach to image categorizati@n The influence of the prior distribution is controlled by
is the bag-of-features idea. A quantization of local fea- hyper-parametes®> which is kept a fixed value inde-
tures is computed, which is often called a codebookgds pendent of the training examples used. Therefore the
computed at the time of training. An image can then MAP estimation of leaf probabilities leads to many leafs
be represented as a histogram of local features withdke-with non-zero posterior probabilities for the new class.
spect to codebook entries. The method of Moosma#an This corresponds to a large variance of the distribution
et al. (2006), which utilizes a random forest as a cluster- in feature space, which dominates the distribution for
ing mechanism, is used to construct the codebook. This all other classes. The variance of the class distribition
codebook generation procedure shows superior resiltsreaches a critical threshold, which leads to an overes-
compared to standatdMeans within all experimentswe timation of the distribution corresponding to the new
It also allows us to create large codebooks (a size.of class. The classifier prefers the new class, which results
13000 used in all experiments) in a few minutes om:.a in a worse average recognition rate (or an increasing
standard PC. A combined SIFT descriptor computed.sn number of false positives) on the whole classification
normalized RGB channels, as described in van de Sandeask. It should be noted that this phenomenon is unique
et al. (2010), is used as a local feature representation. to our application of transfer learning in a multi-class
x5 Classification task. Other transfer learning algorithms
7.3. Evaluation as  converge to the performance of independent learning af-

The results of this experiment evaluating multicldgs (€ @ Specific number of training examples, due to their
classification performance can be found in Figures 5 &hd tréatment of a support and new class as independent bi-
6. The plots show the average recognition rate of tlie Nary classification tasks. A similaffect has been ob-
whole task (plots on the left side) and the recognitith served in the contgxt _of zero-shot learning Rohrbach
rate of the new class (plots on the right side) compated et al- (2010) (cf. their Fig. 3).
to those of the original method of RDF.

It can be seen that our method improves the recog- 8. Experiment 2: Binary Classification
nition rate of the new class and the average recognition
rate, in the range with few training examples (1 to.8  For an experimental evaluation of the method on a
examples, marked with green color). The regulariza- binary classification task, images from the animal cate-
tion is therefore able to transfer knowledge from sup- gorieszebra andokapi from the mammals database of
port classes without violating the separation between Fink and Ullman (2008) are used. In order to increase
the other classes. = the number of test images, additional images from the

After a specific number of training examples the aves- categoryokapi were downloaded using Google Image
age recognition rate decreases while the recognition zateSearch and filtered manually to delete wrong search re-
or hit-rate of clasy (plots on the right side) still grows.  sults. The new dataset includes a total of 231 images
This critical area is highlighted in yellow in Figures & of okapis and 200 images of zebras. The image set of
and 6. The ffect corresponds to over-regularizatios. the background clag8 was generated by obtaining 300

7
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On the right side the single recognition rate of this clagdatted. Highlighted green area corresponds to the workange of our algorithm before
over-regularization féects. False alarm rates are skipped because we concentridite categorization performance.
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Figure 6: Comparison to Geurts et al. (2006) within a higrelewnulticlass classification task using the bird-and-biftedataset as used in
Lazebnik et al. (2004, 2006). Semantic of the plot is analsgo Figure 5.

random images from Google Image Search (usheg. fore independent of the number of training examples.
as a search key word). Our algorithm was tested with Additionally one can see that the “okapi” task seems to
two scenarios: using few training examples of the class be much harder, and benefits of knowledge transfer for
okapi with the support of the class zebra and vice veksa. a wider range of training examples.

Feature extraction was done as described in Section 7.2.

8.1 Evaluation = 9. Experiment 3: Similarity Assumption

Figure 7 shows the results of our approach (red plet, What happens if support classes are selected that do
circular dots) compared to the standard approachsof not share common features with the new class?
Randomized Decision Forest (green plot, rectangwar As mentioned in Section 3 the concept of Bayesian
dots). We also tested the performance of a random fogestinterclass Transfer is based on the main assumption that
built by using the supporting classification task withost the support classeS are somehow similar to the new
our re-estimation technique (blue plot, triangular dots). classy. Therefore, it is possible to further assume that

First of all, itis apparent that our method significantly those similarities can be captured in feature space by a
increases the classification performance compared.todistributionp(6). The following experiment tries to un-
the standard approach in both cases. Using a randemcover whether the knowledge transfered is related to a
forest without re-estimation of leaf probabilities does generic prior or is more category-specific and thus trans-
not use training examples of the new class and is these-fers more detailed elements, such as object parts.

8
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method seems to use a generic prior of object category
] «0 ImMages (e.g. size and location of objects are not uni-
1 «  formly distributed). Bart and Ullman (2005) also tested
their approach with a large set of various unrelated cate-

nuriber ofztraini:g exar?mlesluﬁsed fif claszll"zebiz?(logssiale) «2gories of the Caltech-101 da.tabase and showed that the

«« knowledge transfered by their approach, represented by
Figure 7: Results of the comparison of our method with the RRF shared image fragments, helped to improve the recog-
classifier of Geurts et al. (2006) using binary classificatasks. nition performance. In general the use of generic prior
knowledge has its own tradition and motivation, espe-
cially in the context of natural image statistics (Torralba
and Oliva, 2003). In our opinion the use of category-
specific in addition to generic priors is essential to cap-
ture available knowledge as much as possible and thus
allows dficient learning with few examples similar to
the development of the human visual system.
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To answer this question, an experiment using the {et-
ter recognition scenario (Section 7.1) is performed. 4&s
a new class with a weak representation of 4 training ex-
amples we selected the letteland used two dierent s
sets of similar support classeal{,c,d) and dissimilar s
support classesr(;n,w,v,2). Figure 8 shows a scatter plot
of several runs, where each point corresponds to the av-
erage recognition rate of a Randomized Decision Fofest 19 conclusion
without (ML estimation) and with our transfer learning
method (MAP estimation). All points above the diages We argue that learning with few examples can benefit
nal therefore indicate a clear benefit from prior knowsd- from incorporating prior knowledge of related classes
edge. It can be seen that visually dissimilar classes {tri- (interclass transfer paradigm). Therefore, we proposed
angular dots in red color) do not lead to a performange to reuse (transfer) the discriminative structure of a Ran-
gain and can even decrease the performance. domized Decision Forest and apply a subsequent max-
imum a posteriori estimation of leaf probabilities in
each tree. This Bayesian formulation allows us to infer
knowledge as a prior distribution obtained from related
method learns prior knowledge that is not relatedsto classes and can be seen as a regularization technique.
generic prior knowledge. This is an important dif= The method is able to exploit interclass relationships to
ference to a lot other approaches which capture mare support learning of a class with few training examples.
generic prior knowledge. For example in Fei-Fei etal.  Experiments on several public datasets showed a sig-
(2006), Bayesian Interclass Transfer is applied to tra@s- nificant performance gain in dealing with a weak train-
fer knowledge between object categories such as: mo-ing representation. In contrast to other work (Fei-Fei
torbikes, faces, airplanes and wild cats. Therefore, their et al., 2006), transfer learning of Randomized Decision
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9.1. Discussion of Experiment 3 511
Our results clearly show that our transfer learning
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Trees is applicable for binary and even for multiclass
classification, where information is transferred within
the task. An additional experiment validated that the
transferred prior information captures (visual) simiagi;
ties of related classes unlike a generic prior.
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11. Further Work 580
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Regularization with a meaningful prior derived from

similar object categories is an interesting researchsdi-

rection. Especially for learning with few training exarf®
86

ples, transferring knowledge from similar object caﬁg—

gories currently seems to be the only way to handle the

589

underlying ill-posed problems.

Despite the benefits presented in this paper, the @fio-
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Jones, S. S., Smith, L. B., April-June 1993. The place ofggaron in
children’s concepts. Cognitive Development 8, 113-139.

Kilmer, M., O’Leary, D., 2001. Choosing regularization pareters
in iterative methods for ill-posed problems. SIAM J. Matfiral.
Appl 22 (4), 1204-1221.

Lazebnik, S., Schmid, C., Ponce, J., 2004. Semi-loffal@parts for
object recognition. In: British Machine Vision Conferentel. 2.
pp. 779-788.

Lazebnik, S., Schmid, C., Ponce, J., 2006. A discriminatreene-
work for texture and object recognition using local imagattiees.
In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (Ed®),
ward Category-Level Object Recognition. Vol. 4170 of Leetu
Notes in Computer Science. Springer, pp. 423-442.

Lee, J. W., Giraud-Carrier, C., Aug. 2007. Transfer leagrimdeci-
sion trees. In: International Joint Conference on Neurdivseks
(IJCNN) 2007. pp. 726—731.

Lee, S.-l., Chatalbashev, V., Vickrey, D., Koller, D., 20Q#arning a
meta-level prior for feature relevance from multiple rethtasks.

posed method has two drawbacks: the support clagses |n; icML '07: Proceedings of the 24th International Confere

have to be selected manually and the influence of she

prior has to be controlled by the varianeé of the un- s+
derlying distribution. The optimal parametef could o
be found by a typical method for estimating the reg-
ularization parameter using the L-curve (Kilmer ared
O’Leary, 2001). An alternative would be to use crgss
validation, which is a common tool for all paramet&t
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estimation problems within a classification task. Autg-

matically selecting the support classes is more complex.

In our case it is yet unknown whether the information®f
N B n . . . 605

few examples is diicient to estimate the similarity tQ

other categories that would be useful for regularizatign.
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