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Abstract

The performance of a machine learning model is char-
acterized by its ability to accurately represent the input-
output relationship and its behavior on unseen data. A
prerequisite for high performance is that causal relation-
ships of features with the model outcome are correctly rep-
resented. This work analyses the causal relationships by
investigating the relevance of features in machine learning
models using conditional independence tests. For this, an
attribution method based on Pearl’s causality framework
is employed. Our presented approach analyzes two data-
driven models designed for the harvest-readiness predic-
tion of cauliflower plants: one base model and one model
where the decision process is adjusted based on local ex-
planations. Additionally, we propose a visualization tech-
nique inspired by Partial Dependence Plots to gain further
insights into the model behavior. The experiments presented
in this paper find that both models learn task-relevant fea-
tures during fine-tuning when compared to the ImageNet
pre-trained weights. However, both models differ in their
feature relevance, specifically in whether they utilize the im-
age recording date. The experiments further show that our
approach is able to reveal that the adjusted model is able
to reduce the trends for the observed biases. Furthermore,
the adjusted model maintains the desired behavior for the
semantically meaningful feature of cauliflower head diam-
eter, predicting higher harvest-readiness scores for higher
feature realizations, which is consistent with existing do-
main knowledge. The proposed investigation approach can
be applied to other domain-specific tasks to aid practition-
ers in evaluating model choices.

1. Introduction

Essential components of digital agriculture are reli-
able and well-generalizing machine learning models. The
performance heavily relies on the model’s behavior and
whether the model relates the input features to the output
targets in a causally correct way. One relevant application in
digital agriculture is the accurate estimation of plant growth
[19], harvest ripeness [2], the amount of harvest [6, 18], or
the date the crop is ready to be harvested [21]. Predicting
the optimal time to harvest not only maximizes crop yield
but also ensures the quality and nutritional value of the pro-
duce. To analyze the model behavior regarding the causal
relationships between specific features and the model out-
come, methods that estimate the relevance of input features
can be employed.

Well-known approaches are attribution methods, which
have had a recent boost in the field of explainable machine
learning [32]. Especially saliency mapping methods, which
determine which areas in images are important for the de-
cision of a machine learning model, are now widely used
in various application areas [4, 16, 17, 36, 39]. However,
since explainable machine learning methods present prop-
erties of a machine learning model such as the learned deci-
sion process between the input and the output in a human-
understandable way, they build on correlation rather than
causation.

This problem is also observed in the analysis done by
Karimi et al. [14]. They investigate the causal relationship
between model decision explanations (E) and model pre-
dictions (Y). More specifically, using Reichenbach’s com-
mon cause principle [29], they study the treatment effect on
E and Y using hyperparameters as interventions. In other
words, how do predictions and explanations vary when hy-
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perparameters change? They find that the hyperparame-
ters have a high direct impact on E without going through
Y, meaning other influences dominate. This observation is
more pronounced for models with higher performance, fur-
ther motivating the need to explain model decisions based
on causal principles instead of misleading correlations.

Following these observations, recent works started in-
vestigating models and generating explanations based on
causal principles [27, 30, 31]. We follow this approach
and investigate causal explanations for a typical applica-
tion from digital agriculture, namely harvest-readiness pre-
diction. To be specific, we utilize the GrowliFlower data
set [15] containing images of cauliflower plants in different
growing stages and two image classification models that can
estimate the corresponding harvest-readiness [16]. For our
model investigation based on causal principles, we use the
methodology by Reimers et al. [31]. Their method builds on
Pearl’s causality framework [26] and describes a structural
causal model that encompasses supervised learning. The
authors employ this structural model to investigate ques-
tions of whether trained classifiers use pre-defined semanti-
cally meaningful features to generate their predictions. To
answer such questions, they apply Reichenbach’s common
cause principle [29] as in [14] and test for the conditional
independence (CI) between features and predictions given
reference annotations.

Additionally to our investigation of cauliflower harvest-
readiness models, we extend the method of [31] by giving
intuition about the model behavior for different feature set-
tings once a feature is indicated as being used. We do this
by combining conditional dependence insights from [31]
together with ideas from partial dependence plots (PDPs)
[8, 10].

The main contributions of this paper are:

• Analysis of cauliflower harvest-readiness models
based on a causal feature attribution method.

• Investigating model behavior on the constrained test
distribution by combining ideas from partial depen-
dence plots (PDPs) [8, 10] with the conditioning on
reference annotations from [31].

• Verification and confirmation that the model adjust-
ments described in [16] reduce bias contained in the
capturing situations of the training data.

2. Feature Analysis Methodology
In this work, we present an investigation approach to an-

alyze and explain the model behavior of models classify-
ing the harvest-readiness of cauliflower plants. To broadly
investigate whether meaningful and informative semantic
features are used, we employ the method proposed in [31].
This method builds on the framework of causality by Pearl

[26]. To be specific, it frames supervised learning as a struc-
tural causal model (SCM) before employing conditional in-
dependence (CI) testing to detect whether a trained classi-
fier with model predictions Ŷ uses semantically meaningful
features X . An existing connection means that the trained
model utilizes information contained in X .

We, follow [31] and condition on the reference anno-
tations Y to alleviate confounding factors. Confounding
factors are a critical issue since they could lead to falsely
detecting a connection between X and Ŷ through the la-
tent process that generates the task-specific data. Hence,
the question of whether the connection from X to Ŷ exists
can be answered by testing for the null hypothesis (H0)

H0 : X ⊥⊥ Ŷ |Y (1)

using a CI test.
If H0 is discarded, then the investigated model utilizes

information contained in the semantically meaningful fea-
ture X . In the following, we detail the selected CI tests
for our analysis. Furthermore, we describe how we ex-
tend the approach described above to gain insight into not
only whether a feature is used but also how model behavior
changes for different feature realizations.

2.1. Conditional Independence Test Selection

The performance of the feature attribution method de-
veloped by Reimers et al. [31] hinges on one crucial de-
cision: the selection of suitable CI tests. Many such tests
exist [22] based on varying characterizations of CI. Previ-
ous work suggests employing multiple different CI testing
methods based on varied but equivalent characterizations of
CI [27, 30]. We specifically follow [27] and select a test
based on mutual information estimation together with two
tests estimating different kernel-based measures.

However, theoretic work by Shah and Peters [37] shows
that there are no CI tests that reliably work for arbitrary joint
distributions, which can result in false positives. Addition-
ally, we cannot make valid assertions for how our variables
of interest X , Ŷ , and Y are jointly distributed. Hence, we
rely on a selection of nonparametric tests.

CMIknn: The first CI test we select is Conditional
Mutual Information by k-nearest neighbor estimators
(CMIknn) [34] utilizing the fact that two variables X and
Y are conditionally independent given a third set of condi-
tioning variables Z if and only if the CMI is zero.

CMIknn introduces two separate hyperparameters: kCMI,
defining the CMI estimator, and kperm, determining the
neighborhood size for the local permutation scheme neces-
sary to keep dependencies between X or Y and Z. We fol-
low [27] and [34] and set kperm to five, and use ten percent
of the available data to estimate CMI, i.e., kCMI = 0.1 · n.



cHSIC: The Hilbert-Schmidt Independence Criterion
(HSIC) [12] and its conditional version (cHSIC) [9] are
kernel-based tests that measure the dependence between
variables. The cHSIC test is performed as a shuffle signifi-
cance test between features X , predictions Ŷ , and reference
annotations Y . With N = 1000 repetitions, we estimate the
null distribution H0 and derive a corresponding p-value. If
the p-value is significantly small (we use p < 0.01), the null
hypothesis H0 is discarded, and conditional dependence is
assumed.

To enable the detection of non-linear relationships, the
observations are mapped into an infinite-dimensional re-
producing kernel Hilbert space (RKHS) using the kernel
trick [24]. The test statistics for HSIC and cHSIC are the
Hilbert Schmidt norms of the cross-covariance and the con-
ditional cross-covariance operator, respectively. These test
statistics depend on the selected kernels. We follow pre-
vious work [9, 27] and use Gaussian radial basis function
(RBF) kernels. The optimal kernel widths σ can differ be-
tween our variables X , Ŷ , and Y . Hence, we use the heuris-
tic by Gretton et al. [11] to heuristically determine fitting
kernel widths.

RCoT: The cHSIC test has known issues, such as the un-
known null distribution of the test statistic and computation-
ally expensive approximations. To address the first issue,
Zhang et al. [40] proposed the Kernel Conditional Indepen-
dence Test (KCIT) as an alternative. KCIT is based on the
CI characterization by Daudin [7] and tests whether corre-
lations between residual functions in an RKHS vanish.

Furthermore, Strobl et al. [38] proposed the Random-
ized Conditional Correlation Test (RCoT), which approx-
imates KCIT in a computationally efficient way using ran-
dom Fourier features [28]. Despite its name, it is a CI test
and recommended over the related RCIT variant [38].

Again we use the heuristic by Gretton et al. [11] to de-
termine the hyperparameters for the necessary RBF kernels.
We generally employ the settings used in [27] but crucially
follow the suggestion in [38] and use a slower shuffle sig-
nificance test instead of estimating the null distribution di-
rectly with the Lindsay-Pilla-Basak method [23]. This is
recommended for sample sizes less than 500, as is the case
in our analysis.

2.2. Approximating Feature Influence

To investigate the influence of specific features on the
model decisions, we utilize insights from partial depen-
dence plots (PDPs) [8, 10], i.e., visualizing observed vari-
ables with respect to changing feature values. Specifically,
we visualize the model behavior for the feature realizations
contained in our test set. We do this by plotting the model
output against the observed feature values. Furthermore, we
follow the key insight from [31] and separate these visual-

izations according to the reference classes, i.e., condition on
Y , to reduce confounding.

For categorical features, we then estimate Gaussian dis-
tributions and plot the means and standard deviation per cat-
egory to gain insights into the general trend of the model
behavior as well as corresponding uncertainties. For con-
tinuous features, we calculate the standard deviation of the
feature values in our test data to estimate the distribution pa-
rameters in a sliding window approach resulting in similar
plots.

The generated visualizations, extend the result for a spe-
cific feature beyond the binary decision of whether the fea-
ture is used or not used and enable investigating how the
model behavior changes for specific feature realizations. In
contrast, the testing methodology from [31] relies on the
temporal order of variables in the SCM to circumvent the
necessity for interventions to generate explanations. Hence,
[31] does not produce counterfactual explanations that tell
us how the model’s predictions change when the feature
value X changes.

However, the intuitions we gain from our visualizations,
are limited. While we can generally get an idea of how the
model behaves for a change in feature values as they appear
in our test set, this is not a causal counterfactual explanation
in the sense of Pearl’s [26] do-calculus. Nevertheless, they
provide an additional way to analyze model behavior under
the constraints posed by a given test set.

3. Cauliflower Harvest-readiness Classification

3.1. Models

We analyze two, previously proposed, models, that de-
termine the harvest-readiness of cauliflower from drone im-
ages [16]. Additionally, we compare our results to a pre-
trained model without task-specific finetuning. The under-
lying architecture is a binary ResNet18 classifier [13] that
predicts Ready and Not Ready for harvest (72.41% ac-
curacy). For further details about the hyperparameters, we
refer to [16]. The authors expand their classification frame-
work by calculating saliency maps of the input images,
which they cluster using Spectral Clustering (SC) [25] to
derive a reliability score for the predictions based on the
cluster assignments. They use these scores to improve the
predictions of their model by swapping class assignments
of unreliable predictions (improves to 88.14% accuracy).

The selected models are as follows: First, the base
ResNet18 model MBase fine-tuned on cauliflower data with-
out prediction adjustments; second, the adjusted model
MAdjusted derived from MBase using the combination of
saliency mapping and SC [16], and finally, MImageNet, i.e., a
ResNet18 with ImageNet [35] pre-trained weights. We se-
lect the last model to ensure that features detected for MBase
and MAdjusted are learned during the fine-tuning step on the



Figure 1: Examples of cauliflower plants in the
GrowliFlowerR dataset [15]. Note the varying amount of
weeds contained in the images.

cauliflower data.

3.2. Cauliflower Data

To train our models, we use images and in-situ measure-
ments, called reference data, contained in the GrowliFlow-
erR dataset [15]. This dataset is composed of image time-
series displaying cauliflower plants over their entire growth.
From the given reference data, we additionally use the
recording date, the plant position, the plant diameter, and
the head diameter.

We select images of the time-points 2021/08/23,
2021/08/25, 2021/08/30, 2021/09/03 about which infor-
mation of the harvest-readiness within the next three days
is known. Example images are shown in Fig. 1. We split
the data into a training, validation, and test set. Standard
augmentations like rotation and flipping are applied to the
training set, resulting in 6244 images used for training, 196
images used for validation, and 194 images used for testing.
All images contain different amounts of weeds.

In the following, we detail the features that we deem in-
teresting for analyzing the behavior of the harvest-readiness
models. To structure it, we categorize the features into
coarse groups: Capturing circumstances, plant location, and
actual semantic content, i.e., cauliflower properties and the
amount of visible weed.

3.2.1 Capturing Circumstances

To analyze the influence of some capturing circumstances,
we first select the recording date of the images as a fea-
ture. Additionally, we try to encapsulate some information
about the exposure and, therefore, the weather during the
capturing process. For this, we additionally analyze the av-
erage image brightness by transforming the image into a
grayscale representation using [3]. We then calculate the
average brightness as the mean of all pixel intensity values.

Fig. 5 in Appendix A.1 shows that the recording date and
the average brightness features are related. The observed
marginal distributions for each recording date clearly dif-
fer in their respective means. In other words, both of these
features are not independent and share some information.

To further investigate this observation, we determine the
mutual information (MI) between the recording date and
the average image brightness. We select the estimator de-

scribed in [33] as it was specifically developed to approx-
imate the MI between two variables, where one is dis-
crete (recording date), and one is continuous (average im-
age brightness). We set k = 3 following the suggestions
in [20, 33]. Using this setup, we estimate the MI to be
≈ 0.763.

A likely explanation is that the weather is a confound-
ing factor for both features. Images that were taken during
sunny weather (see Fig. 3, last row) result in a higher av-
erage brightness. Additionally, the recording date encodes
some information about the weather during the recording
process. Nevertheless, both features also encode disjoint
information. The recording date implicitly encapsulates in-
formation about the growth status of the plants, while the
average brightness encodes more weather information.

3.2.2 Plant Position

The plant position is given by three variables: the plot num-
ber as well as the specific row and column within the plot
(Fig. 2). The plots are distributed along the whole field,
meaning that plants in different plots may show different
stages of development.

(a) (b)

Figure 2: Overview of (a) the distribution of reference plots
in the field from the GrowliFlowerR dataset and (b) the
plant positions, which are indicated by their row (A-E) and
column (1-20). The source of the figures is [15].

3.2.3 Semantic Image Content

One set of features that is especially interesting for domain
experts is semantic image content, e.g., properties of the
individual plants. Here, we first describe the cauliflower
properties annotated in the dataset we used. Afterward, we
detail how we approximate the amount of weed in the im-
ages without relying on reference annotations.

Cauliflower Properties. Essential features that describe
the development status of a plant are the plant diameter and
head diameter. The plant diameter is easy to determine in
the field and in images at earlier stages of development. As



soon as neighboring plants start to overlap, the determina-
tion of the diameter from images is more complex because
the boundaries of different plants have to be defined first.
Depending on the cauliflower cultivar, the plants are more
or less self-covering. Hence, the head is not visible from the
outside, and its own leaves cover it to protect it from abiotic
and biotic stresses like sunlight or animals. The size of the
cauliflower head is the indicator of whether a cauliflower
plant is ready for harvest. However, the plant diameter is
not correlated, i.e., it is impossible to derive the head size
from only the size of the plant.

Weeds Ratio. A visible difference in our data is the
amount of weed growing next to the cauliflower plants. We
are interested in whether the selected cauliflower models
change their decisions based on the amount of visible weed.
Toward this goal, we use simple linear iterative clustering
(SLIC) [1] and a merge algorithm to segment the images in
an unsupervised fashion. Hence, quantifying the relation-
ship between cauliflower plants and weeds in our images.

We detail this approach in Appendix A.2. Fig. 3 displays
some examples of the superpixel categorization for three
images containing varying amounts of weed. The final ex-
tracted feature is the ratio between the amounts of weed and
ground pixels divided by the number of cauliflower pixels.
We term this feature weeds ratio and observe mostly values
between zero and one, i.e., most pixels contain cauliflower.

However, note that our unsupervised approach makes
mistakes, e.g., the first row in Fig. 3. This observed behav-
ior has to do with the illumination and smaller fluctuations
in color. These mistakes decrease the signal-to-noise ra-
tio of the actual semantic feature and our measured feature
values. Nevertheless, a visual examination of our test and
validation images reveals that our approach generally works
well, disregarding these smaller errors. Further, other fea-
tures, especially metadata features, are also proxy features
for some latent properties meaning they contain a similar
amount of noise.

4. Feature Analysis Results
Table 1 summarizes the results for our three selected

models for all eight features of interest described in Sec. 3.2.
The first observation is that MImageNet uses none of our cho-
sen features. This behavior is expected given the different
problem domains. Hence, this result confirms that the de-
tection of features for the other two models is learned during
the tuning step.

No model uses any features encoding the plant location,
which is desirable. Given the close proximity of the plants
in one cauliflower field, a difference in prediction procedure
would likely indicate a bias in our data or training process.

For the content-related features, we observe that both the
MBase and the MAdjusted learn to utilize the head diameter.

This result reaffirms that both models actually learn the im-
portant feature of the task at hand. The head diameter is the
latent feature also used by cauliflower farmers to determine
whether a cauliflower is Ready for harvest. It is worth not-
ing that although the head is not visible in the image (see
Sec. 3.2), the network generates a representation to infer
this important feature. Furthermore, both models disregard
the plant diameter, which is congruent with existing domain
knowledge. Additionally, we observe that both models do
not change their behavior depending on the number of visi-
ble weeds, i.e., the weeds ratio is not used.

Finally, the models differ in behavior for the two fea-
tures related to the capturing circumstances. While both
models use some information contained in the average im-
age brightness, only the base model additionally uses the
recording date. Given the relationship between these fea-
tures (see Appendix A.1), we hypothesize that this behavior
could be a result of the signal-to-noise ratio in the record-
ing date feature. The adjusted model does not significantly
change its predictions for different dates. We analyze this
further in the following Sec. 4.1, where we investigate how
the model behaviors differ for different realizations of the
indicated features in our test set. However, we first state our
expectations.

Expectations for Task-Relevant Features Our first ex-
pectation is later recording dates and higher average bright-
ness lead to higher predictions of harvest-readiness for
MBase while the trend is less significant for MAdjusted. We
hold this expectation because class Ready for harvest and
sunny weather are more likely for later dates but are, of
course, not causally related. Furthermore, we expect a well-
performing model to learn the relationship between the fea-
ture head diameter and the correct class. In other words,
given that both MBase and MAdjusted use this feature signif-
icantly, according to Table1, we expect an upward trend.
Finally, we expect that the predicted scores by MImageNet are
nearly constant for different feature realizations.

4.1. Influence of Task-Relevant Features

To further analyze the features indicated in Table 1, we
visualize the relationship between the model output and the
respective feature realizations for all images in our test set.
As described in Sec. 2.2, to reduce confounding, we follow
the approach described in [31] and condition on the refer-
ence annotations.

Fig. 4a visualizes the recording date against the model
outputs. We observe that predictions of MImageNet are, on av-
erage, almost constant for all recording dates. However, we
see a difference between the base and the adjusted model.
Both display an upwards trend, i.e., later recording dates in-
dicate higher output scores for images of both classes. Nev-
ertheless, looking at the standard deviations, we see that this
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Figure 3: Examples of our unsupervised weeds segmentation into superpixels. The rows contain images with an increasing
amount of weed. Note that the last row contains a sample taken under bright sunshine, leading to increased exposure.

Table 1: Feature relevance of the selected cauliflower models.

Recording Average Position Head Plant Weeds
Model Date Brightness Plot Col Row Diameter Diameter Ratio

MBase ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
MAdjusted ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
MImageNet ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

trend is more pronounced for MBase. Further, Table 1 tells
us that the usage by MAdjusted is not significant.

However, Table 1 indicates utilization of the average
brightness for both MBase and MAdjusted, while the MImageNet
does not change behavior based on this feature. This obser-
vation is reflected in Fig. 4b. Note, there is only a slight up-
ward trend visible for images of the class Ready to harvest.
However, for the other class, we observe a clear change for
an average brightness above an intensity of ∼ 70. Here,
MBase and MAdjusted both predict higher harvest-readiness
scores. In other words, if the unseen images are, on av-
erage, brighter, the models predict ready-to-harvest with
a higher probability. We hypothesize that this could be a
bias in the training data, given the weather conditions dur-
ing the recording. This is supported by the slight upward
trend for the recording date discussed above and the re-
lationship between the recording date and average image
brightness discussed in Appendix A.1. Nevertheless, even
though MAdjusted utilizes information contained in the aver-
age brightness and changes behavior accordingly, our visu-
alization reveals that this change is less pronounced com-
pared to MBase. Hence, the adjustments made to the base
model reduce the biases encoded in the capturing circum-
stances.

Expert knowledge of cauliflower farmers indicates that
the head diameter encodes the information necessary to de-
cide whether cauliflower is ready for harvest. Table 1 al-
ready indicated that both MBase and MAdjusted learn this re-
lationship. Fig. 4c now visualizes the model behavior for
specific realizations of this feature. Both models behave
similarly. For images of the class Ready, Fig. 4c indicates
an increasing uncertainty for larger head diameters. This
observation could be a consequence of little data in this
class with smaller feature values. However, interesting is
the clear upward trend for images of the class Not Ready.
This result indicates that the model implicitly extracts infor-
mation related to the head diameter for unseen images and
predicts higher harvest-readiness scores for larger diame-
ters. A cauliflower harvest-readiness model that learns the
causal relationship between the inputs and desired outputs
should exhibit this behavior.

5. Conclusions

In this work, we analyze three models on a feature level
where two models are specialized to predict the harvest-
readiness of cauliflower plants. Toward this goal, we utilize
a feature attribution method [31] built on the foundation of
Pearl’s causality framework [26]. We extend this method
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(a) Model behavior for different recording dates.
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(b) Model behavior for realizations of average brightness.
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(c) Model behavior for different head diameters.

Figure 4: Model behaviors when presented with our test data. We plot the features indicated as being used in Table 1 against
the predicted harvest-readiness score. We follow [31] and split our visualization between the two classes, Ready to harvest
and Not Ready to harvest.



over the binary indication of whether a feature is used by
visualizing and regressing the model outputs against fea-
ture realizations in our test set. This approach is inspired by
PDPs [8, 10] and lets us investigate the model behavior for
different feature values on the constrained test scenario.

We find that both analyzed cauliflower models learn
task-specific features during the fine-tuning process and im-
prove over a pre-trained ImageNet model on a feature level.
For the base model, three features are indicated as being
used: the recording date, the average image brightness, and
the head diameter. In contrast, the adjusted model only uti-
lizes the latter two to a significant level. Using our proposed
visualization, we investigated this difference and found that
the trends for both the recording date (to a nonsignificant
level) and the average image brightness are reduced for the
adjusted model. We conclude from this observation that the
adjustments made to the base model [16] reduce the cor-
responding bias observed in the base model. Furthermore,
the adjusted model keeps the observed behavior for the se-
mantically meaningful feature: head diameter, by predict-
ing, on average higher scores for higher feature realizations.
This behavior is consistent with existing domain knowl-
edge. Hence, our approach enables users to evaluate and
compare competing models in terms of causal feature usage
leading to increased robustness towards unseen data.

Acknowledgment

This project was partly funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) - 491111487 and (RO 4839/7-1 | STO 1087/2-1) and
in part by the DFG under Germany’s Excellence Strategy –
EXC 2070 – 390732324.

A. Appendix

A.1. Recording Date and Average Brightness

In Sec. 3.2.1, we describe our features of interest.
Amongst these features are the recording date and the aver-
age image brightness. Fig. 5 shows that these two features
are not independent from one another.

A.2. Segmenting Cauliflower and Weeds

As briefly described in Sec. 3.2.3, we combine our de-
tected superpixels into four broader sets of image regions.
However, the first step is to separate the image into super-
pixels. For this, SLIC [1] uses linear clustering in a five-
dimensional space. This space consists of the three color
channels of the CIELAB color space combined with the x
and y pixel coordinates. To ensure color similarity and pixel
proximity with a distance measure that incorporates super-
pixel size. We use the Scikit-Learn [5] implementation and
set the approximate number of segments to 250. For other
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Figure 5: Relationship between recording date and average
image illumination. We can clearly see the influence of the
date on the distribution of the average image brightness.

hyperparameter settings, we follow the standard parameter-
ization in [5]. Fig. 3 contains examples of the generated
superpixels for some of our test images.

The second step now is to use superpixel statistics to cat-
egorize them into larger groups. An initial visual inspec-
tion of our validation data revealed three key components
in our cauliflower images: the cauliflower plants, weeds,
and the ground. Additionally, given the uniformity of our
images, we observed that color information is enough for
a coarse segmentation. The key idea is the turquoise tint of
the cauliflower superpixels in comparison to the green color
of the weeds. Additionally, we sometimes observe brown
color for ground or brown leaves. Hence, we combine su-
perpixels according to their mean colors. We give detailed
instructions as pseudo-code in Algorithm 1. In Algorithm 1,
we set the hyperparameter λ to 0.11 for our test data.

Algorithm 1 An algorithm to combining superpixels.

Require: list of superpixels S, cauliflower tolerance λ
Ensure: cauli ← [], weed ← [], ground ← [], and,

other ← []
1: for s in S do
2: (r, g, b)← mean(s) ▷ Average color in segment
3: if |g − b| < λ then ▷ similar green and blue
4: cauli← cauli+ s
5: else if g > r and g > b then ▷ Green dominant

channel for weed
6: weed← weed+ s
7: else if r > b then ▷ Red dominant over blue
8: ground← ground+ s
9: else ▷ Rejections

10: other ← other + s
11: end if
12: end for
13: return cauli, weed, ground, other
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