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ABSTRACT

To observe biodiversity, the variety of plant and animal life in the world or in a

particular habitat, human observers make the most common examinations, often assisted by

technical equipment. Measuring objectively the number of different species of animals,

plants, fungi and microbes that make up the ecosystem can be difficult. In order to monitor

changes in biodiversity, data have to be compared across space and time. Cameras are an

essential sensor to determine the species range, abundance, and behavior of animals. The

millions of recordings from camera traps set up in natural environments can no longer be

analyzed by biologists. We started research on doing this analysis automatically without

human interaction. The focus of our present sensor is on image capture of wildlife and moths.

Special hardware elements for the detection of different species are designed, implemented,

tested and improved, as well as the algorithms for classification and counting of samples from

images and image sequences, e.g., to calculate presence, absence, and abundance values or the

duration of characteristic activities related to the spatial mobilities.

1

B. Radig, P. Bodesheim, D. Korsch, J. Denzler, T. Haucke, M. Klasen, V. Steinhage: Automated Visual Large Scale Monitoring of Faunal Biodiversity.
Pattern Recognition and Image Analysis 31, pp. 477–488, 2021. (c) Copyright by Springer. The final publication is available at link.springer.com:

https://link.springer.com/article/10.1134%2FS1054661821030214
https://dx.doi.org/10.1134/S1054661821030214

https://link.springer.com/article/10.1134%2FS1054661821030214
https://dx.doi.org/10.1134/S1054661821030214


For this purpose, we are developing stereo camera traps that allow spatial reconstruction

of the observed animals. This allows three-dimensional coordinates to be recorded and the

shape to be characterized. With this additional feature data, species identification and

movement detection are facilitated. To classify and count moths, they are attracted to an

illuminated screen, which is then photographed at intervals by a high-resolution color camera.

To greatly reduce the volume of data, redundant elements and elements that are consistent

from image to image are eliminated.

All design decisions take into account that at remote sites and in fully autonomous

operation, power supply on the one hand and possibilities for data exchange with central

servers on the other hand are limited. Installation at hard-to-reach locations requires a

sophisticated and demanding system design with an optimal balance between power

requirements, bandwidth for data transmission, required service and operation in all

environmental conditions for at least ten years.

INTRODUCTION

In order to obtain precise data on the development of faunal biodiversity, systematic,

reproducible, and low error measurements must be carried out. To study large representative

regions over a longer period of time, scientists are not sufficiently available. That is why the

German government has launched a project called AMMOD (Automated Multisensor Station

for Monitoring of BioDiversity), which is developing prototypes for automated, networked

and self-sufficient measuring stations and testing them in the wild. These unique stations,

when installed as a network, will generate a robust data pool for analyzing global changes in

the faunal biosphere. The modules have the intrinsic ability to detect any sensor-specific

signal to monitor birds, bats, mammals, and insects. Innovations include combining different

sensors whose standardized signals complement each other, and automating the devices and

workflows. Technologies adapted for use in such an AMMOD station include automated odor

analysis that responds to minute concentrations of substances in the air, sampling robots for

collecting organic particles and trapping insects, DNA metabarcoding for identifying species

in bulk samples, bioacoustic monitoring primarily for detecting grasshoppers, bats, and birds,

and, last but not least, camera systems for visual observation of, for example, mammals and

insects. The plasticity and modular design of the base station enables the addition of other

sensor types. Since AMMOD stations collect data from a radius in the immediate

surroundings, only species occurring in this area will be detected. Especially for detecting

mammals and birds using cameras and audio recorders, the positioning of recording devices
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(near the soil, in the canopy, along wildlife crossings) is crucial to increase the detection

probability.

Species detection probability accounts for errors stemming from false positive and false

negative detections from the classification programs, but accounts also for the incomplete

information occurring inherently in every species survey.

In the case of time and species site occupancy rates, detection probability can be

estimated by generating ‘detection histories’, which are sequences of presence-absence

records of a species per sampling location [8]. This can be easily derived by defining survey

bouts of, e.g., one week intervals. In the case of species abundance, detection probability can

be estimated either by establishing a sequential detection history (i.e., inference of abundance

by repeated presence-absence surveys, [29]) or alternatively as a function of the

detector-species detection distance (i.e., distance sampling methodology, [7, 17]). In the latter

case, animal detection distances can be easily derived from stereoscopic images.

Species site occupancy estimation can in principle be applied to all AMMOD detectors

and data output (e.g., [10, 18]). Additional verification of system output by humans to, e.g.,

remove false positive recordings can further improve the estimates [8]. As species site

occupancy can change temporally (e.g. as a function of temperature), site occupancy can be

estimated repeatedly over time to infer species activity and/or abundance.

The estimation of species abundance from presence-absence data can in principle be

applied to all AMMOD detectors [11]. The estimation of species abundance based on distance

sampling methodology is relatively straightforward when standard distance sampling methods

can be applied. A direct count of insect individuals is possible, e.g., with the moth scanner.

Finally, data from different detectors and additional data sources may be combined by using

spatially integrated population models to infer abundance [9]. The synchrony of AMMOD

signals is a unique basis for ecological analyses (Figure 1).
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Fig. 1. Data Integration over Time and Space on Multi-Sensor AMMOD Stations.

”Camera traps are very widely used to monitor the presence of animals and record their

behaviour” [1]. In the Bavarian National Park alone, more than one million images have been

collected from camera traps to date. A similar number was collected from cameras on

so-called green bridges over highways [12, 26]. Statistics on the number of such images

generated each year in Germany alone do not exist. However, only very few of them are

evaluated. Common camera traps provide images for human observers rather than for

automatic analysis. To design a suitable camera system to operate on AMMOD platforms in

the wild, boundary conditions must be met:

● The systems must be self-sufficient in energy, e.g., from their own photovoltaic

platforms (low power supply).

● They are wirelessly connected to external servers (high data volume vs. low

bandwidth).

● There, the observed animals are classified. Abundances and densities of the species

are calculated, combined with environmental information, and the data are transmitted

to the servers.
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● Unattended, uninterrupted stable operation, minor service requests, self-adaptation to

all weather conditions and seasons.

Observed and analyzed data need to be available in or integrated into publicly

accessible libraries for scientific, political and economic use.

Our current task is to test the technology rather than developing large-scale biodiversity

monitoring programs. Hence, AMMOD prototypes are deployed in fenced areas that are

protected from vandalism, rich in species, accessible and – at least for the first trials – with

electricity from the public grid. In future, when the stations are fully developed, they will

need little maintenance and can be scattered over the country.

AMMOD CAMERA TRAPS

A high-end stereo imaging system will be developed for the AMMOD station to capture

terrestrial species with appropriate magnification, resolution, and depth of field. The technical

components of the so-called SpeciesSiteCam consist of two cameras for recording the stereo

image pair, a detector of animal movements, an infrared lamp for the nocturnal illumination of

the animals passing the detector, a stereo processor, a computer for pre-processing and cabling

with the base station for power supply and data transmission (see Figure 2).

Infrared illumination will be used where appropriate to enable night and twilight image

capture without disturbing passing animals. The left and right cameras are triggered

simultaneously by motion detectors and capture image sequences of adjustable length. The

two images are passed to a stereo processor that computes a disparity image and a 3D image.

The 3D image contains the computed three coordinates in the real world for each image point

with a defined disparity value. Features of the animals such as distance, walking path, body

shape, and others can be determined from it. This data stream is transmitted for

pre-processing to a powerful single-board computer on the base station. There, the data stream

is broken down into its individual components and analyzed. Recordings are sorted out that do

not contain animal images due to false alarms from the motion detector (typically 40% to

70%). A further reduction of the data volume is achieved by masking out image areas where

no animals can appear.
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Fig. 2. System Architecture with PIR Motion Detector.

An essential but critical component is the PIR (Passive InfraRed) motion detector. It

sends a trigger signal to the cameras when a moving object with a higher temperature than its

surroundings moves through the observed area. The chosen detector is characterized by

extensive programming options with which it can be adapted to the desired observation

situation. These include, for example, the range or the angle of detection. Particularly

important is the setting of parameters that suppress signals that erroneously report sudden

temperature changes in the observed environment. It is essential to set the signal triggering for

the time when animals are in the area of observation. Typical options are one-time triggering,

video recording, or triggering a series of images at selected intervals. The observation area

can be defined optically by placing Fresnel lenses, which are transparent to infrared light, in

front of the actual temperature sensor. The motion detector selected so far is weatherproof,

extremely low-power, and provides standardized trigger signals for easy integration into a

camera system. The disadvantage is the time of about half a second that the detector needs for

the reaction of the sensor element and the internal signal processing. In this time, animals may

have already left the observation area, leading to empty images without any animal inside.
6



The first line of development being investigated is how to model the environment to be

observed in more detail. In the meantime, PIR sensor components are available that only

observe narrower angles but have a detection distance of up to 20 meters. Several of these

devices could then be distributed and aligned to look down paths or into areas where animals

might approach the camera system in the first place. The pre-processing computer can then

evaluate this set of signals to decide if and when the cameras will start to capture the images.

A second line of development is being pursued for use in AMMOD platforms that can

be adequately powered. Here, the cameras can remain powered on (see Figure 3).

Fig. 3. Animal detection as an anomaly in the stream of images.

The continuous image sequence can then be analyzed for the presence of animals. Initial

attempts have been successful in using deep-learning techniques to learn a background image

of the observation area. The appearance of an animal is then detected as an anomaly in that

background. The latter works in tenths of a second. The accompanying figures show, from top

to bottom, a learned background, a passing animal, the image of the anomaly values (blue =

low, red = high), the classified anomaly area bordered in red).
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Fig. 4. Typical background training images.
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Fig. 5. Illustration of Anomaly Processing Sequence

The inclusion of stereo data of the animal foreground and background will further

advance the reliability and informativeness of this approach. Essential, however, is the ability,

as long as lighting conditions or strong infrared illuminators allow to trigger and capture

animal images from more or less any distance. To our knowledge, there are no suitable

alternatives to either variant of triggering in technical or scientific publications to date.

AUTOMATIZED LONG-TERM WILDLIFE CLASSIFICATION

Since the AMMOD stations should operate for a longer period of time (several years), it

is important to use recognition systems that can improve their performance over time by

exploiting data that is recorded during operation. Hence, we aim at applying and improving

lifelong learning algorithms for the identification of wildlife animal species that occur in the

images from the camera traps. Lifelong learning, often also called continuous learning,

continual learning, or incremental learning, denotes a process that enables updates of the

classification models once new data is available. An important aspect that is different to

conventional classification systems is the possibility to handle new, previously unseen

categories, in our case new species unknown to the classifier. This is done by first applying

novelty detection mechanisms to identify unknown species and second including human

experts in the loop to obtain labels and valuable feedback that is integrated in an active

learning fashion.

To start with an automatic recognition system, an initial classifier is trained in an initial

learning stage using available training data from public databases that contain the relevant

species. Then, novelty detection and active learning is applied to realize the lifelong learning

cycle. Furthermore, active learning plays an important role for exploiting unlabeled sample

sets. Of course, it is beneficial to include methods from domain adaptation, since the images

from the initial training set of existing databases may differ clearly from images recorded by

the AMMOD stations. Additionally, fine-grained recognition approaches are required that

allow for distinguishing visually very similar species, like different bird species.

For the initial learning step, the collection of appropriate sets of labeled images is

required to train an initial classifier from already digitized data. First, images of relevant

species from existing labeled image datasets can be exploited, e.g., from ImageNet [23] or

iNaturalist [33]. In addition, we use collections of annotated images from citizen scientists
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and natural history museums. Especially when exploiting images from collections of

museums, methods from domain adaptation [13, 27]are required to compensate for the

different image characteristics and camera setups. Furthermore, domain adaptation allows for

integrating image data from different sensors (e.g., different camera types and images from

the Internet), and can support the modelling of different environments with different

background structures and lighting conditions.

Detection rates in the laboratory or at test data sets of more than 90% can generally not

be achieved in the field under real, constantly changing conditions. For this reason, a feedback

mechanism is provided, which involves the user in the optimization of the system, but at the

same time minimizes the labeling effort to be made manually. This is known as active

learning. In the actual application, the system will, at certain intervals, forward images to

humans, and after the annotation these images will be used to train a classifier iteratively.

Evaluation is carried out with a retained test set of images annotated manually.

Monitoring devices will likely also detect species that are unknown for the recognition

system. Therefore, novelty detection is relevant [2, 3]which allows for automatic detection of

animals that do not belong to the set of already known categories or species. In case that a

known object has been incorrectly marked as “new” by the system, the corresponding

feedback from an expert can contribute to improve the system performance. If a previously

unknown species has actually been observed, the expert provides the corresponding label and

this knowledge can be used to feed the classifier with the new type (incremental learning).

Novelty detection can be evaluated by excluding images from a certain subset of classes in the

training set, but including those classes in the test set.

When dealing with an increasing number of different animal species, some species will

be visually more similar to each other, and some will be clearly different. The high visual

similarity of related species is a particular challenge that is commonly addressed by

fine-grained recognition approaches, especially when considering a particular domain like

birds or moths and differentiating between different bird species or moth species.

Furthermore, the visual appearance of related species can differ only slightly while

individuals of the same species can look different, e.g., due to different viewing directions,

poses, actions or background variation and occlusion. Fine-grained recognition treats this

problem often via so-called part-based methods [20, 21]. Objects are modeled via components

that are either explicitly extracted from annotated training data or are determined completely

unsupervised by the system [31, 32]. Evaluation of the fine-grained classification methods are

carried out on an annotated set of recorded data, that is split into training and test set, as well
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as on publicly available datasets for fine-grained recognition in the computer vision

community.

STEREO FOR NEW QUALITY OF MONITORING

We derive depth information by applying stereo analysis. Depth is an important cue to

discriminate observed animals efficiently from the environment (esp. for camouflaged or

non-textured animals). Additionally, depth data allows deriving species abundance by

estimating species detection probability as a function of the detector-species detection

distance (i.e. distance sampling methodology [17]). We will exploit depth data in three ways:

(1) Segmentation to separate animals from background and animals in different distances. (2)

Tracking of detected animals, to utilize their spatial movements for species identification. (3)

Derivation of species abundances. Furthermore, depth information allows discarding

irrelevant background areas and provides cues for the appropriate scale of object

identification procedures.

We collect depth data using our RGB-D camera trap. It consists of an

Intel®RealSense™ D435 active stereo camera (Keselman et al. 2017), a NVIDIA® Jetson

Nano™ Developer Kit for data processing, a passive infrared sensor (PIR) for animal

detection at nighttime and an infrared lamp for nighttime illumination. Tab. 1 summarizes the

two time-dependent modes of operation of the RGB-D camera trap.

Daytime mode Nighttime mode

Motion detection Image-based PIR

Depth Acquisition Active stereo Passive stereo

Image Acquisition Color camera Infrared camera

Illumination Ambient light, active stereo
pattern

Infrared lamp

Tab. 1. Comparison of the daytime and nighttime modes of operation of our RGB-D

camera trap [14].

We combine the depth data with images taken in the visible (daytime) or infrared

(nighttime) spectrum. We map infrared images into the same RGB (red, green, blue)

color-space as the color images. We refer to the combined images as RGB-D images.
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We placed the RGB-D camera trap in a zoo scenario as this allows us to generate new

images of animals at a higher frequency than in a purely natural scenario. The following

figure shows a resulting RGB-D image.

Fig. 6. Intensity images from zoo scenario mapped into an RGB image (left).

Corresponding stereo depth estimations in the form of a so-called heat map, in

which blue indicates more distant and red closer scene components (right).

Animal instance segmentation (overlaid) with D-Mask R-CNN (Haucke and

Steinhage 2021).

We treat the problem of animal detection, fine-grained localization and classification as

an instance segmentation problem. Most existing image understanding methods use solely

color information. To make use of the additional depth information, we extend the Mask

R-CNN [15] deep learning instance segmentation architecture to D-Mask R-CNN [14]. In

Mask R-CNN, color image feature descriptors are determined by a backbone deep

convolutional neural network (CNN) such as ResNet-50 [16], often configured as a feature

pyramid network (FPN, [23]) to operate at different scales. We keep the ResNet-50 FPN color

backbone and extend Mask R-CNN by an additional depth backbone. Both backbones have a

similar architecture and are both initialized with the weights of ResNet-50 originally

pretrained on the ImageNet dataset [30]. Depth images exhibit features similar to color

images, such as strong gradients along object boundaries. We therefore argue that weights

initially optimized for color images are also valuable for detecting such features in depth

images. As the ResNet-50 architecture expects a three-channel RGB input image as input, its

first convolutional layer has to be modified to take a single-channel depth image as an input.

We achieve this by averaging the respective weights over the red, green and blue channels,

which results in an unchanged expected activation in the following convolutional layers.
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Furthermore, we normalize all input channels (red, green, blue, depth) by subtracting the

respective mean and dividing by the respective standard deviation over the whole dataset. We

also introduce a feature fusion module to combine the extracted features from both backbones

using one convolution per FPN scale and reduce the number of channels from3 × 3 2 · 256

to . This allows us to use weights pretrained on the Microsoft COCO dataset [24] for the256

region proposal network (RPN) classifier and mask head. Fig. 4 illustrates the general

architecture of the resulting D-Mask R-CNN architecture.

Fig. 7. The D-Mask R-CNN architecture. Modifications to the standard Mask R-CNN

architecture are highlighted in blue.

We restrict our evaluation of D-Mask R-CNN to instances of deers as it is the most

common species in our RGB-D dataset. We quantify the results of D-Mask R-CNN using the

average precision (AP), AP50, and AP75 metrics as defined by the Microsoft COCO dataset

[24]. AP50 and AP75 denote the average precision at an intersection over union (IoU)

threshold of 50% and 75%, respectively. AP denotes the average precision over IoU

thresholds from 50% to 95% in 5% increments. The outlined metrics are summarized for

bounding box detection and segmentation in Tab. 2.

Bounding Boxes D-Mask R-CNN

AP 59.94%

AP50 94.50%

AP75 63.96%

Segmentation D-Mask R-CNN

AP 37.27%

AP50 94.50%
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AP75 13.25%

Tab. 2. Average precision (AP) scores of the animal detection and instance segmentation

on our camera trap dataset [14].

For 3D Multi-object tracking (MOT) of individuals we are using the RGB-D frames and

intrinsic camera parameters to calculate 3D point clouds of the scene. With 2D mask

projections and depth-expanded optical flow [34] we estimate instance-level scene-flow for

each frame. By combination of frame-level scene-flow predictions and mask projections using

the hungarian matching algorithm we create individual animal tracklets (Fig. 8). In detail,

large parts of this work dealt with preprocessing steps taken to calculate robust and usable

point clouds. For temporal consistency of depth maps we employed a conditional median

filter over the temporal component. We smooth out temporal inconsistency over a

frame-window while constraining the peak-to-peak differences to preserve edges of actual

animal movements. We aligned the point clouds to the world-coordinate system by estimating

the ground plane using a RANSAC fitted plane, which is used to estimate the extrinsic camera

parameters. And as the last processing step, we remove statistical outlier points of individual

animals caused by blurry depth-map edges and hence imprecise projection to

world-coordinates.

Fig. 8. 3D Multi-Object tracking using scene-flow (left). Instance clustering based on 2D

mask projections (right).
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MOTH SPECIES DETERMINATION

The AMMOD Moth Scanner will take high-resolution images of insects that rest on an
illuminated screen. For lighting, an LED lamp is used (Fig. 9), which can emit white light,
ultraviolet light or both mixed [5]. This light is particularly attractive for moths [4].

Fig. 9. LED Lamp attracting moths, © Gunnar Brehm, Phyletisches Museum Jena, 2017.

A camera system images this screen at selected intervals and provides high-resolution
images that are analyzed for the presence of identifiable insects (Fig. 10). A camera with 20
megapixel resolution is used. Images with LED flash are taken at regular, programmable
intervals, typically several minutes. Subsequent analysis breaks down the image into dark
areas that are approximately the area of the moths to be classified. Areas that are too small are
ignored, and areas that are too large are examined to see if they remain for only one period of
time (possibly feeding birds), remain unchanged (e.g., leaf blown on), or continue to be seen
the next night (dirt on the screen). For such images, a message is generated to trigger human
action if necessary (e.g., cleaning the screen).
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Fig. 10. Example of moth image, © Gunnar Brehm, Phyletisches Museum Jena, 2020.

Power consumption is a crucial aspect of the entire system. First, we intend to shut
down the system to save power according to current weather data when moth flight is not
expected. Furthermore, the system will be also turned off if the power consumption between
the other sensors on the AMMOD platform is not sufficient for overall operation and must be
fairly distributed. Finally, the station will turn off the camera system between scheduled
exposures to preserve power, significantly reducing average power consumption. We also
plan to turn off the light source at programmable intervals for a programmable time to allow
moths to leave the screen. In the mentioned scenarios, theoretically, the entire system does not
consume any power. Only corresponding areas are forwarded for further evaluation, if they
were not already contained unchanged in the previous image.

Early tests with mock samples of moth images have shown that currently automated
identification success of species is about 80% (see also [28]). Accuracy is increasing very
rapidly with improved algorithms every year. We will get valuable datasets for a large number
of species that can be identified because of their characteristic shape and color.

The goal of monitoring is not to detect every species, but to describe trends in local
insect populations. It is important to know, for example, if species numbers and/or
abundances drop by, e.g., 20% for all identified species in five years. Additionally, seasonal
activity differences of single species, the correlation with weather conditions, and with
vegetation phenology are crucial for ecological analyses.

In practice, some smaller species or species that do not stop flying will not be identified.
However, the number of species considered is much higher than in current insect monitoring
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schemes (mainly diurnal butterflies, mostly presence-absence data) and the data will be
comparable for all those species that can be detected. The year-round species monitoring is a
novelty that allows for a much more detailed correlation with weather, plant phenology and
the activity of other animals.

The functionality of the moth scanner consists of two parts. First, individual insects

need to be detected (Fig. 11), i.e., a localization of single individuals in the image and

description of their position and extent by circumscribing rectangles (bounding boxes). Then,

for each detection, a prediction is made using a classification model to infer to which species

the detected insect belongs to.

Fig. 11. Example images comparing automatically determined bounding boxes (black)

with manual annotations (blue) for individual moths.

For the localization of moths in an image, we have trained a detector using the

single-shot multibox detector (SSD) approach of [25] and annotated images of 200 different

species. We achieved detection rates of 93.71% and 99.35% average precision (AP) at 75%

and 50% IoU, respectively.

We then trained a standard deep learning classifier (ResNet-50 [16] pre-trained on

ImageNet [30]) on the cropped bounding box images of the detected moths and achieved an

average accuracy of 89.00% on an held-out test set. We also make use of additional images

obtained from Internet image search engines to augment the training dataset. However, since

this leads to noisy annotated images, filtering different types of label noise is required as

proposed by [6]. This can further improve the recognition performance of the system,

especially when the initial training set has been rather small with less than ten sample images

per species.

CONCLUSIONS

In this paper, we have shown our current developments of visual monitoring systems for

AMMOD stations that aim at recording animals in their surroundings using different sensors

with the goal of observing trends and changes in species biodiversity. On the one hand, we

explained the hardware setup for continuously recording images that has been chosen due to

the various constraints and limitations for self-sustaining monitoring stations. On the other
18



hand, we have detailed the individual software components that are required for an

automatized monitoring of animal species.

For long term wildlife classification, we described our lifelong learning approach. In

this approach, the species classifier should be updated in an incremental learning manner with

new data recorded at the stations and labeled by experts in an active learning setup. Further

components of the system denote novelty detection to handle species that are unknown for the

initial classifier since they were not present in the training set and domain adaptation to

account for different imaging sensors and varying data sources.

With D-Mask R-CNN, we presented a novel approach to instance segmentation in

RGB-D imagery which we evaluated using a proof-of-concept RGB-D camera trap setup in a

zoo scenario. D-Mask R-CNN shows AP scores of 59.94% and 37.27% for animal detection

by bounding boxes and segmentation masks, respectively. We plan to deploy stereo camera

traps with larger baselines to improve depth estimation for more distant animals. Additionally

we proposed RGB-D video processing to point clouds, enabling 3D Multi Object Tracking

with improved characteristics over conventional 2D tracking.

Finally, we explained a specific part of the monitoring system called the moth scanner

that is designed to record images of moths during the night. The moth scanner uses a light trap

in the form of an illuminated screen. We also presented initial results for automatized moth

localization (AP75 of 93.71%) and moth species identification (Accuracy of 89.00%) in the

resulting images with a deep learning detector and classifier.

REFERENCES

1. P. Apps and J. W. McNutt: How camera traps work and how to work them. African
Journal of Ecology 56(4). Pages 702-709. 2018.

2. P. Bodesheim, A. Freytag, E. Rodner and J. Denzler: Local Novelty Detection in
Multi-class Recognition Problems. IEEE Winter Conference on Applications of Computer
Vision (WACV). Pages 813-820. 2015.

3. P. Bodesheim, A. Freytag, E. Rodner, M. Kemmler and J. Denzler: Kernel Null Space
Methods for Novelty Detection. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Pages 3374-3381. 2013.

4. G. Brehm, J. Niermann, L. M. Jaimes Nino, D. Enseling, T. Jüstel, J. C. Axmacher, E.
Warrant, and K. Fiedler: Moths are strongly attracted to ultraviolet and blue radiation.
Insect Conservation and Diversity. Pages 188-198. 2021

5. G. Brehm: New LED lamp for the collection of nocturnal Lepidoptera and a spectral
comparison of light-trapping lamps. Nota lepidopterologica 40. Pages 87-108. 2017.

6. J. Böhlke, D. Korsch, P. Bodesheim and J. Denzler: Lightweight Filtering of Noisy Web
Data: Augmenting Fine-grained Datasets with Selected Internet Images. International
Conference on Computer Vision Theory and Applications (VISAPP). Pages 466-477.
2021.

19



7. Buckland, Stephen T., et al. Distance sampling: methods and applications. Vol. 431. New
York, NY, USA: Springer, 2015.

8. Chambert, Thierry, David AW Miller, and James D. Nichols. "Modeling false positive
detections in species occurrence data under different study designs." Ecology 96.2 (2015):
332-339.

9. Chandler, Richard B., and Joseph D. Clark. "Spatially explicit integrated population
models." Methods in Ecology and Evolution 5.12 (2014): 1351-1360.

10. Crunchant, Anne‐Sophie, et al. "Listening and watching: Do camera traps or acoustic
sensors more efficiently detect wild chimpanzees in an open habitat?." Methods in
Ecology and Evolution 11.4 (2020): 542-552.

11. Fiske, Ian, and Richard Chandler. "Unmarked: an R package for fitting hierarchical
models of wildlife occurrence and abundance." Journal of statistical software 43.10
(2011): 1-23.

12. P. Follmann and B. Radig: Detecting Animals in Infrared Images from Camera-Traps.
Pattern Recognition and Image Analysis, Vol. 28, No. 4. Pages 740-746. 2018.

13. D. Haase, E. Rodner, and J. Denzler: Instance-weighted Transfer Learning of Active
Appearance Models. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Pages 1426-1433. 2014.

14. T. Haucke and V. Steinhage: Exploiting Depth Information for Wildlife Monitoring. arXiv
preprint arXiv:2102.05607. 2021.

15. K. He, G. Gkioxari, P. Dollár, and R. Girshick: Mask R-CNN. Proceedings of the IEEE
International Conference on Computer Vision (ICCV). Pages 2961-2969. 2017.

16. K. He, X. Zhang, S. Ren, and J. Sun: Deep residual learning for image recognition. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Pages 770-778. 2016.

17. E. J. Howe, S. T. Buckland, M. L. Després‐Einspenner, and H. S. Kühl: Distance
sampling with camera traps. Methods in Ecology and Evolution, 8(11), Pages 1558-1565.
2017

18. Kalan, Ammie K., et al. "Towards the automated detection and occupancy estimation of
primates using passive acoustic monitoring." Ecological Indicators 54 (2015): 217-226.

19. L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and A. Bhowmik: Intel realsense
stereoscopic depth cameras. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPR-WS). Pages 1-10. 2017.

20. D. Korsch and J. Denzler: In Defense of Active Part Selection for Fine-Grained
Classification. Pattern Recognition and Image Analysis. 28 (4): Pages 658-663. 2018.

21. D. Korsch, P. Bodesheim, and J. Denzler: Classification-Specific Parts for Improving
Fine-Grained Visual Categorization. German Conference on Pattern Recognition (GCPR).
Pages 62-75. 2019.

22. A. Krizhevsky, I. Sutskever, and G. E. Hinton: ImageNet Classification with Deep
Convolutional Neural Networks. Advances in Neural Information Processing Systems
(NIPS). Pages 1097-1105. 2012.

23. T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie: Feature pyramid
networks for object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 2117-2125).

24. T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick: Microsoft COCO: Common Objects in Context. In European conference on
computer vision (ECCV). Pages 740-755. 2014.

25. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg: SSD:
Single shot multibox detector. In European Conference on Computer Vision (ECCV).
Pages 21-37. 2016.

26. B. Radig and P. Follmann: Training a classifier for automatic flash detection in million
images from camera-traps. International Conference on Pattern Recognition and Artificial

20



Intelligence (ICPRAI 2018). Pages  591-593. 2018.
27. E. Rodner and J. Denzler: Learning with Few Examples for Binary and Multiclass

Classification Using Regularization of Randomized Trees. Pattern Recognition Letters. 32
(2): Pages 244-251. 2011.

28. E. Rodner, M. Simon, G. Brehm, S. Pietsch, J. W. Wägele, and J. Denzler: Fine-grained
Recognition Datasets for Biodiversity Analysis. CVPR Workshop on Fine-grained Visual
Classification (CVPR-WS). 2015.

29. Royle, J. Andrew, and James D. Nichols. "Estimating abundance from repeated
presence–absence data or point counts." Ecology 84.3 (2003): Pages 777-790.

30. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, and A.C. Berg: ImageNet Large Scale Visual Recognition
Challenge. International journal of computer vision 115(3). Pages 211-252. 2015.

31. M. Simon and E. Rodner: Neural Activation Constellations: Unsupervised Part Model
Discovery with Convolutional Networks. International Conference on Computer Vision
(ICCV). Pages 1143-1151. 2015.

32. M. Simon, E. Rodner, and J. Denzler: Part Detector Discovery in Deep Convolutional
Neural Networks. Asian Conference on Computer Vision (ACCV). Pages 162-177. 2014.

33. G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona,
and S. Belongie: The iNaturalist Species Classification and Detection Dataset. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Pages 8769-8778. 2018

34. G. Yang and D. Ramanan: Upgrading Optical Flow to 3D Scene Flow Through Optical
Expansion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Pages 1334-1343. 2020

21


