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Abstract

It is well-established in the pattern recognition
community that the performance of classifiers can
be greatly improved by combining the outputs of
multiple classifiers. In this paper, we introduce
the concept of adaptive performance-based classi-
fier combination, i.e., the weighting of classifiers
based on their estimated recognition performance,
to generic object recognition. Using an expectation-
maximization (EM) algorithm previously applied
to image segmentation, we learn the characteris-
tics of individual generic object recognition classi-
fiers. Using the ETH-80 data sets we demonstrate
that by incorporating these performance estimates
in a Bayesian classifier combination, the recogni-
tion rate of the combined classifications improves
substantially over feature combination as well as
simple and confidence-based voting. The EM al-
gorithm has no tunable parameters and does not re-
quire a pre-classified training set during the learn-
ing stage. We conclude that adaptive performance-
based classifier combination is a valuable and ver-
satile tool to improve the performance of generic
object recognition systems.

1 Introduction

Categorization of objects is an important ability of
the human brain. Young children start very early
to distinguish basic level categories [4] such as
dog, chair or ball. Humans can also easily
assign unknown objects to trained categories and

∗This work was funded by the German Science Foundation
(DFG) under grant DE 735/2–1.

can distinguish between known and unknown ob-
jects [1, 7]. According to psychological essen-
tialism, objects with internal, possibly unknown,
essences form a category [6], i.e., all existing chairs
have something in common. Generic object recog-
nition systems try to extract the features which rep-
resent the internal essences of the objects’ cate-
gories. The generic object recognition task is com-
plicated by the requirement to not only recognize
known objects, but to categorize unknown objects,
and to decide whether a particular object is already
known or not. The discrimination is necessary, for
example, to distinguish between tasks to search for
a generic object of a certain category (e.g., “find
a cup”), or to identify a specific object that was
learned before (e.g., “find my cup”).

It is quite difficult to find adequate features for
generic object recognition because different fea-
tures may be relevant for different generic classes.
For example, color should not be relevant for the
category ball but is probably helpful for the cat-
egory tomato because certain colors are likely
for tomatoes. Therefore, a combination of mul-
tiple classifiers, each targeting different features,
promises to be more successful at generic object
recognition than any single classifier could be.

Based on this observation, we start our work in
this paper with a simple voting method and im-
prove upon it by weighting the classifiers with a
static confidence measures. As our core contribu-
tion, we then go on to show that further improve-
ment can be achieved using a self-training adap-
tive approach for performance-based classifier com-
bination. To this end, we apply a method named
“Simultaneous Truth and Performance Level Eval-
uation” (STAPLE) that was introduced by Warfield
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et al. [16]. The algorithm weights classifiers based
on their estimated recognition performances. It is
adaptive, parameterless, and can be trained with or
without ground truth data.

STAPLE has previously been applied to com-
bination of image segmentations [15], an applica-
tion in which there is no training set and no need
for generalization beyond the current image. In
this paper, we evaluate STAPLE’s application for
the generic object recognition, which is a substan-
tially different problem. Using a standard database
for generic object recognition, we classify ob-
jects with PCA-based feature combination, voting,
a static confidence-weighted combination method,
and STAPLE.

The remainder of this paper is organized as fol-
lows. Section 2.1 motivates the choice of classifier
used in this paper. Section 2.2 categorizes the used
voting and the STAPLE approach. In Section 2.3,
we review the multi-class STAPLE algorithm and
describe its application for performance-based clas-
sifier combination. The performed experiments and
their results are described in Section 3. We con-
clude the paper in Section 4 with a discussion of
our results and an outlook on future research.

2 Background and Methods

2.1 PCA-based generic object recognition

Unlike early approaches for generic object recogni-
tion that used geometric modeling (e.g., [14]), we
extract features directly from the training images.
These features are then used to learn a model for
the specific object and the generic object category.
First encouraging results for this approach to cate-
gorize objects based on appearance information ex-
tracted using principal component analysis (PCA)
was presented by Jain et al. [9]. They built a hi-
erarchy of categories and constructed a PCA-based
model for each category. Image-to-model compari-
son was done using reconstruction error.

In [2] we studied the generic modeling and classi-
fication with mixtures of principal component anal-
ysis. Therein, generic object categorization was
done by a unsupervised learning step using the EM
algorithm, and the probabilistic model is used for
Bayesian classification. In [3] we combined the ap-
proach with a hierarchical structure and examined
the generic classification rate in a hierarchy. In [13]
we examined segmentation-free generic classifica-
tion methods with supervised training using nearest
neighbor, mixtures of principal component analysis

and kernel principal component methods. We found
that on the generic data set nearest neighbor classi-
fication on PCA projected vectors worked best.

In [11] a generic image database was intro-
duced, several appearance-based and contour-based
approaches were compared, and a multi-cue combi-
nation was suggested. Leibe & Schiele [12] com-
bined object categorization and segmentation and
handled objects in real world scenes. LeCun et
al. [10] created a large data set with 50 objects of
5 categories and 194,400 images. They tested near-
est neighbor methods, support vector machines and
convolution networks using raw pixel values and
PCA-derived features. Most recent approaches also
describe generic objects by local appearance-based
methods [5] which recognize objects by their parts.

As PCA-based features on image gray values
have worked well in the past, we apply in this pa-
per PCA on different preprocessed images. We then
examine if the method can further be improved. If
the features are not mutually dependent (i.e., if their
diversity is high), its is reasonable to expect that a
combination of classifiers can further improve the
recognition rate.

2.2 Classifier combination methods

The combination of classifiers to improve classifi-
cation results is a popular research topic. Jain et
al. [8] give a good overview of different classifier
combination methods. They distinguish the combi-
nation methods based on whether they are trainable
or adaptive, and also based on what type of infor-
mation they use. The type of information that a
classifiers can use consists of class labels, vectors
of class ranks, or a confidence value for each class.
The intuitive combination of classification results
is the voting method. Each classifier can vote for
one class, and the class with the most votes wins
(see Eq. 5). The voting method combines only class
labels, which is described in [8] as the “abstract
level”. Weighting each class which a confidence
value and assigning as the result the class with the
maximum combined confidence is a method that
works on the “confidence level” (or “measurement
level”). Both methods are not trainable and not
adaptive, that is, they cannot be tuned to a specific
classification problem, and they do not learn as they
proceed. In the next section, we review the STA-
PLE [16] algorithm, an approach that is both train-
able and adaptive.
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2.3 Review of the multi-class STAPLE al-
gorithm

The STAPLE algorithm was introduced by Warfield
et al. [16] for ground truth estimation from multi-
ple expert segmentations, and is based on classifiers
which only provide abstract class labels. The al-
gorithm was originally limited to a two class prob-
lem but was extended to the multi-class problem by
Rohlfing et al. [15]. Below, we briefly review the
multi-class STAPLE algorithm and introduce the
notation as it was used in [15].

If a sample x is classified by the kth classifier in
class j of L classes this will be described by

ek(x) = j , (1)

where j = 1 . . . L+1. A rejected sample is assigned
to pseudo class L+1. The fact (i.e., ground truth)
that x is actually in class i is expressed by

x ∈ Ci , (2)

where i = 1 . . . L. Therefore, the conditional prob-
ability that the classifier k assigns the sample x to
class j, whereas in fact it is in class i, can be de-
scribed by

P (ek(x) = j|x ∈ Ci) . (3)

Using the above definitions, a general combination
rule can be described. We seek as the output of the
combined classifier E(x) the class that maximizes
the probability given a performance model M and
all classifier decisions ek(x), where k ∈ 1 . . . K:

E(x) = arg max
i
P (x ∈ Ci|∀kek(x),M) . (4)

The simplest non-adaptive performance model is
to assume equal recognition rates of all classifiers
for all classes, which leads to the vote rule as
mentioned in Section 2.2. A combined classifier
Evote(x) can be easily constructed by

Evote(x) =

arg max
i

X

k



1 if ek(x) = i,
0 otherwise. (5)

If the performance model of each classifier is known
and the classifiers are conditionally independent of
each other, then one can use the Bayes formula to
calculate the combined classifier result by Bayesian
inference as

Ebayes(x) = arg max
i

P (x ∈ Ci)
Q

k
P (ek(x)|x ∈ Ci,M)

P

j
P (x ∈ Cj)

Q

k
P (ek(x)|x ∈ Cj ,M)

, (6)

where P (ek(x)|x ∈ Ci,M) is the probability that
classifier k in fact assigns the sample x to class
ek(x). This is determined by the performance
model M .

In the STAPLE algorithm, the performance
model is based on Bayesian classifiers. The perfor-
mance of each classifier k is described by its confu-
sion matrixN (k), which is a (L×L+1)-dimensional
matrix. It contains as its elements n(k)

i,j the number
of samples which belong in class i and are classified
into class j, i.e.,

n
(k)
i,j = #{x|x ∈ Ci ∧ ek(x) = j} . (7)

The number of samples x in a class i is described
by

n
(k)
i,· = #{x|x ∈ Ci} =

X

j
n

(k)
i,j . (8)

If the confusion matrix N (k) is given, then the con-
ditional probability can be easily calculated by

P (ek(x) = j|x ∈ Ci, N
(k)) =

n
(k)
i,j

n
(k)
i,·

. (9)

These conditional probabilities are the parameters
of our performance model. For notational conve-
nience we use λ(k)

i,j := n
(k)
i,j /n

(k)
i,· . For a given set

of classifiers, the coefficients λ(k)
i,j are estimated us-

ing an EM algorithm as follows.
In the expectation step, weightsWi(x) are calcu-

lated, which correspond to the probability that the
sample x belongs to class i. Assuming the condi-
tions for Eq. 6 hold and no a priori knowledge is
available, we get:

Wi(x) =P (x ∈ Ci|e1(x), . . . , eK(x),M)

=

Q

k
λ

(k)
i,ek(x)

P

j

Q

k
λ

(k)
i,ek(x)

. (10)

The maximization step is performed by calculating

λ̂
(k)
i,j =

P

x:ek(x)=j
Wi(x)

P

x
Wi(x)

. (11)

We initialize the EM algorithm with the voting
method as follows:

n
(k)
i,j = #{x|Evote(x) = i ∧ ek(x) = j} . (12)
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Figure 1: Sample images of the objects of the
ETH-80 database [11]

3 Experiments

In this section, different features are examined for
the use in generic object recognition. We inves-
tigate the improvement achieved by the combina-
tion of the features as well as combinations of
single-feature classifiers. We describe below the
benchmarking environment used for evaluation and
present the results of the different methods.

3.1 Benchmarking Environment

To evaluate all classification and combination meth-
ods, we use the ETH-80 database [11], which con-
tains 80 objects from 8 categories: apple, car,
cow, cup, dog, horse, pear and tomato (see
Figure 1). Each object is represented by 41 im-
ages of views from the upper hemisphere. The ex-
periments are performed using 128×128 pixel im-
ages, with each image cropped close to the ob-
ject boundaries. To generate comparable results to
Leibe & Schiele [11], the test is performed by cross-
validation with a leave-one-object-out strategy. One
of the 80 objects is not trained. This “unknown” ob-
ject must accordingly be classified into the correct
object category.

The images of the database are processed with
different feature transformation approaches. We
used methods that emphasize color, shape, edge, or
frequency information. Figure 2 illustrates some of
the features. In (2a) the RGB color channels and in-
tensity gray value image are shown, which are used

in the “color” feature, and (2b) shows the hue com-
ponent of the HSV model which is declared as the
“hue” feature. In (2c) the images are generated by
the inverse Euclidean distance transformation of the
objects shape. Each pixel grayvalue is assigned to
the value of the distance to the nearest non-feature
pixel. We used the Fourier transformed features
“fft” in (2d) using the absolute values of the param-
eters and also Haar wavelet transformed features.
For feature generation, we used the simple scaling
function

φ(t) =



1 : 0 < t < 1
0 : otherwise

(13)

with the associated Haar wavelet:

ψ(t) =

8

<

:

1 : 0 < t < 0.5
−1 : 0.5 < t < 1
0 : otherwise

h0 =
1√
2
, h1 = − 1√

2
(14)

From the decomposition vector of hierarchy level
one we use only a selection of low-pass and first
horizontal high-pass coefficients.

All resulting image vectors of the training set
are used to calculate a PCA transformation. The
100 eigenvectors which correspond to the largest
eigenvalues are used to form an eigenspace pro-
jection matrix. Previous experiments [13] corrobo-
rate that 100 dimensions are a good choice between
space and time consumption and recognition rate.
As a model, the projected training vectors in that
eigenspace are used. The nearest neighbor (NN)
classification is used to assign the category to a test
image. For evaluation, the global recognition rate
for each object category is calculated.

As mentioned before, a combination of differ-
ent classification methods can often improve the
generic recognition rate. There are two possible
approaches to combine the features. The so-called
early combination collects all features and selects
the most significant features to construct a classifier.
In a late combination approach, on the other hand,
each feature set is classified by a separate classi-
fier and the results are combined. We examined the
first approach using PCA for feature selection of the
combined features. The second approach was real-
ized with the STAPLE [15] algorithm and with the
voting method for combining the classifiers.

3.2 Results with Single Feature Selection

For comparison, the NN classifier is applied to orig-
inal images and to the images which are resam-
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(a) Color RGB channels and gray values (b) Hue values of the image

(c) Inverted images of Euclidean distance
transform

(d) Fourier transformed images using absolute
values

Figure 2: (a) Samples of training images apple (left) and dog (right). (b)–(d) Different features extracted
from the images in (a).

scaled images
PCA 8x8 16x16 32x32 64x64 128x128

apple 78.0% 80.2% 79.5% 79.5% 79.3% 77.1%
car 99.5% 89.3% 99.8% 99.5% 99.5% 98.8%
cow 69.8% 55.6% 67.1% 67.6% 62.7% 60.0%
cup 98.8% 92.7% 99.0% 98.3% 97.1% 95.4%
dog 58.8% 42.4% 58.3% 57.3% 57.3% 54.9%
horse 73.7% 56.3% 75.6% 75.9% 76.3% 77.1%
pear 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
tomato 90.0% 94.6% 89.5% 90.2% 92.2% 93.4%
overall 83.6% 76.4% 83.6% 83.5% 83.0% 82.1%

Table 1: Result of generic object recognition by NN classification using PCA dimensionality reduction to
100 compared to NN classification directly on the gray values of scaled images.

pled to 8×8, 16×16, 32×32, and 64×64 pixels with
bicubic interpolation. In Table 1 we see how the
generic object recognition works with NN classi-
fiers using the original image and their resampled
versions. Using the full gray-value image for NN
classifiers, the ETH-80 dataset cannot be catego-
rized without errors. The scaled images improve
the original classification rate. The categories dog,
cow and horse are not well represented by the
model, whereas pear, car, cup and also tomato
can be quite well separated. Most of the apples are
correctly and consistently classified into the generic
class apple. Object apple10 is always classified
as tomato and drags down the classification rate.
The best overall result, a recognition rate of 83.6%
across all classes, is obtained using 16×16 pixel im-

ages.
Next, instead of scaling the images themselves,

we applied a PCA transformation and used the
100-dimensional projections of the training images
into the eigenspace for NN classification as men-
tioned in Section 3.1. The generic recognition rate
is 83.6% and, therefore, equally good as the best
achieved by resampling (see Table 1), but using a
substantially smaller number of features. We note
that the recognition rates of cars, cups and pears are
consistently near 100%, while cows and dogs have
very low recognition rates.

We experimented with several feature selection
methods. For demonstrating the effect we used a
set of feature selection methods which works best
on the dataset. We noticed that color information
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is helpful for this database. Using color images in-
stead of gray level images the generic recognition
rate increases to 85.2% (see Table 2). This is not ob-
vious because color information can also cause er-
ror by limiting the ability of the classifier to general-
ize, e.g., when classifying a yellow tomato. Taking
only the hue component of the HSV model provides
a worse overall generic recognition rate, but the best
recognition rate for apples. Especially for generic
object recognition, the shape is in general a reli-
able feature. Using only the distance transformation
based on the object shape, the object recognition
rate is slightly improved to 85.6%. But this assumes
that we have an effective shape detection algorithm.
Frequency-based features can also improve the re-
sult. But the Fourier transformation (FFT) using the
absolute values fails for generic object recognition.
However, wavelet features improve the recognition
rate up to 87.3%, because the misclassification rate
of dogs and cows are considerably reduced (see Ta-
ble 2).

The results are comparable to the methods of
Leibe & Schiele [11]. The PCA approach with
one eigenspace and without preprocessing achieved
a recognition rate of 83.6%, whereas Leibe with
a multi-eigenspace approach achieved only 83.0%
using the same data sets. Leibe & Schiele [11]
achieved the best results (recognition rate 86.4%)
with contour-based approaches. This can be further
improved with the wavelet-based approach.

3.3 Results with Classifier Combination

Combination of the features and feature selection
with PCA did not work well. We combined the
gray values with different features, including edge
images, distance transformation, FFT, and wavelet
transformation. We then used a PCA transforma-
tion to select important features. Feature combina-
tion did not improve the recognition rate. The best
result (84.8%) was obtained by combining wavelet
features and gray values (see Table 2).

The voting approach improved the recognition
rate to 88.2%. The two categories car and cup
were perfectly recognized in the combination, even
though none of the individual classifiers alone
achieved perfect recognition result on the cups. Us-
ing confidence values for the classification, this
could be improved. A confidence value is defined
as C(x) ∈ [0 : 1] where C(x) = 1 expresses that
the classifier is 100% sure that the classification is
correct and C(x) = 0 means that the classifier is
entirely uncertain. In the case of nearest neighbor
classification an adequate reasoning might be as fol-
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Figure 3: Recognition rate of the combined
confidence-based classification vs. parameter t of
the confidence weighting function Ct(x).

lows. If the distance to the to the nearest neighbor
dnn is zero, then the confidence measure should be
one. If, on the other hand, dnn = dsn, where dsn is
the distance to the second best class, then the clas-
sifier cannot make a deterministic decision because
two classes are essentially equally likely. We ex-
perimented with several functions that satisfy these
conditions The best results, were achieved with the
confidence measure

Ct(x) = 1 − exp

„

t
dnn(x) − dsn(x)

dnn(x)

«

. (15)

This function has a free parameter, t. Using t = 4.0
we achieved a recognition rate of 90.2%. Note that
using this confidence measure, one has to choose
the right parameter to achieve good results. Using a
“bad” parameter, performance suffers substantially,
as is illustrated in Figure 3.

Classifier combination using the STAPLE algo-
rithm outperformed all other individual classifiers
and the feature combination method with a generic
recognition rate of 90.6%. The differences are sta-
tistically significant with p < 10−4 . The best
achievable recognition rate using the correct confu-
sion matrix instead of the estimated one is 91.7%.
Even though we applied the STAPLE method to
abstract labels in the present work, it performed
slightly better than the constant weighting approach
that operates on the confidence level.

The results of this approach are comparable to the
multi-cue combination approach without contours
of Leibe & Schiele [11] which achieves 90.0%.
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features
color edt fft hue wt

apple 80.0% 72.9% 80.5% 87.3% 82.0%
car 99.5% 100.0% 93.2% 95.6% 100.0%
cow 71.2% 86.8% 30.2% 60.5% 82.2%
cup 99.5% 99.8% 90.7% 90.5% 99.8%
dog 59.5% 75.4% 68.0% 50.5% 78.0%
horse 75.6% 80.7% 25.6% 43.2% 77.1%
pear 100.0% 100.0% 79.0% 99.8% 99.8%
tomato 96.6% 69.0% 38.0% 88.8% 80.0%
overall 85.2% 85.6% 63.2% 77.0% 87.3%

(a)

feature combination classifier combination
wtcom vote vote with co staple

apple 75.4% 85.4% 83.4% 83.4%
car 99.8% 100.0% 100.0% 100.0%
cow 70.7% 84.1% 82.0% 84.6%
cup 99.0% 100.0% 100.0% 100.0%
dog 66.6% 79.5% 77.1% 78.8%
horse 78.3% 72.0% 82.4% 84.4%
pear 100.0% 99.8% 100.0% 100.0%
tomato 89.0% 84.9% 88.0% 93.9%
overall 84.8% 88.2% 90.2% 90.6%

(b)

Table 2: Recognition rates using NN classification of PCA-transformed feature vectors and combinations
of features and classifications. The best recognition rate in each row is printed in bold face. (a) Feature
vectors were extracted from the original color images (color), the hue of the HSV model (hue), generated
by FFT (fft), Haar wavelet transformation (wt) and by Euclidean distance transformation based on image
shape (edt). (b) Feature combination of gray value images and wavelet features (wtcom) and combined
generic recognition results using voting, voting with confidence measure (co) and STAPLE.

4 Conclusion and Outlook

We have shown that feature selection methods can
improve the generic classification rate. Color infor-
mation improves the recognition rate for the ETH-
80 dataset which may be caused by the choice of
objects. FFT based features fail whereas wavelet
based features performs best. Early combination of
features and selection with PCA does not improve
the recognition rate.

The overall system recognition rate can be im-
proved over the performances of the individual
classifiers by using voting and especially vot-
ing approaches that incorporate a classifier per-
formance model, such as the STAPLE algorithm.
We achieved 90.6% recognition rate by combining
5 classifiers using STAPLE, where each had an indi-
vidual recognition rate between 63.2% and 87.0%.
Which features are vital for the recognition of a cat-
egory depends on the categories. Color, for exam-

ple, can provide essential evidence for a particular
class, while for a generic category it is often irrele-
vant. Frequently, object shape is an important indi-
cator for a category, but shape alone is not always
sufficiently specific to a single class.

The multi-class STAPLE algorithm outper-
formed all individual feature classifiers, as well
as all classifier and feature combination methods.
While its superiority over voting with a confidence
function is not statistically significant, we point out
that STAPLE is substantially more universal and
potentially robust. While we had to tune the param-
eter t of the confidence weighting function Ct to
achieve optimum performance, no such tuning was
necessary for STAPLE. Consequently, we have less
reason to expect STAPLE’s performance to suffer
from bad parameter choices (let alone the choice of
a bad confidence function).

In terms of versatility, STAPLE can be trained on
pre-classified samples, which improves the recogni-
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tion rate. It can also be re-trained during the classi-
fication phase without requiring pre-classified data,
which makes it capable of classifying objects adap-
tively. Unlike all other methods evaluated here, it
requires no training set since it estimates the ground
truth in the process of adjusting the classifier per-
formances. STAPLE only requires, and indeed per-
forms very well, on abstract class label information,
but its performance may further improve when us-
ing confidence values as its input. This will be eval-
uated in future research.
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