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Abstract. One of the main reasons for a half-sided facial paralysis is a
dysfunction of the facial nerve. Physicians have to assess such a unilat-
eral facial palsy with the help of standardized grading scales to evaluate
the treatment. However, such assessments are usually very subjective
and they are prone to variance and inconsistency between physicians
due to their varying experience. We propose an automatic non-biased
method using deep features combined with a linear regression method
for facial palsy grading index prediction. With an extension of the free
software tool Auto-eFace we annotated images of facial palsy patients
and healthy subjects according to a common facial palsy grading scale.
In our experiments, we obtained an average grading error of 11%.
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1 Introduction

A unilateral facial palsy essentially leads to a one-sided motor dysfunction of
the facial muscles and the associated movement disorder [26]. There are multi-
ple reasons to render such a dysfunction. A special case of a peripheral facial
palsy is the idiopathic form (Bell’s paresis) with an incidence of 20-40 / 100,000
individual [24, 26]. It involves a one-sided motor dysfunction of the facial muscles
[34]. There are different levels of such a functional deficit. For both diagnosis and
treatment, it is important to grade these levels as precisely as possible.

Ideally, they should be measured objectively. For that purpose, several in-
dices and grading schemes were proposed in the past. For instance, very popular
and widely used methods are the House-Brackmann grading scale [15], the Sun-
nybrook grading scale [27] or the newer more fine-grained eFace scaling [1]. How-
ever, in practice, they are largely dependent on the experience of the attending
physician. Thus, they are prone to variance and inconsistency. Furthermore, the
intra-reliability of one physician, as well as the inter-reliability of multiple physi-
cians, is very small [37]. However, in therapy evaluation an objective assessment
is in urgent need.
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Inspired by this lack of objectivity, we started working on a completely dif-
ferent and more data-driven approach. In this paper, we introduce an automatic
facial palsy measurement approach based on regression, that is less subjective
and dependent on the medical staff’s experience. We will show, how state-of-the-
art visual learning techniques can be used to converge on this goal. Basically,
the visual inspection by a physician is substituted by a visual learning system
trained to recognize different grades of facial palsy in photos of a patient.

In the last decade convolutional neural networks (CNNs) [21] turned into
the leading approach in most of the computer vision tasks. Areas that benefited
the most are general image classification [19] and face recognition [25]. Recent
approaches can make use of subtle details in images. They discriminate be-
tween thousands of general object classes or hundreds of sub-classes (e.g. animal
species). Especially, works in the field of fine-grained classification [22, 30] shows
the strength of deep learning approaches based on CNNs. We demonstrate, that
such techniques are also able to measure subtle differences and changes in parts
of a human face. Typically, a lot of data is required to train CNNs for such a
special task. As a solution, a pre-trained CNN on a similar task can be used for
extracting features [7]. Afterwards, these image features can be used to train a
task-specific model.

The main contribution of this paper is an approach based on deep learning
for an automatic and objective grading index prediction for facial palsy. Instead
of training classifiers like the state-of-the-art approaches, we train single linear
regressors, each for every static and dynamic eFace [1] sub-scores using deep
features of a pre-trained CNN and an annotated image database of facial palsy
patients. As a prerequisite an annotation phase was necessary. We extended the
open software tool Auto-eFace! including the Emotricstool [11,12] to manually
grade facial palsy according to various facial palsy index grading systems includ-
ing the eFace grading system.

2 Facial Palsy Assessment

Facial palsy occurs when the facial muscles become frail due to some form of
temporary or long term damage to the facial nerve [8]. Both sides of the face have
their own set of independent facial nerves. The nerves help with the coordination
of facial expressions, and in various ways help regulate taste, saliva and tear
production [8]. Facial palsy is classified into two categories: A Peripheral Facial
Paralysis occurs due to a lack of functioning of the nerve in the pons region of the
brainstem. It leads to adverse effects in the lower, middle and upper regions of
the facial muscles on the affected side. In the case of a Central Facial Paralysis,
there is a perturbation of the nerve in the cortical region where only the lower
half of the face on one side is affected.

For grading one-sided facial palsy the eFace scale was proposed [1]. It pro-
duces an overall disfigurement score of the patient using 16 parameters that

! https://github.com/dguaril /Auto-eFace
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Table 1: Parameters for eFace ratings [1].

Parameter Parameter
Category Parameter name
no. range
Static R1 Resting brow height 0-200
R2 Resting palpebral fissure width 0-200
R3 Nasolabial fold depth at rest 0-200
R4 Nasolabial fold orientation at rest 0-200
R5 Oral commissure position at rest 0-200
Dynamic M1 Brow elevation 0-100
M2 Palpebral fissure narrowing during gentle 0-100
eye closure
M3 Palpebral fissure narrowing during full eye 0-100
closure
M4 Oral commissure movement with smile 0-100
M5 Nasolabial fold depth with smile 0-200
M6 Nasolabial fold orientation with smile 0-200
M7 Lower lip movement with 'EEEE’ sound 0-100
Synkinesis S1 Ocular synkinesis 0-100
S2 Midfacial synkinesis 0-100
S3 Mentalis dimpling 0-100
S4 Platysmal synkinesis 0-100

are adjusted by a physician. These parameters are split into three categories
Static, Dynamic and Synkinesis. An overview can be found in Tab. 1. For pa-
rameters that lie in the range between 0 and 200, the score of 100 indicates a
balanced position while 0 or 200 indicates extreme malposition. When it comes
to the parameters that lie between 0 and 100, the score of 0 represents extreme
paralysis and 100 indicates balanced position or absence of synkinesis. Finally,
the sub-score for each category is the average of the values in the respective
categories.

3 Related Work

There have been multiple works on facial palsy analysis with the help of visual
recognition systems and software tools. The authors of [11] propose Emotrics that
uses the work of [17] to automatically localize facial keypoints (landmarks) in
frontal facial images. It is trained on a database of only healthy faces [28] and can
be used to compute distances and angular measurements between the landmarks.
However, landmark localization is prone to errors for patients with strong facial
asymmetry. As a consequence, the user has to manually modify the location of
several landmarks. In [12] the authors manually annotated face images of facial
palsy patients to train a suitable landmark localization model. For Emotrics to
work, at least one iris must be visible in the image. Furthermore, there can not
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be head tilt or otherwise, their proposed method fails. However, if landmark
localization is improved for palsy patients, Emotrics can produce accurate facial
distances and angular measurements that pertain to facial paralysis. Typical ex-
amples of such measurements are smile excursion, smile symmetry, and eyebrow
symmetry. Additionally, it can be used to compare two images and hence, to
keep track of the patients’ progress before and after an intervention. In contrast
to our method, the approach does not predict a commonly used facial palsy
grading index.

In [2] the authors propose an approach that uses facial images to discriminate
between normal and facial palsy patients. Additionally, the facial paralysis type
(peripheral or central) can also be distinguished. They are able to classify the
degree of severity based on the House-Brackmann scale [15]. The authors show
how the iris can be extracted and facial landmarks are detected. They employ
a combination of local active contour model [20] and Daugman’s algorithm [5].
The authors stress the importance of iris segmentation for finding the difference
between a healthy and paralyzed side. However, the House-Brackmann scale is
not suitable for a fine-grained facial palsy assessment as it contains only a few
discrete grades. In contrast, the authors of [23] propose to use active appearance
models (AAM) [4] to grade facial paralysis with Stennert scale [32] in addition to
House-Brackmann scale. A pre-trained AAM model is fitted on nine images for
each patient. Afterwards, the distance between landmarks, fitting parameters
from the AAM and the predicted action units [13] are fed as features into a
random decision forest [3]. For the House-Brackmann scale, the authors of [23]
achieve about 80%, whereas the more fine-grained Stennert score reaches an
accuracy of 72% for the rest sub-scores and 66% for the motion sub-scores.

In another work [10], Microsoft’s Kinect (v2) is used to grade facial paralysis.
The authors propose a new facial palsy grading system for resting symmetry and
voluntary movements (e.g. raising eyebrows, closing eyes or smiling). Their sys-
tem is also able to predict grades for the traditional grading systems described
in Sec. 2. The process involves detecting facial landmarks as 3-D coordinates
in real-time using Microsoft’s Kinect. To calculate the asymmetry of the facial
regions the ratios of distances between corresponding landmarks and a common
reference point on the two sides of the face are used. Furthermore, their previous
resting symmetry assessment module [9] is extended by adding gamma correc-
tion, eye area and mouth slope features. However, it is to be noted that they did
not test their system on facial palsy patients, but on healthy subjects only.

In this paper, we tackle the problem of objective facial palsy assessment as a
linear regression problem by using the fine-scaled eFace grading index [1], which
has 16 ordinal fine-grained grading scales for the rest face and facial motions.
In contrast to the described state-of-the-art approaches, a facial palsy index
classification method is not suitable regarding the fine-grained ordinal sub-scales
of the eFace-scale. Hence, an approach based on regression is more appropriate
for our automatic prediction task. Besides the eFace grading scale, our approach
can also be adapted to predict the other facial palsy scales mentioned in Sec. 1.
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Fig. 1: Image features are extracted from different layers of a pre-trained CNN
excerpt (e.g. VGG-16 [31]). These features are then used as input for a linear

regression model, that generates the facial palsy score predictions. We use an
e-SVR for the regression task.

4 Automated Facial Palsy Grading

We now describe our objective automated facial palsy index grading pipeline
using a deep learning approach. It includes our extension of the Auto-eFace soft-
ware tool [12] for facial palsy grading index annotation, as it is an important
first step to be able to learn sophisticated models. An overview of our whole
machine learning pipeline is visualized in Fig. 1.

4.1 Facial Palsy Annotation

For facial palsy annotation, we extended the software tool Auto-eFace, which
was developed for automatic facial asymmetry measurements with the included
Emotrics tool [11,12]. It originally features facial landmark correction and fa-
cial asymmetry measurements. In addition, our extension JAuto-eFace provides
facial palsy assessment based on the grading scales eFace [1], House-Brackmann
[15], Stennert [32] and Sunnbybrook [27]. Furthermore, we added the function-
ality to annotate image recording series of two different grading recording stan-
dards with 9 and 12 images [29], respectively. The annotator can select an image
data folder which contains the recorded images of the patient. All facial palsy
scales can be assessed by bars within the corresponding scaling limits, including

all the sub-scores. Additionally, after each interaction, the tool saves all rated
values, automatically.

4.2 Pre-processing

Image pre-processing is performed in mainly three steps. First, the face region
is extracted from the images, as background information is not required in the
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following steps. To achieve this, a face detector provided by the DIib framework
[18] is used. Afterwards, the face images are converted into a n X n pixel square
shape. This step is necessary to train deep learning models that require square
images. To reshape initial images into a square while maintaining the aspect
ratio, a suitable amount of zero paddings is applied at the image borders. The
index scores are pre-processed by rescaling them to the range of [0, 1].

4.3 Deep Feature Extraction

To be able to apply linear regression, it is most important to extract meaningful
image features. Deep neural networks can learn such features during training
time, which can then be used for the task at hand [7]. For the training of such
neural networks, a large amount of data is necessary. However, when enough
data is not available, it is possible to exploit a pre-trained CNN. Such a network
is trained for another task using data of the same or a related image domain [7].
Thus, we can extract deep image features by simply exploiting the activation of
layers from this pre-trained CNN. These are the features we use for our regression
task. Figure 1 illustrates our proposed machine learning pipeline for automatic
facial palsy grading index prediction. It includes the architecture of a VGG-16
[31] model with respective convolutional, pooling and dense layers.

4.4 Facial Palsy Index Regression

The extracted deep features are now used to learn a linear regression model
for facial palsy index prediction. Specifically, we train an e-support vector
regressor (e-SVR) as introduced by [35]. It uses the given training data
{(x1,91),...,(x,yr)} C X x R, where z; € R? denotes the extracted deep
features and y; € R the corresponding facial palsy score. The goal is to find a
hyperplane f(x) = (w,z) + b. Additionally, a maximum deviation of € from the
ground-truth target value y on average over for all training data is enforced.
Given that vector w is perpendicular to the hyperplane f(z), it is sufficient to
minimize the norm of w, i.e. ||w||* = (w,w). The interested reader is referred
to [35] for a detailed derivation. For each facial palsy score, an individual single
linear regressor is learned, with ¢ = 0.1. We employed SVR as other regres-
sion methods (e.g., random forests or a different kernel) did not perform well
in our preliminary experiments. As described in Sec. 4.2 all palsy scores in the
pre-processing step are normalized. Thus, in the last step, an inverted scaling is
applied to obtain the absolute score values.

5 Experiments

In the following, we evaluate our proposed regression approach for predicting
facial palsy grading scores. After establishing the experimental setup, we demon-
strate automatic eFace prediction for subjects with and without facial palsy.
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Fig.2: During the creation of the dataset, subjects have performed 9 different
facial movements: neutral face (1), brow elevation (2), gentle closed eyes (3),
squeezed eyes (4), wrinkled nose (5), smile with closed mouth (6), show teeth
(7), pursing lips (8) and lowered mouth corners (9) [23].

5.1 Datasets and Metrics

Datasets. The facial palsy dataset (D1) used in our experiments was recorded
by the Department of Otorhinolaryngology of the University Hospital Jena,
Germany. Its medical purpose is to evaluate the success of a Hypoglossus Fazialis
Jump Anastomose performed on facial palsy patients. In this surgery, a part of
the nerve of the tongue (hypoglossal nerve) is connected to the facial nerve, to
induce reinnervation of the facial muscles [36]. The dataset consists of 2D RGB
image series of 52 multi-ethnical patients (22 women, 30 men) of different ages
which are recorded before and after the mentioned surgery. Each image series
contains nine standardized images of the patient’s frontal face. They include
a neutral facial expression and eight different facial movements. An example
of these nine expression images can be found in Fig. 2. The very same image
recording protocol is applied in our second dataset (D2), which includes 28
adult healthy subjects (14 women, 14 men) without facial palsy. This dataset
serves as a control study.

Annotation. For facial palsy index annotation, we extended the free
software tool Auto-eFace [11] (see Sec. 4.1) to manually grade different
facial palsy grading indices including eFace scale [1] described in Sec. 2.
The eFace rest sub-scores R1-R5 are annotated by using the rest image (1),
while the eFace motion sub-scores are annotated by using different images,
which can be seen in Tab. 3. Please note that synkinesis sub-scores can
only be assessed by using video data, where the motion can be clearly seen.
Thus, the synkinesis scores S1-S4 are not annotated in both datasets. The
facial palsy dataset (D1) was assessed by a medical expert. In contrast, the
dataset of healthy subjects (D2) has not been annotated by an expert. We set
all facial palsy grading scales for those subjects to the values of a healthy person.

Evaluation Metrics. For evaluating the automatic eFace sub-score pre-
diction, we compared the ground-truth annotations with the predictions of our
regression models. We achieve this by calculating the mean absolute error (MAE)
of the grading score. The MAE is defined as

MAE — Zi:l |yz _yi|
n

; (1)
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Table 2: The combined MAE (+ std dev) of all the eFace sub-scores including
static and dynamic parameters from the VGG-faces model is decreasing with
increasing depth of the CNN-layer from which features are extracted.

Layer Conv2-2 Conv3-3 Conv4-3 Conv5-3 Pooling5
MAE 2744+6.92 25.96+6.67 24.394+6.59 22.43+5.77 22.45+5.82

where y; are ground truth values, y; the predicted values and n is the total
number of observations. The data is split into train and test set to run an 11-
fold cross-validation. Hence, no recording series of a patient is in both train set
and test set at the same time.

5.2 Automatic eFace Prediction

Setup. For evaluation, the introduced datasets D1 and D2 are combined and
split for 11-fold cross-validation. Thus, there are images of facial palsy patients
and healthy subjects in the train data splits. Note, for evaluation of the test
splits both the datasets D1 and D2 are used. Furthermore, healthy subjects are
evaluated in a control study.

For the individual eFace sub-score predictions we use different images of each
recording series regarding the performed motions. We used the rest image (1) for
predicting the eFace rest sub-scores R1-R5. For prediction of the eFace motion
sub-scores M1-M7, different images (2,3,4,6,7) are utilized, which can be seen in
Tab. 3. As the synkinesis sub-scores S1-S4 are not labelled in the facial palsy
dataset (D1), we have neglected them in this experiment.

For feature extraction, described in Sec. 4.3, two different pre-trained CNN
models with a VGG-16 architecture [31] are used. Both CNNs are trained on
completely different data with varying tasks. The VGG-faces model [25] is
pre-trained on facial data for face recognition. For comparison, we use the exact
same VGG-16 architecture trained for an object recognition task using Imagenet
dataset [6]. Before extracting features by exploiting the layer activations of the
CNN models, pre-processing is applied to all images (see Sec. 4.2). Specifically,
all images are scaled to a shape of 224 x 224 pixels to match the input shape
for the VGG-16 model.

Layer Influence. To decide which CNN layer has the most descriptive fea-
tures for the eFace sub-score prediction, in a first experiment, we extract the
features of various layers of the VGG-faces model. For each eFace score as well
as for each feature set of a chosen layer an individual linear regressor is trained.
They are all evaluated using MAE. Afterwards, for each layer, a combined eval-
uation is applied by calculating the average of all sub-score errors.

Results of this experiment are summarized in Tab. 2. It shows the combined
MAEs of the different chosen layers of the VGG-faces model. As can be seen,
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Table 3: The linear regressors exploiting the extracted features of the VGG-
faces model lead on average to an MAE of 22.44. In comparison, the VGG
model trained on the Imagenet dataset [6] reaches an average MAE of 24.34.
The errors are indicated in standard deviations.

Param. Image VGG-faces VGG-imagenet
R1 1 13.17 4+ 13.54 15.16 4+ 14.38
R2 1 30.16 £ 23.98 36.24 £ 28.70
R3 1 23.91 £ 22.15 25.49 £ 20.98
R4 1 25.60 + 19.82 26.24 + 21.87
R5 1 23.32 £ 19.35 23.20 + 19.62
M1 2 31.22 4+ 17.88 31.86 £ 19.55
M2 3 19.07 £+ 17.83 23.67 £ 19.73
M3 4 15.65 + 15.51 16.81 + 15.43
M4 6 24.98 £ 18.47 23.79 £ 16.99
M5 6 28.48 + 24.00 28.67 £ 23.48
M6 6 17.47 + 12.28 25.15 £ 20.83
M7 7 16.24 + 14.20 15.74 4+ 12.42

the deeper Conv5-3 and Poolingb layers of VGG-faces have nearly similar MAE.
Results suggest that the features of later layers represent the facial information
better. As a consequence, we have chosen the Conv5-3 layer for the feature
extraction process for our further experiments.

Pre-Training. In our next experiment, we compare different weights of the
VGG architecture, which in turn provides different features for the linear re-
gressor model. For comparing different pre-trained VGG models, Tab. 3 shows
the MAE and standard deviations based on a 11-fold cross-validation. It shows
results for both the predicted static as well as dynamic eFace sub-scores.

With an average MAE of 22.44, the features of the VGG-faces model perform
slightly better than the features of the VGG model trained on Imagenet. The
latter model reaches an average MAE of 24.34. In other words, the regressors
trained with features of VGG-faces achieve an error of 11%, while the regressors
trained with Imagenet features have an error of 12%. It should not come as a
surprise that features generated from purely facial data perform better. However,
it is worth noting that the difference is not very large. A model trained with
non-facial images of high diversity from 1000 different object classes can also
extract descriptive features for faces. Since there has not been any previous
work regarding automated eFace scores prediction, we do not have a baseline to
compare our results to. However, these results can act as a baseline for future
works.

In Fig. 3 we illustrate our results of the static and dynamic eFace scores
more detailed as box plots indicating standard deviations and outliers. It can be
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Fig. 3: The comparison of the single linear regressors trained for each eFace sub-
score show different absolute eFace prediction errors. For instance, the brow
height sub-score in the rest image (1) performs quite well with an MAE of 13.17,
while the brow elevation sub-score of motion image (2) performs only with an
MAE of 31.22.

easily seen that the single linear regressors trained for each eFace sub-score show
different absolute eFace prediction errors. Overall the static sub-scores perform
with an MAE of 23.23, while the dynamic sub-scores perform with an MAE of
21.87. This difference can be explained by the fact that even for an expert it is
easier to evaluate a eFace sub-score in a motion image than in the rest image.
As there are more advanced architectures for CNNs available that perform
better on ImageNet dataset we like to mention that we also trained regressors
using such architectures. For instance, on a ResNet-50 model [14], we achieve
an average MAE of 28.90 by extracting features from activations of Resnet-50s
last convolutional layer. It suggests that a deeper network does not necessarily
produce more representative features for our task. Table 4 shows the average
MAE for some recent CNN architectures pre-trained on different datasets.

5.3 Control Study

To validate our results in a control study, we used dataset D2 including 28 healthy
subjects. For that study, we only evaluate the healthy subjects of the test splits.
We obtain an average MAE over all eFace sub-scores of 12.82, where the average
MAE of the static sub-scores is 9.76. The average MAE of the dynamic sub-
scores is 15.01. For our case study, this range of errors is acceptable, since we
can not assume that subjects have a completely symmetric face. This assumption
is supported, for instance, by measurements of the Emotrics tool [11,12] in Auto-
eFace. With the Emotrics tool we measured the distances between eyebrows and
the related eye pupils of all subjects in dataset D2 using the rest image (1). On
average the left and the right distances differed by 5.93 & 4.62 %.
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Table 4: Linear regressors exploiting features from the last convolutional layer of
recent network architectures pre-trained on Imagenet dataset [6] do not achieve
the average accuracy as the VGG-faces model based on VGG architecture pre-
trained on facial data [25]. The errors are indicated using standard deviations.

Pre-trained

Architecture Dataset Average MAE
ResNet-50 [14] Imagenet [6] 28.90 £ 6.62
Mobilenet [16] Imagenet [6] 23.94+6.70
EfficientNet-B4 [33] Imagenet [6] 26.99 + 7.38
VGG-16 [31] Imagenet [6] 24.34+6.32
VGG-faces [25] Faces [25] 22.44 + 6.02

6 Conclusions

In this paper, we proposed a machine learning approach for automatic and ob-
jective facial palsy grading index prediction. As a prerequisite, we extended an
existing annotation tool to work for various facial palsy grading scales. In our
experiments, we were able to demonstrate that the eFace grading scale can be
predicted by our approach with an average MAE of 22.43. Moreover, we found
that deeper networks like ResNet-50 do not provide more suitable features for
our application. They contain much more parameters than a typical VGG-16
model when fully connected layers are excluded. Additionally, we verified our
results in a control study by applying our method to healthy subjects with an
average MAE of 12.82.

Our machine learning approach could potentially also be applied to other
ordinal interval facial palsy scales like House-Brackmann [15] or Sunnybrook
[27]. Furthermore, our dataset with 52 facial palsy patients is quite small, We
expect to further reduce the MAE given more annoated data during training. In
addition, data augmentation techniques like image flipping would support these
efforts. It completely removes a potential left /right bias for facial palsy cases in
the training data.

We believe that our proposed data-driven approach is a step towards more
objective grading. The system can help physicians prepare a better treatment
plan for each patient, while, a patient can use a smartphone-based app at home to
track the progress of their therapy. However, one point of criticism could be that
by subjectively annotating the data by one medical expert, the model also makes
subjective predictions. To avoid this, we suggest that several experts annotate
the same data and, thus, averaged grades are used for training. This prevents
the subjective decision of an individual and averages the assessment. Besides,
an individual expert becomes a weighting based on its annotation experience.
Simultaneously, an inter-rater evaluation is possible and we can compare the
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model accuracy with the human assessment performance. Those are points for
further work and are not yet implemented in our approach.
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