
Investigating Neural Network Training on a
Feature Level using Conditional Independence

Niklas Penzel1 , Christian Reimers2 , Paul Bodesheim1 , Joachim Denzler1

1 Computer Vision Group, Friedrich Schiller University Jena,
Ernst-Abbe-Platz 2, 07743 Jena, Germany,

{niklas.penzel,paul.bodesheim,joachim.denzler}@uni-jena.de
2 Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10,

07745 Jena, Germany, creimers@bgc-jena.mpg.de

Abstract. There are still open questions about how the learned rep-
resentations of deep models change during the training process. Un-
derstanding this process could aid in validating the training. Towards
this goal, previous works analyze the training in the mutual information
plane. We use a different approach and base our analysis on a method
built on Reichenbach’s common cause principle. Using this method, we
test whether the model utilizes information contained in human-defined
features. Given such a set of features, we investigate how the relative
feature usage changes throughout the training process. We analyze mul-
tiple networks training on different tasks, including melanoma classifica-
tion as a real-world application. We find that over the training, models
concentrate on features containing information relevant to the task. This
concentration is a form of representation compression. Crucially, we also
find that the selected features can differ between training from-scratch
and finetuning a pre-trained network.

Keywords: Training Analysis, Conditional Independence Tests,
Explainable-AI, Skin Lesion Classification

1 Introduction

Layering many parameterized functions and non-linearities into deep architec-
tures together with gradient descent, i.e., backpropagation, pushes boundaries
in many complex tasks, including classification [13,14,39,40]. However, little is
known about how exactly the representations these models learn change dur-
ing the training process. A better understanding of the model behavior during
training could enable us to intervene when wrong features or biases, i.e., spuri-
ous correlations, are learned. Additionally, it could benefit the development of
new models by identifying and circumventing pitfalls. Hence, understanding the
training or, more specifically, how the network dynamics change during training
is an important issue [2].

Previous work analyzes the training process by estimating the mutual infor-
mation between hidden representations and the input or output layer [37,36].

N. Penzel and C. Reimers and P. Bodesheim and J. Denzler:
Investigating Neural Network Training on a Feature Level using Conditional Independence.

ECCV Workshop on Causality in Vision (ECCV-WS). 2022.
(c) Copyright by Springer. The final publication is be available at https://link.springer.com/chapter/10.1007/978-3-031-25075-0_27.

https://link.springer.com/chapter/10.1007/978-3-031-25075-0_27

2 N. Penzel et al.

Ŷt ⊥⊥ X |Y Decision⇒ ✓
Calculate
Features

Images

Labels

Features

Predictions

Fig. 1: Overview of our test setup based on the method described in [29]. Here an
application for skin lesions is shown. We take a test set, extract human-defined
features X, generate predictions Ŷt, and condition both variables on the ground
truth Y . The model parameters change over the training steps t possibly leading
to a change in predictions Ŷt.

They find that most training is spent on compressing representations to gener-
alize. Shwartz-Ziv and Tishby demonstrated this on smaller toy examples only.
We take first steps towards a similar analysis of models training on real-world
data, in our case, skin lesion classification. Towards this goal, we base our train-
ing analysis on the method described in [29]. This method frames supervised
learning as a structural causal model (SCM) after Pearl [24]. Using this SCM
and Reichenbach’s common cause principle [27], conditional independence tests
reveal whether a human-defined feature is relevant for the network prediction. In
our work, we rely on three different conditional independence tests and base our
analysis on the majority decision to reduce false positives. Figure 1 visualizes
our analysis procedure.

This procedure enables us to analyze the training of black-box models with-
out using gradients or hidden representations but directly on a feature level
instead. Further, we are not limited to simple input features but can base our
analysis on complex features derived as near arbitrary functions of the input.

In this work, we perform an explorative analysis of training three different
model architectures on tasks of corresponding complexity. First, we analyze a
small multilayer perceptron (MLP) [30] on a small toy example. Second, we
investigate a simple convolutional neural network (CNN) [16] learning to dis-
tinguish images containing the digits three and eight from the MNIST database
[17]. Our final application is the analysis of two EfficientNet-B0’s [40] performing
melanoma classification on images from the ISIC-archive [1]. Here we make the
distinction between training from-scratch and finetuning a pre-trained model.

Overall, we find that our models start with some subset of features and,
during training, learn to rely on features containing helpful information for the
corresponding task. This behavior can be interpreted as a form of representation
compression [37]. We find, however, in our melanoma classification experiments
that parameter initialization greatly impacts the final set of selected features. In
other words, the model trained from scratch learns to utilize different features

Investigating Neural Network Training on a Feature Level 3

compared to a model pre-trained on ImageNet [32]. Hence, the parameter initial-
ization needs to be further investigated since observing the loss and performance
metrics may not be enough to assess the training success.

2 Related Work

In [29], Reimers et al. introduce a method based on conditional dependence to
test whether some information contained in a feature is used during the deci-
sion process of a trained classifier. They apply their method to MS-COCO [19],
CUB200 [43] and HAM10000 [42]. They extend their analysis of skin lesion clas-
sifiers in [28] and find that skin lesion classifiers rely on medically relevant data
as well as biases. However, Reimers et al. apply their method to fully trained
classifiers. To the best of our knowledge, we are the first to apply their method to
investigate how the learned representations of a classifier change during training.
In the following, we will discuss work related to this objective.

Shwartz-Ziv and Tishby [37] use the information bottleneck theory [41] to
analyze the training process of a classifier in the information plane. Specifically,
the authors estimate the mutual information between the input and a hidden
layer and the mutual information between the hidden layer and output. They
find that training with SGD splits into two distinct phases: empirical error min-
imization and representation compression. During the first phase, the observed
mutual information between the hidden layer and the output increases, i.e., the
network fits the training data. The mutual information between the input and
hidden layers decreases in the second phase. Hence, the model focuses on essen-
tial features and generalizes. However, they perform their analysis on a small toy
example. By contrast, we employ the method of [29] to, among simpler examples,
analyze the training process of large models performing skin lesion classification.
Hence, we take first steps toward a similar analysis of model training on real-
world data. Furthermore, we directly analyze the training on a feature level.

Saxe et al. [34] theoretically analyze the claims by Shwartz-Ziv and Tishby
[37] and conclude that the observed split in two phases depends on the used
non-linearity, i.e., if the activation function is saturated. They claim that the
distinct phases result from the saturated hyperbolic tangent activations that
Shwartz-Ziv and Tishby use and would not occur in a network utilizing ReLUs.
Additionally, they note that generalization does not necessitate compression.
However, Chelombiev et al. [5] develop a more robust adaptive technique to
estimate mutual information. They use their method to show that a saturated
non-linearity is not required for representation compression. We refer the reader
to [36] for more information about the deep information bottleneck theory.

Another approach to analyzing models is to investigate learned concepts,
e.g., [15,3]. In [3], Bau et al. propose network dissection, a method to evalu-
ate the alignment of visual concepts with the activations of hidden units in a
trained network. They analyze different network architectures and also investi-
gate finetuning between different datasets. They find that over the training, the
number of semantic detectors increases, which indicates that the model learns to

4 N. Penzel et al.

recognize more concepts. Bau et al. [3] introduce Broden, a dataset containing
annotations for concepts, to perform their analysis. Hence, they rely on some
visual interpretation and annotations of what determines a specific concept to
be able to test the alignment with hidden units. In contrast, we define features
as functions of the inputs alleviating the need for semantic interpretation.

3 Methodology

We argue that the representation compression noted by Shwartz-Ziv and Tishby
[37] must also influence the model on a learned feature level. Hence, we propose
to analyze the training process by investigating whether the model utilizes infor-
mation contained in human-defined features. Examples of these features include
medically relevant information, e.g., skin lesion asymmetry or border irregular-
ity. Given a set of such features, we expect the model to learn over the training
process to discard features that contain no useful information and concentrate
on features helpful for solving the task.

The literature describes many methods to test whether a classifier utilizes
specific concepts or features, e.g., [15,3,29]. Most of these methods rely on labeled
concept datasets and have problems handling features that cannot be visualized
in an image, for example, the age of a patient. We choose the method of Reimers
et al. [29] as it can handle features that can be defined by near arbitrary functions
of the input and gives us the most flexibility when selecting suitable features.
It frames supervised learning in a structural causal model [24] and relies on
Reichenbach’s common cause principle [27] to determine whether the predictions
Ŷ of a model depend on information contained in a human-defined feature X.

To test whether some information contained in a featureX is used, we test for
the conditional dependence of X and Ŷ conditioned on the label distribution Y .
In practice, we rely on conditional independence (CI) tests to decide if we have
to discard the null hypothesis of conditional independence. CI is also intrinsically
connected to (conditional) mutual information used by Shwartz-Ziv and Tishby
because the (conditional) mutual information is only larger than zero if and only
if the variables are (conditionally) dependent on one another.

Figure 1 visualizes the testing procedure for a skin lesion classifier. We refer
the reader to [29] for more information and a more detailed introduction.

Note that the method of Reimers et al. [29] cannot detect if a particular
feature is causal for a specific model prediction in the sense that changing the
feature would lead to a direct change in prediction. However, it can determine
if there is any information flow between the feature and the prediction. In other
words, if any information contained in the feature is used during inference. Hence,
this is a step toward a causal analysis of the training process.

Nevertheless, a critical aspect regarding the performance of the method by
Reimers et al. [29] is the choice of CI test. In the following, we will argue why
we employ multiple CI tests and form the majority decision.

Investigating Neural Network Training on a Feature Level 5

3.1 Conditional Independence Tests

Many different non-parametric CI tests are described in the literature [18]. These
tests are based on various statements equivalent to CI and utilize different prop-
erties, e.g., the conditional mutual information [31], or the cross-covariance op-
erator on a reproducing kernel Hilbert space [9]. However, Shah and Peters [35]
prove that there is no uniformly valid non-parametric CI test in the continuous
case. More specifically, they find that for any such CI test, there are distributions
where the test fails, i.e., produces type I errors (false positives).

In our application, we possess little information about the joint distribution
and can therefore not rely on domain knowledge to select suitable tests. Hence,
we follow the idea described in [28] and rely on a majority decision of a set of
CI tests. For our analysis, we chose three tests: Hilbert Schmidt Conditional In-
dependence Criterion (cHSIC) [12,9], Randomized Conditional Correlation Test
(RCoT) [38], and Conditional mutual information by k-nearest neighbor esti-
mator (CMIknn) [31]. We selected these tests as they are based on different
characterizations of CI. Additionally, we investigated less powerful tests, namely
partial correlation and fast conditional independence test [4]. We observed sim-
ilar behavior. However, both tests are not CI tests in a strict sense. Hence,
we omit them from our analysis. In all our experiments we set the significance
threshold to p < 0.01. To further illustrate our selection of CI tests, we briefly
discuss how they work. We also detail our hyperparameter settings for the three
selected tests.

cHSIC [9]: HSIC [12] and the conditional version cHSIC [9] are examples of
kernel based tests. Note that classical measures such as correlation and par-
tial correlation can only detect linear relationships between variables. Instead
of calculating such statistics on the distribution in the original Euclidean space,
kernel-based tests utilize the kernel trick [21] to transform the observations into
an infinite-dimensional reproducing kernel Hilbert space (RKHS). They then
calculate a test statistic in the RKHS, enabling them to capture nonlinear re-
lationships. For HSIC and cHSIC, these test statistics are the Hilbert Schmidt
norm of the cross-covariance and the conditional cross-covariance operator, re-
spectively. For more information and definitions of the empirical estimators for
the test statistics, we refer the reader to [12,9].

Given the cHSIC test statistic, the actual CI test is a shuffle significance
test. First, we calculate the test statistic for the original values of our observed
correspondences between featuresX, predictions Ŷ and labels Y . Then we shuffle
the values of X and Ŷ respectively in separate bins defined by the labels Y
and calculate the statistic again. After repeating this process 1, 000 times, i.e.,
estimating the null distribution, we derive the p-value by comparing the original
statistic with the shuffled results. If the p-value is significantly small, i.e., p <
0.01, then we have to discard the null hypothesis H0 and assume conditional
dependence instead.

6 N. Penzel et al.

The test statistic is dependent on the selected kernel. In this work we follow
Fukumizu et al. [9] and choose a Gaussian radial basis function kernel, i.e.,

kRBF (V1, V2) = e−
1

2σ2 ||V1−V2||2 , (1)

where V1 and V2 are two observations of any of our variables. These kernels can
differ between our variables X, Ŷ and Y depending on the parameter σ. To
determine a suitable σ for each of our variables of interest, we use the heuristic
proposed by Gretton et al. in [11], i.e.,

σV = median{||Vi − Vj ||,∀i ̸= j}, (2)

where V ∈ {X, Ŷ , Y } is a placeholder for our variables of interest.

RCoT [38]: A known problem of cHSIC is that the null distribution of the test
statistic is unknown, and the approximation is computationally expensive [18].
Zhang et al. [46] proposed the kernel conditional independence test (KCIT), an
alternative kernel CI test for which the null distribution of the test statistic is
derived. KCIT is built with the CI characterization of Daudin [8] in mind, i.e.,
any residual function contained in certain L2 spaces of the two test variables
X,Y conditioned on the set of conditioning variables Z are uncorrelated. Zhang
et al. [46] show that this characterization also holds for functions contained in
smaller RKHSs. They use their insight to derive a CI test statistic and the null
distribution. Intuitively: KCIT tests whether the correlation of residual functions
of the variables conditioned a set of conditioning variables vanishes in an RKHS.
Zhang et al. [46] follow Fukumizu et al. [9] and Gretton et al. [11] and use the
Gaussian RBF kernel and σ heuristic discussed aboth.

A problem with KCIT is that the computational complexity scales cubically
with sample size making it hard to use for larger datasets. However, Strobl et al.
[38] propose two approximations of KCIT that perform empirically well and scale
linearly. In this work, we use one of these tests, namely RCoT, to approximate
KCIT. RCoT utilizes the result of Rahimi and Brecht [26] and approximates the
Gaussian RBF kernel used to calculate the test statistic of KCIT with a small
set of random Fourier features.

We follow Strobl et al. [38] and use five random Fourier features for our
test variables X and Ŷ respectively, as well as 25 features for our conditioning
variable Y . To select the three kernel widths, i.e., σX , σŶ and σY , we again use
the heuristic by Gretton et al. [11] (see Equation (2)).

CMIknn [31]: The third test we select for our analysis is CMIknn [31] by
Runge. CMIknn is based on yet another characterization of CI: two variables
X and Y are conditionally independent given a third conditioning variable Z if
and only if the conditional mutual information (CMI) is zero.

Assuming the densities of the variables exist, CMI can be defined using the
Shannon entropy H as follows

CMI(X,Y ;Z) = HXZ +HY Z −HZ +HXY Z . (3)

Investigating Neural Network Training on a Feature Level 7

Runge uses asymptotically unbiased and consistent k-nearest neighbor-based
estimators for the necessary entropies to estimate the CMI.

Runge then combines These estimators with a nearest neighbor-based per-
mutation scheme to approximate the distribution of CMI under H0. A local
permutation scheme is necessary to keep the possible dependence between the
variables X,Y , and the conditioning variable Z intact.

Both k-nearest neighbor instances introduce a separate hyperparameter k
called kCMI and kperm respectively. We follow the settings of Runge [31] for
both parameters. To be specific, we set kperm to five and use ten percent of the
available samples to estimate CMI, i.e., kCMI = 0.1 · n.

4 Selected Classification Tasks and Feature Sets

We investigate three classification tasks of increasing difficulty. This setup en-
ables us to analyze multiple model architectures on tasks of corresponding com-
plexity.

We first propose a simple toy example where we investigate the input fea-
tures. Second, we train a simple convolutional model on the MNIST [17] images
containing either a three or an eight. The corresponding feature set consists of
distances to class prototypes. For the third task, we select the real-world problem
of skin lesion classification. We analyze medically relevant features and known
biases following [28].

Additionally to their complexity, these proposed scenarios differ mainly in
how we construct the corresponding feature set. We need a set of features to be
extensive to gain the most insights. With extensive we mean that the combina-
tion of features in this set possesses all information necessary to solve the task
perfectly, i.e., separate the classes. In other words, an extensive set of features
contains for each input enough information to correctly classify it and possibly
additional information irrelevant to the problem. Given such a set of features
and a model able to learn the task, we expect the model to learn which features
contain helpful information, i.e., the model extracts useful information from the
inputs.

We construct our toy example so that the set of input features meets the
above definition of extensiveness. However, defining an extensive set of features
to analyze a high-dimensional real-world task is at least difficult. Hence, for
our other proposed tasks, we resort to feature sets containing features we deem
helpful to the task and features that should contain little information. This
section briefly introduces the three classification tasks and corresponding feature
sets in more detail.

4.1 Toy Example

In our first scenario, we want to analyze a small toy example where we can
define an extensive set of features. Let the input vectors xi ∈ Rd be uniformly
sampled from U(0, 1)d. We then split these input vectors into two classes: First,

8 N. Penzel et al.

the positive class contains half of the original sampled set. Second, the negative
consists of the vectors not contained in the positive class. Here we randomly
select either the first or the last input dimension and flip the value, i.e., multiply
by −1.

Figure 1 in Appendix A visualizes the resulting distribution for d = 2. In our
experiments, we set d to 100 and train a simple multilayer perceptron (MLP)
architecture.

Our chosen feature set for this toy example consists of the d input values
given by the examples xi. This feature set is extensive in that it contains all
information necessary to solve the task because the class only depends on the
sign of the first and last input dimension. However, it is not the only possible set
that fulfills this requirement Another example would be higher-order polynomial
combinations of the input values.

4.2 MNIST

The second scenario is based on the MNIST database [17]. Here we train a simple
convolutional network (CNN) to differentiate between images containing a three
and an eight. We want to analyze a set of distance features for this simple binary
task. Each feature is defined by the cosine distance to a class prototype. The
cosine distance for two vectors u and v is defined as

1− u · v
||u||2 · ||v||2

. (4)

We construct this set of features for two reasons. First, distances (4) to class
prototypes enable us to analyze the training on arbitrary data.Generating class
prototypes enables us to analyze models without domain experts to derive im-
portant and unimportant features. Second, the distance to task-relevant class
prototypes intuitively contains information helpful in solving the classification
task because neural networks learn to separate the input space discriminatively.

We calculate the cosine distance between each image in our test set and the
ten MNIST class prototypes. These class prototypes can be seen in Figure 2 in
Appendix B. Additionally, we calculate the distance to the ten Fashion-MNIST
(F-MNIST) [44] class prototypes to increase the feature variety. Note that to
ensure the correct evaluation of the cosine distance, we normalize the class pro-
totypes and our test images with the mean of our test set to shift the center of
gravity to the origin.

In total, we have a set of 20 distance features. We expect that over time
the model learns to rely only on the distance of an image to the three and eight
prototypes. However, the model can use other features as we work under a closed
world assumption.

4.3 ISIC-archive

In our third experiment, we analyze models performing a skin lesion classifica-
tion task following [28]. These are often stated in the form of smaller imbalanced

Investigating Neural Network Training on a Feature Level 9

challenge datasets, e.g., [7,6]. To remedy the problem of few examples, we do
not directly train on an available challenge dataset but instead download all
images with a corresponding diagnosis from the ISIC-archive [1]. More details
and visualizations can be found in Appendix D. In our skin lesion experiments,
we simplify the problem further by utilizing only images of the two most com-
mon classes: melanomata and benign nevi. Hence, our models train on a binary
melanoma detection task with over 33K images.

As a set of features for our analysis, we follow the work of Reimers et al. [28].
We investigate twelve features split into three groups: features containing lit-
tle helpful information, features containing medically relevant information, and
features describing known biases in skin lesion classification. Especially interest-
ing are the features contained in the second group based on the dermatological
ABCD-rule [22]. This subset of features contains the medically relevant lesion
asymmetry, border roughness, colors, and dermoscopic structures. The bias fea-
tures include the patients’ age, sex, skin color, and the presence of spurious
colorful patches in the image. The last subset of features consists of the skin
lesion rotation, symmetry regarding a random axis, the id in the ISIC-archive
[1], and the MNIST-class corresponding to the skin lesion segmentation mask.
For more information on these features or the extraction process, we refer the
reader to [28].

For medical tasks, especially skin lesion classification, one often relies on pre-
training on large-scale image datasets to compensate for the lack of problem-
specific data. However, we want to analyze the training process specifically.
Hence, we compare both training from-scratch and using an ImageNet [32] pre-
trained model.

5 Experiments

In this section, we describe our three architectures learning the classification
tasks described in Section 4. After each training setup description, we state our
results and note our first insights. We report the proportional usage of features
with respect to the corresponding feature set and the gain in performance. Re-
garding cHSIC and CMIknn, we randomly sample 1, 000 data samples because
these two tests scale more than linearly with sample size. Hence, making the
number of tests we perform possible.

5.1 MLP Learning a Toy Example

In this first experiment, we train a small MLP on the toy example introduced
in Section 4.1. We sample 10K training and 1,000 test examples from the de-
scribed d = 100 dimensional input distribution. The simple MLP model used in
this task consists of three hidden layers. The first two layers contain 128 nodes,
while the third layer contains 35 nodes. All layers use ReLU [23] activation func-
tions except the output layer, where we employ softmax to generate prediction
probabilities. We train the model using SGD with a learning rate of 0.001 and

10 N. Penzel et al.

0 10 20 30 40 50 60 70
Training Process

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fe
at

ur
e

Us
ag

e

Proportion of Features used
Linear Classifier
cHSIC
RCoT
CMIknn
Majority

0 10 20 30 40 50 60 70
Training Process

0.5

0.6

0.7

0.8

0.9

Sc
or

e

Performance
Linear Classifier
Accuracy

0 10 20 30 40 50 60 70
Training Process

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fe
at

ur
e

Us
ag

e

Proportion of Features used
Linear Classifier
cHSIC
RCoT
CMIknn
Majority

0 10 20 30 40 50 60 70
Training Process

0.5

0.6

0.7

0.8

0.9

Sc
or

e

Performance
Linear Classifier
Accuracy

Fig. 2: Visualization of the proportional feature usage throughout the training
process. The first plot displays the relative amount of used features compared
to a simple linear model. The second plot compares the MLP’s accuracy during
the training to the accuracy of a linear classifier on the same data.

stop the training early after 67 epochs when we stop observing improvements.
Here we estimate the feature usage after every training epoch and report ac-
curacy as the corresponding performance metric. We expect the model to start
with some subset of features and learn over time only to utilize the two essential
dimensions. Additionally, we compare our MLP to a simple linear model on the
same data.

Epoch 0 Epoch 13 Epoch 30 Epoch 45 Epoch 67

Fig. 3: Visualization of the decision boundary of the MLP during the training
on the toy example described in Section 4.1. Black and white points correspond
to examples of classes one and two, respectively. Light blue background color
marks areas where both classes are equally likely, i.e., the decision boundary.
More Information about these plots can be found in Appendix E.

Results: Figure 2 visualizes the relative usage and the improvement in accuracy
throughout the training. We observe that the model starts with 0.26 relative
usage. Remember that only two features contain helpful information.

The model converges to using three features of our set after some epochs. This
moment coincides with the epoch the model reaches the accuracy and feature
usage of the linear model. To investigate this further, we visualize the learned
decision boundary in Figure 3. We see that the model learns an approximately
linear boundary after 13 epochs. At this point, the MLP reaches the linear model
accuracy (0.869) and plateaus for around 20 epochs.

Investigating Neural Network Training on a Feature Level 11

During this plateau, we detect the usage of three features similar to the
linear model. These are the two essential input features containing task-relevant
information and one random feature, likely due to a tilt in the learned boundary.
Figure 3 shows that the decision boundary becomes sharper during these 20
plateau epochs of no accuracy improvement.

After around thirty epochs, the model starts to improve notably on the linear
baseline. We see that the decision boundary starts to bend. Hence, the MLP
focuses more on the two crucial input dimensions. Further, this higher plasticity
of the MLP compared to the linear model, i.e., the better fitting boundary, leads
to the final feature usage of 0.02 after epoch 45. The MLP correctly identifies the
useful inputs and discards useless information leading to improved performance
over the linear baseline.

To summarize, the MLP first converges to a linear boundary regarding per-
formance, relative feature usage, and decision boundary. The decision boundary’s
sharpness increases before the model learns a nonlinear boundary in the next
phase. This convergence is also apparent in the relative feature usage, where we
can only detect the two critical features after 45 epochs.

5.2 CNN Learning MNIST Three versus Eight

The second task is the binary MNIST three versus eight classification task de-
scribed in Section 4.2. To learn the task, we rely on a simple CNN consisting
of three convolutional layers followed by global average pooling and one fully
connected layer. The exact architecture can be found in Table 1 in Appendix C.
We use the same hyperparameter settings as in our first experiment but train for
500 epochs. Again we report the accuracy and test the feature usage after every
training epoch. We expect that the model prefers the MNIST features over the
F-MNIST features and focuses mainly on the three and eight features as they
are most relevant to the task.

Results: Figure 4 visualizes the training process and corresponding feature use
for our pre-defined distance feature set. Here we see a difference between the
three CI tests. CMIknn indicates the usage of nearly all features during the
whole training process. However, we expect this to be a failure case as cHSIC
and RCoT agree on fewer features [35]. Hence, taking the majority vote leads to
fewer false positives.

Regarding relative feature usage, we observe that most features are used
in the first few epochs. The distance to the class three prototype is a notable
exception. This feature is learned later during the training by the model.

Furthermore, coinciding with an increase in test accuracy, we observe a sig-
nificant drop in relative feature usage during the training. After 70 epochs, the
model only gains marginal improvements in test accuracy. However, on a feature
level, we can see that the hidden representation is still changing, and the model
focuses on specific features deemed important to the task. This result is similar
to our observations in the first experiment (Section 5.1). We observe a similar
reduction of feature usage in other binary MNIST tasks.

12 N. Penzel et al.

0 100 200 300 400 500
Training Process

0.0

0.2

0.4

0.6

0.8

1.0

Fe
at

ur
e

Us
ag

e

Proportion of Features used

cHSIC
RCoT
CMIknn
Majority

0 100 200 300 400 500
Training Process

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Performance
Accuracy

Training Process

0
1
2
3
4
5
6
7
8
9

Ankle-boot
Bag

Coat
Dress

Pullover
Sandal

Shirt
Sneaker

T-shirt
Trouser

Fig. 4: Usage of the cosine distance features during the training of the MNIST
three versus eight binary CNN. The plots on the left-hand side visualize the
training, i.e., the relative feature usage (top) and the model accuracy (bottom).
The right plot breaks down the detailed use of the 20 cosine distance features.
Here a brighter color corresponds to higher usage of the feature.

In the end, the model discards over half of the features but uses approximately
equal amounts of MNIST and F-MNIST features. Nevertheless, the detailed
feature usage reveals that the model focuses on three distance features during
the later stages of training: three, eight, and six. Further, we observe much noise
in the feature usage. A possible explanation could be the distribution of the
observed cosine distances. Figure 4 in Appendix F shows that the average cosine
distances of our test set to the class prototypes are very similar for all prototypes
except the three and the eight. Hence, the observed noise in our visualizations
could be due to the small signal-to-noise ratio between the different features.

However, the usage of the six feature is unexpected and needs to be further
investigated. In the first experiment, we saw that the internal representation
can still change even if we do not immediately detect a change in performance.
Hence, a possible explanation could be that we stopped training too early.

5.3 Modern Architecture Learning Melanoma Classification

To apply our analysis to a complicated real-world example, we selected the skin
lesion classification task described in Section 4.3. For our analysis, we choose an
EfficientNet-B0 architecture [40]. Appendix G details our model selection pro-
cess. To additionally improve the balanced accuracy, we use the loss imbalance
weights presented in [45] with α = 1.2. We also employ the learning optimal
sample weights (LOW) mechanism [33] on top of the standard categorical cross-
entropy loss to boost our model performance.

Investigating Neural Network Training on a Feature Level 13

Pre-Trained

0 200 400 600 800 1000
Training Process

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fe
at

ur
e

Us
ag

e

Proportion of Features used

cHSIC
RCoT
CMIknn
Majority

0 200 400 600 800 1000
Training Process

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Sc
or

e

Performance

Balanced_Accuracy

From-Scratch

0 200 400 600 800 1000
Training Process

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e

Us
ag

e

Proportion of Features used

cHSIC
RCoT
CMIknn
Majority

0 200 400 600 800 1000
Training Process

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Sc
or

e

Performance

Pre-Trained
Balanced_Accuracy

Detailed Feature Usage

Training Process

Orientation
Rand.Symmetry

ISIC_id
MNIST

Asymmetry
Border

Color
Derm.Structures

Age
Sex

Skin_Color
Color.Patches

Detailed Feature Usage

Training Process

Orientation
Rand.Symmetry

ISIC_id
MNIST

Asymmetry
Border

Color
Derm.Structures

Age
Sex

Skin_Color
Color.Patches

Fig. 5: The plots on the left-hand side visualize the training process of the Im-
ageNet [32] pre-trained EfficientNet-B0, while the right column visualizes the
equivalent for the model trained from-scratch. The rows are organized in the
following way: First, the relative feature usage, second, the change in balanced
accuracy, and third detailed feature usage. The x-axis in all visualizations cor-
responds to the training process. In the detailed feature usage visualizations, a
brighter color denotes higher feature usage.

We use a batch-wise time resolution for our training process analysis. In other
words, after every training batch3, we evaluate the usage of the twelve features
discussed in Section 4.3. We report the balanced accuracy, i.e., average class-wise
accuracy, as a performance metric in this imbalanced setting.

Results: Figure 5 visualizes the training process and the feature usage. The pre-
trained model already uses some (25%) features after being initialized with the
pre-trained weights. In contrast, the from-scratch trained model starts without
knowing how to extract any information contained in our human-defined feature
set. This observation is not surprising given the high complexity of our features
as well as the random initialization. Some features likely contain information
helpful for classification in general, so it is not surprising that the pre-trained
model already shows some response for the colorful patches feature.

After approximately 200 batches, both models converge to ≈ 0.6 relative fea-
ture usage. Given our limited feature set that is in no way extensive, we see an

3 Time per update step: ≈ 0.24s, time per CI test: ≈ 2s.

14 N. Penzel et al.

increase in feature usage. This observation is contrary to our previous experi-
ments (Section 5.1, Section 5.2), where we analyzed simpler features. However,
our skin lesion feature sets includes more complex high level features that are
very task specific, e.g., dermoscopic structure occurrence. Hence, it is not sur-
prising that the networks need some time to learn representations that capture
information contained these features. This observation is similar to the increase
in concept detectors noted by Bau et al. in [3].

Generally, the pre-trained model training is more stable, and we do not ob-
serve large fluctuations between single batches. It also converges towards a higher
balanced accuracy. This observation is well known and likely due to the better
initialization of the pre-trained model.

Let us now analyze the detailed feature usage. We find that both models use
the ISIC id feature that should contain no information. However, this observation
stems most likely from the limitation the authors noted in [28]. The ISIC id is a
proxy feature for the dataset from which the skin lesion image originated because
the ids are consecutive numbers and we use the complete ISIC-archive.

Further, as we expected, both models learned to utilize the four bias features,
especially during the last training batches, similar to the results in [28]. However,
we find interesting behavior in the subset of medically relevant features. Here
both models heavily rely on the color feature. The pre-trained model seems to
rely more on the border irregularity of the skin lesions. In contrast, the model
trained from-scratch learns to utilize the presence of dermoscopic structures. To
ensure the validity of this statement, we investigated a second initialization of
the model trained from-scratch. The results of the second initialization are very
similar and can be found in Appendix H. To summarize, we find that pre-training
influences which features a model will utilize during inference. Hence, the ini-
tialization seems to impact the learned representations greatly, even on a feature
level. In fact pre-training seems to prevent the model from learning an expert
annotated feature deemed useful for detecting melanomata by dermatologists
[22].

6 Conclusions

We employ the method of Reimers et al. [28] to analyze feature usage of vary-
ing feature sets in our three tasks. This approach enables us to analyze the
training of three different architectures. The models in our first two scenarios
(Section 5.1, Section 5.2) start with more features than are helpful. During the
training process, the models converge to a set of features containing information
useful for the task. This convergence towards a small subset of features can be
interpreted as representation compression after Shwartz-Ziv and Tishby [37].

The advantage of our methodology is that we can apply it to analyze more
complex real-world scenarios. During our analysis of melanoma classification
(Section 5.3), we find that both EfficientNets increase the number of features they
utilize over the training. This observation is likely due to the higher complexity

Investigating Neural Network Training on a Feature Level 15

of the corresponding feature set. Our results are comparable to the increase in
concept detectors over the training process noted by Bau et al. [3].

Additionally, we find that the network initialization has a considerable im-
pact. Even though the model trained from-scratch and the pre-trained model
converge on a similar proportional usage of human-defined features, both differ
in the medically relevant feature subset. This observation opens the question if
we can enforce the usage of certain features and use the knowledge of domain
experts. Another direction for future research is the construction of extensive
feature sets for analysis purposes.

16 N. Penzel et al.

References

1. International skin imaging collaboration, ISIC Archive. https://www.

isic-archive.com/, https://www.isic-archive.com/
2. Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier

probes. arXiv preprint arXiv:1610.01644 (2016)
3. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: Quan-

tifying interpretability of deep visual representations. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 6541–6549 (2017)

4. Chalupka, K., Perona, P., Eberhardt, F.: Fast conditional independence test for
vector variables with large sample sizes. arXiv preprint arXiv:1804.02747 (2018)

5. Chelombiev, I., Houghton, C., O’Donnell, C.: Adaptive estimators show informa-
tion compression in deep neural networks. arXiv preprint arXiv:1902.09037 (2019)

6. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D.,
Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., Kittler, H., Halpern, A.: Skin
Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the
International Skin Imaging Collaboration (ISIC). arXiv:1902.03368 [cs] (Mar 2019),
http://arxiv.org/abs/1902.03368, arXiv: 1902.03368

7. Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W.,
Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward
melanoma detection: A challenge at the 2017 international symposium on biomed-
ical imaging (isbi), hosted by the international skin imaging collaboration (isic).
In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).
pp. 168–172. IEEE (2018)

8. Daudin, J.: Partial association measures and an application to qualitative regres-
sion. Biometrika 67(3), 581–590 (1980)

9. Fukumizu, K., Gretton, A., Sun, X., Schölkopf, B.: Kernel measures of conditional
dependence. Advances in neural information processing systems 20 (2007)

10. Gessert, N., Nielsen, M., Shaikh, M., Werner, R., Schlaefer, A.: Skin lesion classifi-
cation using ensembles of multi-resolution efficientnets with meta data. MethodsX
7, 100864 (2020)

11. Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.: A kernel method
for the two-sample-problem. Advances in neural information processing systems
19 (2006)

12. Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J., et al.:
A kernel statistical test of independence. In: Nips. vol. 20, pp. 585–592. Citeseer
(2007)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4700–4708 (2017)

15. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.: Inter-
pretability beyond feature attribution: Quantitative testing with concept activation
vectors (tcav). In: International conference on machine learning. pp. 2668–2677.
PMLR (2018)

16. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Computation 1(4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

Investigating Neural Network Training on a Feature Level 17

17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

18. Li, C., Fan, X.: On nonparametric conditional independence tests for continuous
variables. Wiley Interdisciplinary Reviews: Computational Statistics 12(3), e1489
(2020)

19. Lin, T.Y., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár,
P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)

20. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Ma-
chine Learning Research 9(86), 2579–2605 (2008), http://jmlr.org/papers/v9/
vandermaaten08a.html

21. Mercer, J.: Functions of positive and negative type and their connection with the
theory of integral equations. Philos. Trans. Roy. Soc. London 209, 415–446 (1909)

22. Nachbar, F., Stolz, W., Merkle, T., Cognetta, A.B., Vogt, T., Landthaler, M.,
Bilek, P., Braun-Falco, O., Plewig, G.: The ABCD rule of dermatoscopy. High
prospective value in the diagnosis of doubtful melanocytic skin lesions. Jour-
nal of the American Academy of Dermatology 30(4), 551–559 (Apr 1994).
https://doi.org/10.1016/s0190-9622(94)70061-3

23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Proceedings of the 27th International Conference on International Con-
ference on Machine Learning. p. 807–814. ICML’10, Omnipress, Madison, WI, USA
(2010)

24. Pearl, J.: Causality. Cambridge university press (2009)
25. Perez, F., Vasconcelos, C., Avila, S., Valle, E.: Data augmentation for skin le-

sion analysis. In: OR 2.0 Context-Aware Operating Theaters, Computer Assisted
Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis,
pp. 303–311. Springer (2018)

26. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: NIPS
(2007)

27. Reichenbach, H.: The direction of time. University of California Press (1956)
28. Reimers, C., Penzel, N., Bodesheim, P., Runge, J., Denzler, J.: Conditional depen-

dence tests reveal the usage of abcd rule features and bias variables in automatic
skin lesion classification. In: CVPR ISIC Skin Image Analysis Workshop (CVPR-
WS). pp. 1810–1819 (June 2021)

29. Reimers, C., Runge, J., Denzler, J.: Determining the relevance of features for
deep neural networks. In: European Conference on Computer Vision. pp. 330–346.
Springer (2020)

30. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. nature 323(6088), 533–536 (1986)

31. Runge, J.: Conditional independence testing based on a nearest-neighbor estima-
tor of conditional mutual information. In: International Conference on Artificial
Intelligence and Statistics. pp. 938–947. PMLR (2018)

32. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3), 211–252 (2015)

33. Santiago, C., Barata, C., Sasdelli, M., Carneiro, G., Nascimento, J.C.: Low: Train-
ing deep neural networks by learning optimal sample weights. Pattern Recognit.
110, 107585 (2021)

34. Saxe, A.M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky, A., Tracey, B.D., Cox,
D.D.: On the information bottleneck theory of deep learning. Journal of Statistical
Mechanics: Theory and Experiment 2019(12), 124020 (2019)

18 N. Penzel et al.

35. Shah, R.D., Peters, J.: The hardness of conditional independence testing and the
generalised covariance measure. The Annals of Statistics 48(3), 1514–1538 (2020)

36. Shwartz-Ziv, R.: Information flow in deep neural networks. arXiv preprint
arXiv:2202.06749 (2022)

37. Shwartz-Ziv, R., Tishby, N.: Opening the black box of deep neural networks via
information. arXiv preprint arXiv:1703.00810 (2017)

38. Strobl, E.V., Zhang, K., Visweswaran, S.: Approximate kernel-based conditional
independence tests for fast non-parametric causal discovery. Journal of Causal
Inference 7(1), 20180017 (2019). https://doi.org/doi:10.1515/jci-2018-0017, https:
//doi.org/10.1515/jci-2018-0017

39. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 1–9 (2015)

40. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. pp. 6105–6114. PMLR
(2019)

41. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. ArXiv
physics/0004057 (2000)

42. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Scientific
data 5(1), 1–9 (2018)

43. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S.J., Perona,
P.: Caltech-ucsd birds 200 (2010)

44. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

45. Yao, P., Shen, S., Xu, M., Liu, P., Zhang, F., Xing, J., Shao, P., Kaffenberger, B.,
Xu, R.X.: Single model deep learning on imbalanced small datasets for skin lesion
classification. IEEE Transactions on Medical Imaging (2021)

46. Zhang, K., Peters, J., Janzing, D., Schölkopf, B.: Kernel-based conditional inde-
pendence test and application in causal discovery. arXiv preprint arXiv:1202.3775
(2012)

Investigating Neural Network Training on a
Feature Level using Conditional Independence

- Appendix -

Niklas Penzel1 , Christian Reimers2 , Paul Bodesheim1 , Joachim Denzler1

1 Computer Vision Group, Friedrich Schiller University Jena,
Ernst-Abbe-Platz 2, 07743 Jena, Germany,

{niklas.penzel,paul.bodesheim,joachim.denzler}@uni-jena.de
2 Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10,

07745 Jena, Germany, creimers@bgc-jena.mpg.de

A Toy example visualization

Figure 1 visualizes a two dimensional version of the toy example described in
Section 4.1.

B MNIST and F-MNIST Feature Set

Figure 2 displays the class prototypes of the MNIST [17] database and the
Fashion-MNIST (F-MNIST) [44] dataset. Additionally, the normalized proto-
types are shown after we center both datasets by subtracting the mean of all
images in our test set. The distances to these normalized prototypes are the
features we use for our analysis in Section 5.2.

C MNIST 3 versus 8 CNN

The architecture we employ in our analysis of the MNIST [17] three versus
eight tasks is a simple CNN architecture listed in Table 1. All layers use ReLU
activation functions except the output layer, where we use softmax to generate
prediction probabilities.

Table 1: The architecture of the simple CNN we use for our MNIST experiments.

Layertype Filter Size Filters Padding

Convolutional 5× 5 8 2× 2
Convolutional 3× 3 16 1× 1
Convolutional 3× 3 16 1× 1
GA Pooling - - -
Fully-Connected 1× 1 128 -

20 N. Penzel et al.

D ISIC-archive Details

In this section, we list some additional details about the ISIC-archive3. The
ISIC-archive contains 69, 445 skin lesion images of various datasets and research
groups. For 41, 941 of these images, diagnosis data is available. Table 2 list
different diagnoses counts. A t-SNE [20] visualization of the ISIC-archive can be
found in Figure 3. In this work, we focus our analysis on the over 33K melanoma
and nevus images. We construct a binary classification task between these two
classes and split the dataset into training, validation, and test data using the
ratios 0.7, 0.1, and 0.2, respectively.

Table 2: The number of images for varying diagnoses in the ISIC-archive.

Diagnosis Count

scar 1
cafe-au-lait macule 1
angiofibroma or fibrous papule 1
other 10
atypical melanocytic proliferation 14
angioma 15
lentigo simplex 27
lichenoid keratosis 32
lentigo NOS 111
dermatofibroma 246
vascular lesion 253
solar lentigo 270
squamous cell carcinoma 656
actinic keratosis 869
pigmented benign keratosis 1,099
seborrheic keratosis 1,464
basal cell carcinoma 3,396
melanoma 5,598
nevus 27,878

E Decision Boundary Visualization

Figure 3 displays the progression of the learned decision boundary by the MLP.
We utilize PCA to reduce the dimension of our 100-dimensional toy example
down to two dimensions to make a visualization possible. This approach is possi-
ble as we know that the two axes with the highest variance perfectly encapsulate
our data because the latent distribution consists of three noise cubes (compare
Figure 1 in Appendix A).

3 https://www.isic-archive.com/

Investigating Neural Network Training on a Feature Level 21

We utilize our knowledge of the latent distribution to generate the decision
boundary visualizations displayed in Figure 3. We sample 200K points of the
problem distribution and generate predictions with the current MLP. Let l+
and l− be the activations of the logits corresponding to the two classes. Then we
calculate for all predictions the squared logit difference as (l+− l−)2. Afterward,
we use the PCA projection matrix learned on our original test data to project
these 200K points into our two-dimensional visualization space. The squared
logit difference with the projected points can be interpreted as a height map,
where zero encodes the decision boundary of the MLP. We visualize this height
map using linear triangulation as the background color in Figure 3.

F Average Cosine Distance

Figure 4 displays the average cosine distances of the MNIST three versus eight
test images to the 20 class prototypes. We can see two outliers, the three and the
eight prototypes, which are, on average closest to the respective class and farthest
to the opposite class. However, the other images show similar distances and
cannot be easily distinguished. Further, we do not observe a notable difference
in the average distance between the MNIST and the F-MNIST prototypes. This
fact could be a possible explanation for the observed noise in Section 5.2.

G Skin Lesion Classification Model Selection

To select a suitable model for skin lesion classification, we investigate two dif-
ferent architectures: ResNet50 [13] and EfficientNet-B0 [40]. We chose a ResNet
model because it is the best performing architecture for melanoma classification
in [25], out of ResNet [13], InceptionNet-v4 [39], and DenseNet [14]. Similarly,
we selected an EfficientNet model following [10]. Gessert et al. [10] build large
ensembles out of various model architectures and find that EfficientNets consis-
tently perform well for skin lesion classification.

To select an architecture for our analysis, we trained the two described models
for 100 epochs on our described melanoma versus nevus task.

Table 3: Accuracy and balanced accuracy for two widely used architectures. We
compare from-scratch training and finetuning a pre-trained model. Additionally,
we report the standard deviation.

ResNet50 [13] EfficientNet-B0 [40]

Paradigm ACC bACC ACC bACC

Pre-Trained 0.886 ± 0.007 0.736 ± 0.031 0.924 ± 0.003 0.829 ± 0.013
From-Scratch 0.883 ± 0.003 0.713 ± 0.015 0.905 ± 0.009 0.785 ± 0.024

22 N. Penzel et al.

The results can be found in Table 3. We find that the EfficientNet archi-
tecture significantly outperforms the ResNet for both from-scratch training and
finetuning a pre-trained model. Additionally, the EfficientNet is faster to train
due to having less than half the number of parameters. Hence, we select an
EfficientNet-B0 for our training analysis.

H Second From-Scratch Training Initialization

Figure 5 displays the training visualizations for a second randomly initialized
EfficientNet-B0 trained from-scratch. The learned features as well as the change
in proportional usage is remarkably similar compared to the right coloumn in
Figure 5. Both initializations lead to very different feature usage when compared
to the pre-trained model. Additionally, here the model also learns to incorporate
the lesion orientation, which could hint at an additional dataset bias. Hence,
further investigation is necessary.

Investigating Neural Network Training on a Feature Level 23

Fig. 1: Visualization of our proposed toy example. Here the problem dimension
d is 2. Note that this dimension implies that both input features are essential to
solve the problem.

0 1 2 3 4

5 6 7 8 9

T-shirt_top Trouser Pullover Dress Coat

Sandal Shirt Sneaker Bag Ankle-boot

0 1 2 3 4

5 6 7 8 9

T-shirt_top Trouser Pullover Dress Coat

Sandal Shirt Sneaker Bag Ankle-boot

Fig. 2: MNIST [17] and F-MNIST [44] class prototypes. The right-hand proto-
types are normalized by the test images of the MNIST database displaying either
a three or an eight. This step is necessary to ensure that cosine distance can be
calculated correctly.

24 N. Penzel et al.

Fig. 3: A t-SNE [20] visualization of all images in the ISIC-archive that have
available diagnosis data. The majority of images are either melanomata or nevi.

Investigating Neural Network Training on a Feature Level 25

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Average Cosine Distance

0
1
2
3
4
5
6
7
8
9

Ankle-boot
Bag

Coat
Dress

Pullover
Sandal

Shirt
Sneaker

T-shirt
Trouser

3
8

Fig. 4: Average cosine distance of the MNIST three versus eight test images to
the twelve class prototypes. The test images are split into two groups according
to the corresponding class label.

26 N. Penzel et al.

From-Scratch

0 200 400 600 800 1000
Training Process

0.0

0.2

0.4

0.6

0.8
Fe

at
ur

e
Us

ag
e

Proportion of Features used

cHSIC
RCoT
CMIknn
Majority

0 200 400 600 800 1000
Training Process

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Sc
or

e

Performance

Pre-Trained
Balanced_Accuracy

Detailed Feature Usage

Training Process

Orientation
Rand.Symmetry

ISIC_id
MNIST

Asymmetry
Border

Color
Derm.Structures

Age
Sex

Skin_Color
Color.Patches

Fig. 5: Visualization of a second random initialization of the EfficientNet-B0
trained from-scratch. First, the relative feature usage is shown. Second, the
change in balanced accuracy, and third detailed feature usage is visualized. The
x-axis in all visualizations corresponds to the training process. In the detailed
feature usage visualizations, a brighter color denotes higher feature usage.

