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Human nonverbal emotional communication in dyadic dialogs is a process of mutual influence and adaptation.

Identifying the direction of influence, or cause-effect relation between participants, is a challenging task due
to two main obstacles. First, distinct emotions might not be clearly visible. Second, participants cause-
effect relation is transient and variant over time. In this paper, we address these difficulties by using facial
expressions that can be present even when strong distinct facial emotions are not visible. We also propose to
apply a relevant interval selection approach prior to causal inference to identify those transient intervals where
adaptation process occurs. To identify the direction of influence, we apply the concept of Granger causality to
the time series of facial expressions on the set of relevant intervals. We tested our approach on synthetic data
and then applied it to newly, experimentally obtained data. Here, we were able to show that a more sensitive
facial expression detection algorithm and a relevant interval detection approach is most promising to reveal
the cause-effect pattern for dyadic communication in various instructed interaction conditions.

1 INTRODUCTION

Human nonverbal communication in effective dialogs
is mutual, and thus, it should be a process of continual
two-sided adaptation and mutual influence. However,
some humans behave consistently over time either by
resisting adaptation and influence on purpose, or by
maintaining their own style because of absent social
communication skills (Burgoon et al., 2016; Schnei-
der et al., 2017). If adaptation occurs, it can be tran-
sient, subtle, multifold, and variant over time, which
makes the quantitative analysis of the adaption pro-
cess a challenging task. A possible approach to deal
with this problem would be to present the nonverbal
adaptation process in a form of time series of features
and then perform a cause-effect analysis on the ob-
tained time series. Among the many known causality
inference methods, Granger causality (GC) (Granger,
1980) is the most widely used one. GC states that
causes both precede and help predict their effects. It
has been applied in a variety of scientific fields, such
as economics (Granger et al., 2000), climate informat-
ics (Zhang et al., 2011), and neuroscience (Ding et al.,
2006). With respect to nonverbal human behavior,

GC was for example used to model dominance effects
in social interactions (Kalimeri et al., 2011), focus-
ing on vocal and kinesic cues. Novel developments in
computer vision and social signal processing yielded
accurate, open-source, real-time toolboxes to easily
extract facial expressions from images and videos.
These easily accessible visual cues facilitate video
and image analysis, not only in terms of segmenta-
tion and classification but can also be used to identify
social cause-effect relationships. Surprisingly, the ca-
pabilities of computer vision and social signal pro-
cessing have rarely been combined. In our work, we
will exploit computer vision capabilities for a quan-
titative verification of hypotheses on cause-effect re-
lations in real data by investigating time series of fa-
cial expressions via facial muscle activation or Ac-
tion Units (AUs) (Ekman, 2002). The real data was
obtained from an experimental setup in which dyadic
dialogs between participants were recorded with one
participant being instructed to behave in a particular
way.

The novel contributions of our study can be sum-
marized as follows.

1. Exploiting computer vision methods, we provide



a comprehensive concept for analysing the direc-
tion of influence in dyadic dialogs starting with
raw video material.

2. Interaction implies mutual influence and causal-
ity. Causal inference concepts, such as GC, have
been rarely used to identify the direction of influ-
ence in nonverbal emotional communication. To
the best of our knowledge no other work has used
a Granger causality model to identify the direction
of influence regarding facial expressions in dyadic
dialogs.

3. Facial AUs go along with emotional experience.
However, in constructed situations distinct strong
emotions might not be visible at all and a single
Action Unit (AU) does not contain enough infor-
mation for inferring emotions. We present ap-
plicable features when strong distinct facial emo-
tions are seldom visible. By using AUs we derive
facial expressions in upper and lower face regions
from the six basic emotions (Ekman, 1992).

4. We propose a method for the selection of the rel-
evant time intervals where GC should be applied,
and show based on synthetic as well as real data,
the superiority of the proposed method in detect-
ing cause-effect relations when compared to ap-
plying GC on the full time series.

2 RELATED WORK

The topic of finding causal structures in nonverbal
communication data is addressed by Kalimeri et al.
(Kalimeri et al., 2012). In their paper, they used GC
for modeling the effects that dominant people might
induce on the nonverbal behavior (speech energy and
body motion) of other people. Besides audio cues,
motion vectors and residual coding bit rate features
from skin colored regions were extracted. In two sys-
tems, one for body movement and another one for
speaking activity, with four time series each, a small
GC based causal network was used to identify the par-
ticipants with high or low causal influence. Unlike
our approach, the authors did not use facial expres-
sions and do not identify relevant intervals in a previ-
ous step, but use the entire time series instead.

A popular approach for the latter strategy is to
find similar segments, for example emotions, arousal
or (dis)agreement, in videos. The literature holds
several approaches that pose complex classification
tasks. Kaliouby and Robinson (El Kaliouby and
Robinson, 2005) provided the first classification sys-
tem for agreement and disagreement as well as other
mental states based on nonverbal cues only. They

used head motion and facial action units together
with a dynamic Bayesian Network for classification.
Also, a survey on cues, databases, and tools related
to the detection of spontaneous agreement and dis-
agreement was done by Bousmalis et al. (Bousmalis
et al., 2013). Despite their ingenious methods, these
approaches do not investigate cause-effect relations in
the social interaction situation. Sheerman-Chase et al.
(Sheerman-Chase et al., 2009) used visual cues to dis-
tinguish between states such as thinking, understand-
ing, agreeing, and questioning to recognize agree-
ment. Matsuyama et al. (Matsuyama et al., 2016)
developed a socially-aware robot assistant responding
to visual and vocal cues. For visual features, the robot
extracted facial cues (based on OpenFace (Baltrusaitis
et al.,, 2018)) such as landmarks, head pose, gaze,
and facial action units. Conversational strategies that
build, maintain, or destroy budding relationships were
classified. Moreover, rapport was estimated by tem-
poral association rule learning. The researchers’ ap-
proach investigates building a social relationship be-
tween a human and a robot; however this study does
not deal with a time variant direction of cause-effect
relation.

3 METHODOLOGY

3.1 Experimental Setup

camera 2 camera 1

receiver sender

Figure 1: Experimental setup with camera positions show-
ing sender and receiver sitting opposite to each other.

We created an experimental setup (Figure 1) in which
two participants sat opposite to each other while talk-
ing about their personal weaknesses for about four
minutes at a time. In total, they were asked to do this
three times, either in circumstances of a respectful,
contemptuous, or objective situation. One participant
was in the assigned role of a Receiver (R), the other
in the assigned role of the Sender (S). As only S had
the active experimental interaction attitude task (i.e.,
to behave either respectfully, objectively, or contemp-
tuously), we expected S to influence R in relevant fa-
cial expressions. In all three experimental conditions
each participant kept their initially assigned role of



acting as a sender or receiver and the experimental
conditions were conducted in a counterbalanced or-
der. Further, R was asked to start the conversation
with a personal weakness and both participants were
asked to talk about at least one weakness per condi-
tion. In order to avoid flirtatious situations, that may
overwrite the instructed condition, interaction part-
ners were always from the same sex. In total, 13
pairs of participants (4 males; 9 females) were anal-
ysed in terms of their nonverbal behavior. All par-
ticipants gave written informed consent. The study
was conducted in accordance with the Declaration of
Helsinki and approved by the Ethics Committee of the
Friedrich Schiller University of Jena.

To capture nonverbal facial behavior, we posi-
tioned two frontal perspective cameras (Figure 1),
recording at 25 frames per second. Except for the ex-
perimental condition label no other information (e.g.,
expression annotation per frame) were available for
image analysis. The entire dataset consists of 13 pairs,
three conditions each pair and about 4 minutes of
video per condition, thus about 300 minutes of video
material or 470.000 images.

The psychological research question was, whether
and how S and R influence each other under the differ-
ent attitude situations. We expect for a counting mea-
sure more harmony expressions (i.e., happiness) when
both interaction partners are confronted with medium
to high levels of respect (i.e., quality-based respectful
and objective/neutral vs. contemptuous). We expect
the strongest activation of negative expressions (i.e.,
anger, contempt, fear, and sadness) in the disrespect-
ful condition (i.e., contemptuous vs. quality-based re-
spectful and objective/neutral). When it comes to the
factor ’type of interaction partner’, we expect, for all
non-verbal emotional facial actions, in terms of tem-
poral causality the active partner (i.e., the sender) to
cause the effects and ’infect’ the less active partner
(i.e., the receiver). In terms of the different facial ex-
pressions, we expect the strongest causality from S to
R for positive expressions (i.e., happiness), followed
by negative expressions (i.e., anger, contempt, fear,
sadness).

3.2 Facial Expression Extraction

According to Ekman and Rosenberg (Ekman and
Rosenberg, 1997), facial expressions are the most im-
portant nonverbal signal when it comes to human in-
teraction. The Facial Action Coding System (FACS)
was developed by Ekman and Friesen (Ekman and
Friesen, 1978; Ekman, 2002). It specifies facial AUs,
based on facial muscle activation. Examples of AUs
are the inner brow raiser, the nose wrinkler, or the lip

corner puller. Any facial expression is a combination
of facial muscles being activated, and thus, can be de-
scribed by a combination of AUs. Hence, the six basic
emotions (anger, fear, sadness, disgust, surprise, and
happiness) can also be represented via AUs. Langner
(Langner et al., 2010) show that when for example
AU 6 (cheek raiser), 12 (lip corner puller), and 25
(lips part) are activated happiness is visible.

In general, emotions are visual nonverbal commu-
nication cues transferable to time series. Regarding
our real experimental data, this approach is reason-
able for positive emotions like happiness, which is
frequently visible throughout the dyadic interactions.
Yet, it is not applicable for negative associated emo-
tions such as anger, disgust, fear, or sadness, as these
emotions were only slightly visible in the dyadic in-
teractions which may be due to the constructed exper-
imental situation (Table 1).

Table 1: Percentage of frames where emotions were visible
throughout experiment.

Emotion | Detection (in %)
Happiness 12.25
Surprise 0.94
Anger 0.13
Disgust 3.72
Fear 0.05
Sadness 1.40

Table 2: Expressions and corresponding AUs.

Expression Active Action Units
Happiness 6,12,25
Surprise upper 1,2,5
Surprise lower 26
Disgust lower 9,10, 25
Fear upper 1,2,4,5
Fear lower 20, 25
Sadness upper 1,4
Sadness lower 15,17
Anger upper 4,5,7
* Anger lower 17, 23,24

*As AU24 is not detected by OpenFace we excluded anger
lower from further analysis.

The approach of using stand-alone AUs has two
disadvantages. First, we cannot deduce emotional ex-
pressions from single AUs. Second, lower AUs are
frequently activated while talking, and thus, are less
suitable for analysis when it comes to emotional rela-
tions in dyadic interactions.

Wegrzyn et al. (Wegrzyn et al., 2017) studied the
relevance of facial areas for emotion classification and
found differences in the importance of the eye and
mouth regions. Facial AUs can be divided into up-



per and lower AUs (Cohn et al., 2007). Upper AUs
belong to the upper half of the face and cover the eye
region, whereas AUs in the lower face half cover the
mouth region. Hence, we decided to split emotions
into upper and lower emotions, according to the af-
filiation of AUs to upper and lower face regions. For
example, instead of using sadness as a combination
of AU, AU4, AU1S5 and AU17 we used sadness up-
per (AU1 and AU4) and sadness lower (AU15 and
AU17). We only kept happiness as a combination of
both, upper and lower AUs, as it was very frequently
detected. All other emotions were split according to
their AUs belonging to upper or lower facial half (Ta-
ble 2). This procedure ensured, that also subtle facial
expressions were detectable and identified as an emo-
tion.

Table 3: Percentage of emotions in upper and lower face
parts visible throughout experiment.

Emotion Detection (in %)
Anger lower 9.42
Anger upper 1.42
Disgust lower 3.72

Fear lower 4.35
Fear upper 1.12
Happy lower 16.12
Happy upper 26.55
Sadness lower 8.74
Sadness upper 7.25
Surprise lower 26.41
Surprise upper 2.22

In Table 3 the detection percentage of upper and
lower expressions is illustrated. After splitting, anger
lower, sadness lower, sadness upper, and surprise
lower emotions were detected in over 7 % of the video
material on average. Figure 2 illustrates which upper
and lower expressions are detected based on the AU
activation for happiness, sadness upper, and sadness
lower.

For feature extraction, we used OpenFace (Baltru-
saitis et al., 2018; Baltrusaitis et al., 2015) which is a
state of the art, open-source tool for landmark detec-
tion; it estimates AUs based on landmark positions.
OpenFace is capable of extracting 17 different AUs
1,2,4,5,6,7,9, 10, 12, 14, 15, 17, 20, 23, 25, 26,
45) with an intensity scaled from O to 5. Figure 3 il-
lustrates the detection of landmarks and AUs for an
example image.

3.3 Granger Causality

Letx, = (x1,x2...x;); and y; = (y1,%2...y,); be real-
valued z-dimensional (column) vectors of AUs at time

Figure 2: From left to right participant with AU 6 and 12
(happiness), AU 15 and 17 (sadness lower), and AU 1 and
4 (sadness upper) being activated.

Activation

4
9-
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Action Unit
Figure 3: Facial expression with landmarks and AUs de-
tected by OpenFace. Strong activation of AU4 (brow low-
erer), 7 (lid tightener), 14 (dimpler), and 17 (chin raiser)

pointf, t =1...T, and let X, = %Zl?:l(x,-), and y; =
%Zle (yi): be the average of x, and y, at time point
t. This results in two time series X; = X1,...Xr and
Y; = 1,...9r consisting of averaged values of AUs.
The prediction of values of X and Y at time 7 is based
on previous values from X and Yy, k < ¢

m m

X,:Zant,j+ijYt,j+e, (1)
j=1 j=1
m m

Y=Y X j+ Y diY j+9 (2)
j=1 j=1

with & and 9, being two independent noise pro-
cesses. For each expression of each participant in
each condition we estimated the best model order m
using the Bayesian Information Criterion (BIC). For
statistical significance, an F-Test with a level of sig-
nificance of p = 0.05 was used. When testing for GC
three different cases regarding the direction of influ-
ence can occur (Schulze, 2004):

1. Ifap=0fork=1...mand 3by #0for 1 <k <m
then Y Granger causes X.

2. Ifdy=0fork=1...mand ¢y ZO0for 1 <k <m
then X Granger causes Y.



3. If for both by # 0 for 1 < k < m and Jcy # O for
1 <k < m holds a bidirectional (feedback) rela-
tion exists.

If none of the above cases holds, X and Y are not
Granger causing each other. In our real data, we ex-
pected that, if present, pairs that do not Granger cause
each other are rare.

3.4 Relevant Interval Selection

Considering the experimental setup, we had to ex-
pect multiple temporal scenes, further referred to as
subintervals, in which the participants influenced each
other. The time spans where causality is visible,
might range from half a second to half a minute, oc-
cur several times, and can be interrupted by irrelevant
scenes (e.g., one participant talking while the other
participant is listening) that differ in the length of
time. As outlined above, the direction of influence
in a subinterval can either be bidirectional, or unidi-
rectional driven by either S or R. This implies that
three unwanted effects can occur, if the full time span
is analysed: first, temporal relations are not found at
all; second, bidirectional relations mask temporal uni-
directional relations and; third, an unidirectional rela-
tion from X to Y masks temporal bidirectional influ-
ence or unidirectional influence from Y to X. Li et al.
(Li et al., 2017) give an example where temporal GC
is not being detected, when the full time span is used
for model fitting.

Our central idea is to apply GC only to time se-
ries obtained by concatenating highly coherent (e.g.,
in terms of Pearson correlation) subintervals of raw
time series. Instead of using a brute force algorithm,
we suggest using a bottom-up approach for finding
the longest set of maximal, non-overlapping, corre-
lated intervals in time series as proposed by Atluri et
al. (Atluri et al., 2014). The authors applied their ap-
proach to fMRI data where they achieved good results
for clustering coherent working brain regions.

Let X, and Y; be two time series of length N. An
interval is called correlated interval for a threshold 3,
when all its subintervals up to a lower interval length
o are correlated as well. An interval [, ;) from a to
b is called maximal, when /(, ;) is a correlated inter-
val, but I, ;) and I, 1) are not. And two inter-
vals I, ) and /(. 4) are called non-overlapping, when
Liap)yN1cq) = 0. From all intervals fulfilling these
conditions the longest set (total length of intervals) is
computed.

In a multivariate case (e.g., multiple AUs defin-
ing an expression), we propose to compute the longest
set for each pair of corresponding variables and then
use the intersection of intervals over all variables of

the system, as selected relevant intervals. For fur-
ther analysis, for each variable of the system the se-
lected relevant intervals can be concatenated, result-
ing in multiple time series each composed of relevant
information only. In the following we refer to the set
of selected intervals between two time series X and Y
as AWX Y-

3.5 Modeling Cause-Effect Relations

The two major challenges in the analysis of the cause-
effect relations in dyadic dialogs, that make the appli-
cation of conventional methods difficult were:

1. Due to the constructed situations, strong distinct
emotions, computed by using traditional AU com-
binations, were rarely visible.

2. Time variant and situation-dependent communi-
cation, resulting in a high variety and volatility of
time spans in which nonverbal cause-effect behav-
ior between interacting partners is visible.

To tackle these difficulties, we use the combination
of specific facial expressions and the relevant interval
selection approch. The final selection of relevant in-
tervals and the following analysis of causality for two
systems of facial action units X;...Xxr and y;...yr
consists of the following steps:

1. Calculate selected relevant intervals
AWy 1 AWy ys, s o AWy, pairwise  between
corresponding system parameters.

2. Calculate the intersection AWyy of all sets of se-
lected intervals AW, ., NAWy, y, M- NAWy,y...

X2t Y2t

3. Concatenate selected intervals for each variable of
x; and y;

4. Compute GC on concatenation.

Before applying the relevant interval selection ap-
proach to our nonverbal communication data, we
identified upper and lower facial expressions that
changed significantly between the three experimental
conditions. For that we calculated each participant’s
average face, which is the average AU activation over
the three conditions and used it as a lower threshold
for the activation of an expression. That means, that
we considered an expression as visible, when all of its
associated AUs were greater than 0.5 standard devia-
tions of the conspecific AUs in the average face. The
number of activations per expression was counted per
person and experimental condition, and normalized
by video length and maximum count of the expres-
sion of each person. A Wilcoxon signed-rank test
revealed, that the participants showed significantly
more happiness in the respectful condition than in



the contempt condition (p = .034, s = 92.0). Fur-
ther, we found both, more sadness lower (p = .034,
s =92.0 and p = .020, s = 84.0) and sadness up-
per (p =.023,5s = 86.0 and p = .023, s = 86.0) ex-
pressions in the contempt and the respectful condi-
tion compared to the objective condition, when using
a Benjamini-Hochberg p-value correction (Benjamini
and Hochberg, 1995) with a false discovery rate of
Q = .3 and individual p-values of @ = .5.

As a next step, we applied the relevant interval
selection approach, for computing selected intervals,
pairwise to all of the identified AUs, with a minimum
interval length of 75 and a threshold of 0.8 for Pearson
correlation. Based on known average human reaction
time (ca. 200 ms or 6 frames (Jain et al., 2015)), we
shifted one time series by 0, 4, 8, and 12 frames both,
back and forth in time, and computed relevant inter-
vals. The grid selected for shifting does cover quicker
and slower reactions of participants, while being com-
putationally performant. Afterwards, we computed
the longest set of the list of relevant intervals ob-
tained from the different shifts. Before computing
GC, we median filtered the selected intervals with a
filter length of 51 (2 seconds) and extended the inter-
vals by 12 frames on each side. Finally, we calculated
the average GC on the concatenation of the intervals
in the set of selected intervals of the smoothed (Gaus-
sian blur with 62 = 1, window size 20) standardized
time series. The results were counted according to the
possible outcomes of the GC test in 3.3, as either uni-
directional caused by S, unidirectional caused by R,
bidirectional, or no causality.

4 EXPERIMENTAL RESULTS
AND DISCUSSION

Evaluation on synthetic data. The following con-
structed example illustrates, how our idea contributes
to a better detection of coherent subintervals in time
series. Initially, we generated two time series of
length N = 6000, so that X;,Y,; ~ A(0,1), and X,
Y; are independent. We then smoothed (Gaussian
blur with 62 = 1, window size 10) X and Y. Af-
ter that, multiple intervals of random length I, I; ~
U(50,200) were synchronized and Y shifted by four
samples back in time. A synchronized interval is
followed by an unsynchronized interval of length /,,
I, ~ U(100,600). In the last step, we added Gaussian
noise eto Y, € ~ A(0,0.02).

We expected the following approaches to detect
all synchronized intervals, and identify the cause-
effect relation on each interval in the manner that Y
Granger causing X, and no intervals for X Granger

causing Y, at different levels of significance o.. We
compare the following two approaches:

1. Fixed size sliding window approach: For the fixed
size sliding window approach we used window
size Y= 50 and step size v = 2. Since multi-
ple tests are performed, a Bonferroni corrected p-

ov

value pr = Sy Was used for detecting GC.

2. Relevant interval selection approach: We set the
minimum windows size to 50, the correlation
threshold to 0.9, and used a two-sided time shift of
4. The Bonferroni corrected p-value pg,, = m

was selected according to the number of intervals
|AWxy | detected by the relevant interval selection
approach.

For Y Granger causing X, we evaluated precision and
recall with the synchronized intervals as ground truth.
For X Granger causing Y, the ground truth is the full
time series, and thus, only recall needs to be evalu-
ated. Figure 4 shows the evaluation for Y Granger
causing X. Both approaches show a very good per-
formance in detecting all relevant intervals (recall).
Yet, the relevant interval selection approach detects
less irrelevant intervals (precision) among all levels
of significance. Figure 5 shows that both, relevant
interval selection and fixed size sliding window ap-
proach, show a very high recall for X Granger caus-
ing Y among all levels of significance, but the relevant
interval selection approach is slightly superior.
Evaluation on nonverbal communication data. In
Figure 6, our relevant interval selection approach is
compared to the full time span approach. The fig-
ure shows the percentage of pairs for which the GC
test, with p = 0.05, showed a specific direction of
influence, under the three experimental conditions,
for each of the identified expressions (sadness lower,
sadness upper, happiness). Especially for sadness
lower and sadness upper expressions, the full time
span approach does not find causality between S and
R for over 50% of the pairs. With our relevant interval
selection approach, less pairs show no causality, but
instead uni- or bidirectional causation. Especially for
happiness, we were able to detect that the direction of
influence was more often driven by S or bidirectional,
and rarely driven by R. The full time span approach
does not expose this information at all.

Discussion. When it comes to the amount measure,
the Wilcoxon-Signed-Rank test revealed that partic-
ipants showed significantly more happiness in the
respectful condition compared to the contemptuous
condition, what is conform to our initial hypotheses.
We further expected more negative expressions in the
contempt condition when compared to the objective
and respectful condition. The test further revealed
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Figure 4: Precision and recall for relevant interval selection
and fixed size sliding window approaches for Y Granger
causing X.
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Figure 5: Recall for relevant interval selection and fixed size
sliding window approaches for X Granger causing Y.

significantly more sadness upper and sadness lower
in the contemptuous condition compared to the objec-
tive condition. We also found more sadness upper and
sadness lower in the respectful condition compared to
the objective condition. With respect to the causal-
ity measure we expected positive expressions to be
more relevant than negative expressions. Our results
are conform to this hypothesis, as especially happi-
ness shows either uni- or bidirectional causality. No-
causality is rarely found, especially when compared
to sadness upper and sadness lower. In the respectful
condition, happiness was more often caused by S. In
the contemptuous condition R caused the expression
happiness more often than S, especially when com-
pared to the objective and respectful condition. This
was to be expected, as S is not supposed to show posi-
tive expressions in the contemptuous condition. Neg-
ative expressions are less clearly caused by either of
the participants.

S CONCLUSIONS

In this paper, we employed GC together with a rel-
evant interval selection approach for identifying the
direction of influence in nonverbal dyadic communi-
cation. To this end, we presented an algorithm for the
detection of emotional facial features, capable of cap-
turing emotions even when strong distinct emotions
are not visible. To improve causality inference, we

proposed an intelligent interval selection approach for
filtering relevant information in dyadic dialog. Subse-
quently, we were able to apply our GC model to the
set of selected relevant intervals and compute the di-
rection of influence. We applied our approach to real
data obtained from an experimental setup. The ob-
tained results revealed that the use of the relevant in-
terval detection approach combined with the proposed
facial expression detection algorithm significantly im-
proved the detection of the cause-effect pattern for
dyadic communication in various instructed interac-
tion conditions. Overall, we identify our contribu-
tion as an important step towards interdisciplinary,
with computer vision potentials, psychological obser-
vations, and theoretical knowledge of causality meth-
ods being combined and extended to gain interesting
insights into emotional social interaction.
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