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Abstract

 

—In this paper, we present a large-scale examination of different appearance-based, segmentation-
free classification methods for their usability in generic object recognition. Generic object recognition is a
method to handle the objects never seen before in classification by a hierarchical approach with a coarse-to-fine
graduation. Unknown objects are only classified into coarse categories and rejected to be assigned to classes
that are too specific. Comparison of PPCA, NN, and KPCA approaches is made on the basis of their recognition
rate. The global generic recognition rate is computed for the best method, and its robustness according to dif-
ferent types of noise is examined. Our experiments show that the PCA-based method with nearest neighbor
classification provides, in general, the best recognition rates, whereas the models based on principal component
analysis outperform the other methods in computation time and model size. Gaussian KPCA models can be
used for generic object recognition by varying the variance of the Gaussian kernel.
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1. INTRODUCTION

3D object recognition is an important issue in image
processing. Its objective is to classify 3D objects which
were trained before. Depending on the kind of used
model, small or distinct variances in images changed
by illumination [1], disturbed by noise or occlusion [2]
can be handled; whereas generic object recognition
addresses the problem of classifying objects which are
not known to the system. Novel objects are classified
using hierarchically structured generic classes (or cate-
gories), where unknown objects should be assigned to
a general class, and known objects should be addition-
ally assigned to their object class. For instance, a
generic object recognition system will classify all cups,
also the unknown ones, into the category 

 

cup

 

. In addi-
tion, a trained cup will be recognized as that specific
cup. This type of classification is referred to as generic
object modeling and recognition; it can be used when it
is impossible to model all occurring objects, e.g., the
variety of objects in an office environment.

Image retrieval techniques like those outlined in [3]
also classify objects into generic classes but do not dis-
tinguish between known and unknown objects. In con-
trast to previous generic object modeling studies (e.g.,
[4–6]), we prevent image segmentation errors by using
appearance-based methods which operate directly on
the gray values of the image. These gray values are con-
sidered as a high-dimensional vector. Using the train-
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ing samples, a principal component analysis (PCA) is
computed to reduce the dimensions of the image vec-
tors by projecting them into the eigenspace. The pro-
jected training vectors 

 

z

 

 are used to build a model in
this eigenspace. Test image sets are transformed with
the same projection, and the resulting vectors 

 

c

 

 are used
to evaluate generic object approaches.

In this paper, we compare different generic object
modeling and classification techniques of the eigens-
pace vectors. At first, we present the supervised generic
object recognition system. In Section 3, we shortly
describe the used classification techniques based on
mixtures of probabilistic principal component analysis
(MPPCA) [7], kernel principal component analysis
(KPCA) [13], and nearest neighbor classification (NN)
[8]. We show in the experiments (Section 4) that, in
general, the NN approach performs best and point out
the flaws of the approaches and possible improvements.
We finish this paper with a conclusion in Section 5.

2. SUPERVISED GENERIC 
OBJECT RECOGNITION

A generic object recognition system should classify
unknown objects into general categories. These general
categories can be build automatically or can be given
by a human. The algorithms for automatic categoriza-
tion of the training samples show that generic classifi-
cation is possible but generally differs from human-
made categorizations [9]. This especially affects
objects which vary more from different views than dif-
ferent objects vary from the same view. For example, it
is easier to confuse a box and a car from the front view
than the side view and the front view of a car. To gain
meaningful generic classes, we have to use supervised
approaches; otherwise, we can get categories which can
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be clearly distinguishable from each other but unimpor-
tant for solving the task of a robot or are not of interest
for the user.

Supervised approaches need explicit assignments of
objects to generic classes. This knowledge about the
mapping of objects to generic classes can be used for
feature selection with the Fisher transformation [11] or
for building a nonlinear model for each generic class.
Figure 1 shows a sketch of the generic object recogni-
tion approach.

In the training step, a PCA is performed for each
image set. This transformation reduces the dimensions
of the images. In contrast to the unsupervised case, a
model is generated for each generic class and object
class which is known to the system. Classification is
done depending on the model type by maximum likeli-
hood (ML) or NN classification. A rejection threshold
is used to determine whether the objects are still repre-
sented by the generic model or not. If the object is not
rejected, it will be classified in the next finer hierarchy
level. More details for model building can be found in
[9].

3. SUPERVISED GENERIC OBJECT MODELING 
WITH NONLINEAR METHODS

Using the supervised generic object recognition
approach described in Section 2, we get a vector in the
eigenspace for each training image. In general, the
PCA-transformed image vectors of a generic class do
not form a compact cluster but a nonlinear distribution.
We use three methods to model these distributions: the

1

 

MPPCA [7], KPCA [13], and NN [8] classification
approach.

The NN approach just saves all trained eigenspace
feature vectors 

 

z

 

i

 

, 

 

m

 

 

 

∈

 

 

 

Ω

 

m

 

 of each model 

 

Ω

 

m

 

 and calcu-
lates the nearest neighbor of the test feature vectors. If
there is no trained eigenspace feature vector in the
neighborhood of the test feature vector, the vector will
not be assigned to any class. To decide whether or not a
vector should be rejected, a threshold is experimentally
determined. A rejection threshold can be chosen
between zero and one using the distance measure

(1)

between the test vector 

 

c

 

 and the 

 

m

 

th model 

 

Ω

 

m

 

 which
contains the training vectors 

 

z

 

i

 

, 

 

m

 

 

 

∀

 

i

 

 

 

∈

 

 1, …, 

 

n

 

.

The MPPCA approach tries to overcome the nonlin-
earity by combining linear PPCA models as described
in [7, 9, 10]. A linear PPCA model is a generative
model which explains the present feature vectors 

 

z

 

i

 

 

 

∈

 

�

 

d

 

 as generated by a 

 

q

 

-dimensional random vector 

 

x

 

i

 

(

 

q

 

 < 

 

d

 

), like

(2)

where 

 

W

 

 is the so-called factor loading matrix, 

 

m

 

 is a
constant displacement vector, and 

  

eeee

 

 is a noise vector. It
is assumed that 

 

x

 

i

 

 ~ 

 

�

 

(

 

0

 

, 

 

I

 

q

 

) as well as 

  

eeee

 

 ~ 

 

�

 

(

 

0

 

, 

 

Y

 

) are
zero mean Gaussian distributed random vectors, where

 

I

 

q

 

 is a 

 

q

 

 

 

×

 

 

 

q

 

-dimensional identity matrix and 

 

Y

 

 is a 

 

d

 

 

 

×

 

d

 

-dimensional diagonal covariance matrix. Conse-
quently, the observation 

 

z

 

i

 

 is also Gaussian-distributed.

The model from Eq. (2) can be easily extended to a
mixture model of 

 

n

 

 Gaussian distributions. The obser-
vation vectors 

 

z

 

i

 

 are then modeled by

(3)

with 

 

x

 

i

 

 ~ 

 

�

 

(

 

0

 

, 

 

I

 

q

 

) and 

  

eeee

 

k

 

 ~ 

 

�

 

(

 

0

 

, 

 

Y

 

k

 

). The value 

 

ω

 

k

 

 is the
weight of the 

 

k

 

th mixture component, 

 

Y

 

k

 

 is again a
diagonal covariance matrix of the observation noise. If
a set of 

 

n

 

 observations 

 

z

 

i

 

 is given, the unknown param-
eters of the factor model 

 

W

 

k

 

, 

 

ω

 

k

 

, 

 

m

 

k

 

, and 

 

Y

 

k

 

 can be esti-
mated using the EM algorithm [7, 12]. For approximat-
ing the PCA, the diagonal covariance matrix 

 

Y

 

 is
restricted to have identical elements (

 

Y

 

 = 

 

σ

 

2

 

I

 

d

 

). Details
are explained in [7]. A supervised approach is achieved
using a mixture of PPCA for each generic class. On the
basis of 

 

a posteriori

 

 probability, the models are com-
pared and the rejection threshold is defined.

Another way to separate the nonlinear distributed
models from each other is to project the vectors 

 

c

 

 with
a nonlinear function 

 

ϕ

 

m

 

(

 

c

 

) into a higher-dimensional
space in which the vectors can be separated linearly.
The idea of the KPCA approach [13] is to avoid calcu-
lations of the projection by reducing the operations on

1
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Fig. 1. Hierarchical approach for generic object recogni-
tion: dimensionality reduction with PCA, modeling with
PPCA, KPCA, or NN, and classification on the basis of the
used model.
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the high-dimensional vectors to scalar products (ϕm(cx),
ϕm(cy)). These can be evaluated in the original space
using the so-called kernel function k(cx, cy) := (ϕm(cx),
ϕm(cy)). This evaluation is only valid for kernel func-
tions for which the Mercer condition holds [13], like
the polynomial kernel

(4)

and the Gaussian kernel

(5)

For ML classification, we need the probability p(c |Ωm)
that a feature vector c was generated by the nonlinear
model Ωm, which can be approximated by an energy
value

(6)

The energy value can be denoted by

(7)

with  being the covariance matrix in the high-
dimensional space and the nonlinear function

(8)

centering the projected vectors ϕm(c) by subtracting the
mean of the projection of the training vectors zi, m. The
calculation of the energy value can be rewritten [14],
and the scalar products of the nonlinear function can be
replaced by the kernel function k(cx, cy), which leads to
the following form:

(9)

where λs, m for s = 1, …, r are the r largest eigenvalues

and  are the components of the associated eigen-

vectors . The centered kernel function (·, ·) can
be denoted by

(10)

The parameter λ⊥ , m is a regularization term which
expresses the assumed variance in the orthogonal direc-
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tions. To normalize the energy value of the Gaussian
kernel, we set

(11)

which ensures that an infinitely distant feature vector
will get the same energy value. We obtain the normal-
ization factor κm as

(12)

with

(13)

4. EXPERIMENTAL EVALUATION AND RESULTS

We use the recognition rate at the first hierarchy to
compare different generic object recognition
approaches. Because of using a hierarchical approach,
there are multiple definitions of a recognition rate. One
is the recognition rate at a hierarchy level, which eval-
uates the classification into categories of that level.
Another is the global generic recognition rate, where an
object is classified correctly if a known object is classi-
fied into the right categories and the right object class,
and an unseen object is classified into the right catego-
ries and are rejected in too specific categories where the
object does not match. Thus, a global generic recogni-
tion rate cannot be better than the recognition rate at the
first hierarchy level.

As outlined in Fig. 1, we reduced the input dimen-
sions using PCA and examined the recognition rates of
the NN classifier, the KPCA with a Gaussian kernel as
described in Section 3, and a mixture of five one-
dimensional PPCA models as described in [7, 9, 10].
For testing, we use the COIL-100 [15] database, which
contains 7200 images of the size 128 × 128 of
100 objects. We divided the COIL-100 database into
three test sets: the training set used for verification, a
test set which contains untrained images of known
objects, and a generic test set with images of untrained
objects. Figure 2 shows some examples of the test sets
of this database.

Comparing the best results (see Table 1), one can
see that the NN approach is able to classify almost all
objects correctly. The PPCA model does not com-
pletely represent the training set. The recognition rate
of the training and test sets is over 90%. But it provides
good results at the generic test set. The standard KPCA
classifies the training set correctly and performs very
well on the test set but fails on the generic test set.
Increasing the variance σ2 (see also Eq. (5)) of the
Gaussian kernel improves the generalization of the
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Fig. 2. Examples of test images: (left) test images where images from similar views are trained; (right) generic test images of objects
which are omitted in the training.
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KPCA approach. Figure 3 visualizes this effect. Images
of cans and cars are PCA-transformed to 2D vectors
and displayed as black crosses (can) and white stars
(car). The models of the different approaches are dis-
played by the area in which the vectors are located that
would be assigned to a model. The can model and the
car models are colored white and black, respectively.
The gray area in between represents the rejection class.
With the illustrative examples of the black car model,
the mentioned problems can be shown. The KPCA
model at the top left corner overfit to the trained data,
whereas the KPCA model with the larger variance of
the Gaussian kernel function (5) generalizes well. Also,
the PPCA approach build a well formed model
although some training images are rejected. The NN
approach tends to model the borders between models
very precisely and to spread in the other directions.

The progression of the curves of recognition rates
depending on the eigenspace dimension (Fig. 4) shows
that the PPCA model breaks down at about 100 dimen-
sions, which is due to curse of dimensionality while
building the model which is described in [9]. The NN
and the KPCA model achieve a high recognition rate on
the test set with 15 dimensions and more. On the
generic test set (Fig. 5), the NN and the PPCA model
with 70 dimensions demonstrate good results while the
KPCA model breaks down. This is caused by a too spe-
cialized model that does not generalize well for generic
object classification.

Regarding the computation time (Table 2), we deter-
mine a linear increase for the PPCA and the NN
approach and an almost constant computation time for
the KPCA approach. But for 50 dimensions, the com-
putation time of the NN approach is 26 times faster than
the KPCA approach and the PPCA approach is even
400 times faster.

3

1

We also checked the robustness of the NN approach
by disturbing the image sets with Gaussian and pixel
noise and calculating the recognition rates (Table 3).
We determined no significant degradation in recogni-

Table 2.  Mean computation time per test image (in s) on 50,
99, and 200 eigenspace dimensions

Dimension
Approach

50 99 200

PPCA 3.61 × 10–4 7.36 × 10–4 –

NN 5.52 × 10–3 1.35 × 10–2 3.21 × 10–2

KPCA 1.45 × 10–1 1.51 × 10–1 1.58 × 10–1

1

Table 1.  Best recognition rates (in %) with different nonlin-
ear approaches using different test sample sets

Set
Approach

training test generic test

PPCA 91.5% 90.4% 94.8%

NN 100% 99.9% 100%

KPCA 100% 96.4% 54.9%

KPCA improved 100% 98.6% 100%
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Fig. 4. Recognition rate at the first hierarchy level using the
test set.

25

0.2

50 70 100 125 150 175 2001

0.4

0.6

0.8

1.0

0

NN
Gaussian KPCA
Gaussian KPCA improved
PPCA

Feature space dimension

Recognition rate

Fig. 5. Recognition rate at the first hierarchy level using the
generic test set.

Table 3.  Maximum degradation of recognition rate (in %)
due to Gaussian or pixel noise using the NN approach (using
eigenspace dimensions ≥10)

Set
Noise

training test generic test

Gaussian 0.00% 0.26% 0.69%

pixel 0.52% 1.00% 2.08%

1
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tion rate when used more than ten feature dimensions.
The best global generic recognition rate of 97.1% is
achieved by the NN approach.

5. CONCLUSIONS

The objective of generic object recognition is to
classify unknown objects in general categories and
known ones in their specific classes. The result shows
that the supervised generic object recognition is suit-
able for generalizing from learned examples of catego-
ries, even though the preprocessing of the images
should be further improved. We suggested three meth-
ods for representing the generic class models: KPCA,
NN, and PPCA.

As was shown, the KPCA approach copes very well
with known objects. If the variance is too small, the
model overfits to the trained objects. To generalize to
unknown generic objects, the optimal variance param-
eter σ should be well chosen. An optimally chosen
parameter leads to very good classification results for
the KPCA approach. Unfortunately, the method
depends on the number of training images; therefore,
this approach is not practical for large databases.

Also, the NN approach performs excellent. The gen-
eralization is good and robust against noise as shown in
Section 4. However, this approach has the same disad-
vantages as the KPCA approach: it depends on the
number of training images, because all of them must be
stored. Quantization of training vectors or leaving out
unimportant vectors may solve this problem.

The classification rate of PPCA is worse than that of
the other methods. This can be improved by using mod-
els with higher feature space dimensions and more sub-
models. For both, we need enough training vectors to
obtain a suitable model. The limited number of images
per object of the COIL-100 database prevent such an
improvement. The approach generalizes well and is the
fastest among examined. It is ten times faster than the
NN approach and does not depend on the number of
training images. The model size and the computational
time depend only linearly on the number of objects;
thus, it can handle large databases. Additionally, this
method provides a probability measure.
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