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Abstract. Understanding Earth system dynamics in light of ongoing human intervention and dependency re-
mains a major scientific challenge. The unprecedented availability of data streams describing different facets
of the Earth now offers fundamentally new avenues to address this quest. However, several practical hurdles,
especially the lack of data interoperability, limit the joint potential of these data streams. Today, many initia-
tives within and beyond the Earth system sciences are exploring new approaches to overcome these hurdles and
meet the growing interdisciplinary need for data-intensive research; using data cubes is one promising avenue.
Here, we introduce the concept of Earth system data cubes and how to operate on them in a formal way. The
idea is that treating multiple data dimensions, such as spatial, temporal, variable, frequency, and other grids
alike, allows effective application of user-defined functions to co-interpret Earth observations and/or model—
data integration. An implementation of this concept combines analysis-ready data cubes with a suitable analytic
interface. In three case studies, we demonstrate how the concept and its implementation facilitate the execu-
tion of complex workflows for research across multiple variables, and spatial and temporal scales: (1) summary
statistics for ecosystem and climate dynamics; (2) intrinsic dimensionality analysis on multiple timescales; and
(3) model—data integration. We discuss the emerging perspectives for investigating global interacting and cou-
pled phenomena in observed or simulated data. In particular, we see many emerging perspectives of this approach
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for interpreting large-scale model ensembles. The latest developments in machine learning, causal inference, and
model—-data integration can be seamlessly implemented in the proposed framework, supporting rapid progress in

data-intensive research across disciplinary boundaries.

1 Introduction

Predicting the Earth system’s future trajectory given ongoing
human intervention into the climate system and land surface
transformations requires a deep understanding of its func-
tioning (Schellnhuber, 1999; IPCC, 2013). In particular, it
requires unravelling the complex interactions between the
Earth’s subsystems, often termed as “spheres”: atmosphere,
biosphere, hydrosphere (including oceans and cryosphere),
pedosphere, or lithosphere, and increasingly the “anthropo-
sphere”. The grand opportunity today is that many key pro-
cesses in various subsystems of the Earth are constantly mon-
itored. Networks of ecological, hydrometeorological, and at-
mospheric in situ measurements, for instance, provide con-
tinuous insights into the dynamics of the terrestrial water and
carbon fluxes (Dorigo et al., 2011; Baldocchi, 2014; Wingate
et al., 2015; Mahecha et al., 2017). Earth observations re-
trieved from satellite remote sensing enable a synoptic view
of the planet and describe a wide range of phenomena in
space and time (Pfeifer et al., 2012; Skidmore et al., 2015;
Mathieu et al., 2017). The subsequent integration of in situ
and space-derived data, e.g. via machine learning methods,
leads to a range of unprecedented quasi-observational data
streams (e.g. Tramontana et al., 2016; Balsamo et al., 2018;
Bodesheim et al., 2018; Jung et al., 2019). Likewise, diagnos-
tic models that encode basic process knowledge, but which
are essentially driven by observations, produce highly rele-
vant data products (see, e.g. Duveiller and Cescatti, 2016;
Jiang and Ryu, 2016a; Martens et al., 2017; Ryu et al., 2018).
Many of these derived data streams are essential for monitor-
ing the climate system including land surface dynamics (see,
for instance, the essential climate variables, ECVs; Hollmann
et al., 2013; Bojinski et al., 2014), oceans at different depths
(essential ocean variables, EOVs; Miloslavich et al., 2018),
or the various aspects of biodiversity (essential biodiversity
variables, EBVs; Pereira et al., 2013). Together, these essen-
tial variables describe the state of the planet at a given mo-
ment in time and are indispensable for evaluating Earth sys-
tem models (Eyring et al., 2019).

With regard to the acquisition of sensor measurements and
the derivation of downstream data products, Earth system
sciences are well prepared. But can this multitude of data
streams be used efficiently to diagnose the state of the Earth
system? In principle, our answer would be affirmative, but
in practical terms we perceive high barriers to interconnect-
ing multiple data streams and further linking these to data
analytic frameworks (as discussed for the EBVs by Hardisty
et al., 2019). Examples of these issues are (i) insufficient data
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discoverability, (ii) access barriers, e.g. restrictive data use
policies, (iii) lack of capacity building for interpretation, e.g.
understanding the assumptions and suitable areas of applica-
tion, (iv) quality and uncertainty information, (v) persistency
of data sets and evolution of maintained data sets, (vi) repro-
ducibility for independent researchers, (vii) inconsistencies
in naming or unit conventions, and (viii) co-interpretability,
e.g. either due to spatiotemporal alignment issues or physi-
cal inconsistencies, among others. Some of these issues are
relevant to specific data streams and scientific communities
only. In most cases, however, these issues reflect the neglect
of the FAIR principles (to be “findable, accessible, interop-
erable, and re-usable”; Wilkinson et al., 2016). If the lack
of FAIR principles and limited (co-)interpretability come to-
gether, they constitute a major obstacle in science and slow
down the path to new discoveries. Or, to put it as a challenge,
we need new solutions that minimize the obstacles that hin-
der scientists from capitalizing on the existing data streams
and accelerate scientific progress. More specifically, we need
interfaces that allow for interacting with a wide range of data
streams and enable their joint analysis either locally or in the
cloud.

As long as we do not overcome data interoperability
limitations, Earth system sciences cannot fully exploit the
promises of novel data-driven exploration and modelling ap-
proaches to answer key questions related to rapid changes in
the Earth system (Karpatne et al., 2018; Bergen et al., 2019;
Camps-Valls et al., 2019; Reichstein et al., 2019). A variety
of approaches have been developed to interpret Earth obser-
vations and big data in the Earth system sciences in general
(for an overview, see, e.g. Sudmanns et al., 2019) and gridded
spatiotemporal data as a special case (Nativi et al., 2017; Lu
et al., 2018). For the latter, data cubes have recently become
popular, addressing an increasing demand for efficient ac-
cess, analysis, and processing capabilities for high-resolution
remote sensing products. The existing data cube initiatives
and concepts (e.g. Baumann et al., 2016; Lewis et al., 2017;
Nativi et al., 2017; Appel and Pebesma, 2019; Giuliani et al.,
2019) vary in their motivations and functionalities. Most of
the data cube initiatives are, however, motivated by the need
for accessing singular (very-)high-resolution data cubes, e.g.
from satellite remote sensing or climate reanalysis, and not
by the need for global multivariate data exploitation.

This paper has two objectives: first, we aim to formalize
the idea of an Earth system data cube (ESDC) that is tai-
lored to explore a variety of Earth system data streams to-
gether and thus largely complements the existing approaches.
The proposed mathematical formalism intends to illustrate
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how one can efficiently operate such data cubes. Second,
the paper aims at introducing the Earth System Data Lab
(ESDL; https://earthsystemdatalab.net, last access: 21 Febru-
ary 2020). The ESDL is an integrated data and analytical
hub that curates a multitude of data streams representing key
processes of the different subsystems of the Earth in a com-
mon data model and coordinate reference system. This in-
frastructure enables researchers to apply their user-defined
functions (UDFs) to these analysis-ready data (ARD). To-
gether, these elements minimize the hurdle to co-explore a
multitude of Earth system data streams. Most known initia-
tives intend to preserve the resolutions of the underlying data
and facilitate their direct exploitation, like the Earth Server
(Baumann et al., 2016) or the Google Earth Engine (Gore-
lick et al., 2017). The ESDL, instead, is built around singular
data cubes on common spatiotemporal grids that include a
high number of variables as a dimension in its own right.
This design principle is thought to be advantageous com-
pared to building data cubes from individual data streams
without considering their interactions from the very begin-
ning. Due to its multivariate structure and the easy-to-use in-
terface, the ESDL is well suited for being part of data-driven
challenges, as regularly organized by the machine learning
community, for example.

The remainder of the paper is organized as follows: Sect. 2
introduces the concept based on a formal definition of Earth
system data cubes and explains how user-defined functions
can interact with them. In Sect. 3, we describe the imple-
mentation of the Earth System Data Lab in the programming
language Julia and as a cloud-based data hub. Section 4 then
illustrates three research use cases that highlight different
ways to make use of the ESDL. We present an example from
an univariate analysis, characterizing seasonal dynamics of
some selected variables; an example from high-dimensional
data analysis; and an example for the representation of a
model—-data integration approach. In Sect. 5, we discuss the
current advantages and limitations of our approach and put
an emphasis on required future developments.

2 Concept

Our vision is that multiple spatiotemporal data streams shall
be treated as a singular yet potentially very high-dimensional
data stream. We call this singular data stream an Earth system
data cube. For the sake of clarity, we introduce a mathemat-
ical representation of the Earth system data cube and define
operations on it. Further details on an efficient implementa-
tion are provided in Sect. 3.2 and 3.3.

Suppose we observe p variables Yl ..., YP, each under
a (possibly different) range of conditions. A first step to-
wards data integration is to (re)sample all data streams onto
a common domain J (e.g. a spatiotemporal grid) to ob-
tain the indexed set {(Y jl S 4 J‘." )} jes of multivariate obser-
vations. Observations obtained from different variables are
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then identified as different coordinates in the multivariate
array Y. However, when calculating simple variable sum-
maries or performing spatiotemporal aggregations of the
data, such a representation can be computationally obstruc-
tive. We therefore propose to consider the “variable indica-
tor” k € {l1,..., p} as simply another dimension of the in-
dex set and view the data as the collection {X;};<; of uni-
variate observations, where I = J x {1,..., p}1 and where
Xipo:=Y jk . With this idea in mind, we now formally define
the Earth system data cube (‘““data cube” in short).

A data cube C consists of a triplet (L, G, X) of compo-
nents to be described below.

— L is a set of labels, called dimensions, describing the
axes of the data cube. For example, L = {lat, long, time,
var} describes a data cube containing spatiotemporal
observations from a range of different variables. The
number of dimensions |L| is referred to as the order of
cube C; in the above example, |L| = 4.

— G is a collection {grid(¢)}¢c; of grids along the axes
in L. For every £ € L, the set grid({) is a discrete sub-
set of the domain of the axis £, specifying the resolu-
tion at which data are available along this axis. Every
set grid(¢) is required to contain at least two elements.
Dimensions containing only one grid point are dropped.
The collection G defines the hyper-rectangular index set
1(G) = % grid(¢£), motivating the name “cube”. For ex-
ample,

1(G) = Sgrid(¢)
= grid(lat) x grid(long) x grid(time) x grid(var)
={-89.75, ..., 89.75} x {—179.75, ..., 179.75}
x{1Jan 2010, ..., 31 Dec 2010} x {GPP, SWC, R, }
= {(—89.75, —179.75, 1 Jan 2010, GPP),
..., (89.75,179.75,31 Dec 2010, Ry) } -

Since G and I(G) are in one-to-one correspondence, we
will use the two interchangeably.

— X isacollection of data {X;};c1(6) € Rna := RU{NA}
observed at the grid points in /(G). Here, “NA” refers
to “not available”.

In this view, the data can be treated as a collection
{Xi}icr(c) of univariate observations, even if they encode
different variables. In the above example, the variable axis is
a nominal grid with the entries GPP (gross primary produc-
tion), SWC (soil water content), and R, (global radiation).
The set of all data cubes with dimensions L will be denoted
by C(L). Data cubes that contain one variable only can be
considered as special case; other common choices of L are
described in Table 1. The list of example axes labels used in

IThe symbol X indicates a Cartesian product.
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the table is, of course, not exhaustive. Other relevant dimen-
sions could be, for example, model versions, model parame-
ters, quality flags, or uncertainty estimates. Note that, by def-
inition, a data cube only depends on its dimensions through
the set of axes L and is therefore indifferent to any order
of these. In the remainder of this article, the notion of data
cubes refers to this concept. Note that dropping dimensions
that only contain one grid point is not the only possible way
of working with data cubes. Another equally valid idea is to
maintain grids of length 1 and integrate them to the workflow.

2.1 Operations on an Earth system data cube

To exploit an Earth system data cube efficiently, scientific
workflows need to be translated into operations executable
on data cubes as described above. More specifically, the out-
put of each operation on a data cube should yield another data
cube. The entire workflow of a project, possibly a succession
of analyses performed by different collaborators, can then
be expressed as a composition of several UDFs performed
on a single (input) data cube. Besides unifying all statistical
data analyses into a common concept, the idea of express-
ing workflows as functional operations on data cubes comes
with another important advantage: as soon as a workflow is
implemented as a suitable set of UDFs, it can be reused on
any other sufficiently similar data cube to produce the same
kind of output.

In its most general form, a user-defined function C —
f(C) operates by (i) extracting relevant information from C,
(ii) performing calculations on the extracted information, and
(iii) storing these calculations into a new data cube f(C). In
order to perform step (i), f expects a minimal set of dimen-
sions E of the input cube. The returned set of axes for an
input cube with dimensions E will be denoted by R. That is,
f is a mapping such that

f:C(E)— C(R). 1)

Alongside the function f, one has to define the sets £ and R,
which we will refer to as minimal input and minimal output
dimensions, respectively.

A major advantage of thinking in data cube workflows
is that low-dimensional functions can be applied to higher-
dimensional cubes by simple functional extensions: a func-
tion can be acting along a particular set of dimensions while
looping across all unspecified dimensions. For example, the
function that computes the temporal mean of a univariate
time series should allow for an input data cube, which, in
addition to a temporal grid, contains spatial information. The
output of such an operation should then be a cube of spa-
tially gridded temporal means. Similarly, the function should
be applicable to cubes containing multivariate observations.
Here, we expect the output to contain one temporal mean per
supplied variable.

In general, a function f defined on C(E) should natu-
rally extend to a function from C(E U A) to C(RU A) with
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ANR = & by executing the described “apply” operation. The
code package accompanying this paper (described in Sect. 3)
automatically equips every UDF with such a functionality. A
schematic description of this approach is illustrated in Fig. 1.

The approach outlined above is very convenient to
describe workflows, i.e. recursive chains of UDFs. Let
f1,... fn be a sequence of UDFs with corresponding min-
imal input/output dimensions (E1, Rj),...,(E,, R,). If an
output dimension R; is a subset of subsequent input E; 1,
we can chain these functions. A recursive workflow emerges
when R; C E; 4 for all i, by iteratively chaining fi,..., fj
upon one another. The input/output dimensions of the result-
ing cube are (Eq, Ry).

Overall, the definition of an Earth system data cube and
associated operations on it do not only guide the imple-
mentation strategy but also help us summarize potentially
complicated analytic procedures in a common language. For
the sake of readability, in the following, we will not distin-
guish between a function f (defined only for minimal input)
and its extension f (equipped with the apply functionality;
see Fig. 1). The former will be referred to as an “atomic”
function. We typically indicate the minimal input/output di-
mensions (E, R) of a function f by writing fg . Since the
pair (E, R) does not determine the mapping f, this notation
should not be understood as the parameterization of a func-
tion class but rather provide an easy way to perform input
control and to anticipate the output dimensions of a cube re-
turned by f. For instance, following the discussion above, a
function denoted by f 5 can be applied to any cube with di-
mension EU A, satisfying that AN R = &, and returns a cube
with dimensions R U A. To avoid ambiguities, additional no-
tation is needed when distinguishing between two functions
with the same pair of minimal input/output dimensions.

2.2 Examples

In the following, we present some special operations that are
routinely needed in explorations of Earth system data cubes:

“Reducing” describes a function that calculates some
scalar measure (e.g. the sample mean). Consider, for in-
stance, the need to estimate the mean of a univariate data
cube, of course weighted by the area of the spatial grid cells.
An operation of this kind expects a cube with dimensions
E = {lat, long, time} and returns a cube with dimensions
R = {} and is therefore a mapping:

Fittong.time 1 C({lat, long, time}) — C({}). )

This mapping can now be applied to any data cube of po-
tentially higher (but not lower) dimensionality. For instance,
f is automatically extended to a multivariate spatiotemporal
data cube (Table 1) with the mapping

f{{} : C({lat, long, time, var}) — C({var}), 3)

lat,long, time}

which computes one spatiotemporal mean for each variable.

www.earth-syst-dynam.net/11/201/2020/
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Table 1. Typical sets of data cubes C(L) of varying orders |L| with characteristic dimensions L.

Order |[L|  Set of data cubes C(L) Description of C(L)
0 c{h Scalar value where no dimension is defined
1 C({lat}) Univariate latitudinal profile
1 C({long}) Univariate longitudinal profile
1 C({time}) Univariate time series
1 C({var}) Single multivariate observation
2 C({lat, long}) Univariate static geographical map
2 C({lat, time}) Univariate Hovmoller diagram: zonal pattern over time
2 C({lat, var}) Multivariate latitudinal profile
2 C({long, time}) Univariate Hovmoller diagram: meridional pattern over time
2 C({long, var}) Multivariate longitudinal profile
2 C({time, var}) Multivariate time series
2 C({time, freq}) Univariate time—frequency plane
3 C({lat, long, time}) Univariate data cube
3 C({lat, long, var}) Multivariate map, e.g. a global map of different soil properties
3 C({lat, time, var}) Multivariate latitudinal Hovmoller diagram
3 C({long, time, var}) Multivariate longitudinal Hovmoller diagram
3 C({time, freq, var}) Multivariate spectrally decomposed time series
4 C({lat, long, time, var}) Multivariate spatiotemporal cube
4 C({lat, long, time, freq}) Univariate spectrally decomposed data cube
5 C({lat, long, time, var, ens}) Multivariate ensemble of model simulations
f
_____________ >. —_
o o cefo) - L 19
A
A ~
S
e 1N
U 2T
NE 2l =
25 S|S
S
——
f
| o o o, {C} = {f(C)) K |f(Cr)| Jf(C2)| Jf(Cs)

Figure 1. Schematic illustration of the “apply” functionality: a function f : C(E) — C(R) is extended to the set of cubes with dimensions
EUA, where A is an arbitrary set of dimensions with AN R = @. Given a cube C € C(E U A), the extension f(C) is constructed by iterating
over all grid points i along the dimensions in A to obtain the collection {C;} € C(E) of sliced cubes, applying f to every cube C; separately,
and binding the collection { f(C;)} into the output cube f(C) € C(R U A). Here, the index i runs through all elements in x..grid(a).
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“Cropping” is subsetting a data cube while maintaining
the order of a cube. A cropping operation typically reduces
certain axes of a data cube to only contain specified grid
points (and therefore requires the input cube to contain these
grid points). For instance, a function that extracts a certain
“cropped” fraction Ty along the temporal cover expects an
input cube containing a time axis with a grid at least as highly
resolved as Tp. This function preserves the dimensionality of
the cube but reduces the grid along the time axis; i.e.

f((time} : C ({time}|grid(time) D Tp) — C ({time}|grid(time) = Tp), (4)

time}
where we have used C(L|P) to denote the set of cubes with
dimensions L satisfying the condition P. Thanks to the apply
functionality, this atomic function can be used on any cube
of higher order. For example, it is readily extended to a map-
ping:

f{{time} :C ({lat, long, time}|grid(time) 2 Tp)

time}

— C({lat, long, time}|grid(time) = Tp), &)

which crops the time axis of cubes with dimensions {lat,
long, time}. Analogously, all dimensions can be subsetted as
long as the length of the dimension is larger than 1. The latter
would be called slicing.

“Slicing” refers to a subsetting operation in which a di-
mension of the cube is degenerated, and the order of the
cube is reduced and can be interpreted as a special form
of cropping. For instance, if we only select a singular time
instance fy, the time dimension effectively vanishes as we
do not longer need a vector-spaced dimension to represent
its values. When applied to a spatiotemporal data cube, this
amounts to a mapping:

f{{ti}me} : C({lat, long, time}|grid(time) > 7o) — C({lat, long}). (6)

“Expansions” are operations where the order of the output
cube is higher than the order of the corresponding input cube.
A discrete spectral decomposition of time series, for exam-
ple, generates a new dimension with characteristic frequency
classes:

f{{time,freq} : C({time}) — C({time, freq}). @)

time}
“Multiple cube handling” is often needed, for instance,
when fitting a regression model where response and predic-
tions are stored in different cubes. Also, we may be interested
in outputting the fitted values and the residuals in two sepa-
rate cubes. This amounts to an atomic operation:
f{{para}, {time}

time, var}, {time

) :C({time, var}) x C({time})
— C({para}) x C({time}), 8)

which expects a multivariate data cube for the predictors
C € C({time, var}) and a univariate cube for the targets C; €
C({time}). The output consists of a vector of fitted parame-
ters C; € C({para}) and a residual time series C» € C({time})
to compute the model performance. This concept also allows
the integration of more than two input and/or output cubes.
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3 Data streams and implementation

The concept as described in Sect. 2 is generic, i.e. inde-
pendent of the implemented Earth system data cube and of
the technical solution of the implementation. Figure 2 shows
how the concept outlined above is realized from a practical
point of view. The flowchart shows that the starting point is
the collection of relevant data streams which then need to
be preprocessed in order to be interpretable as a single data
cube. The ESDC itself may be stored locally or in the cloud
and can be accessed from various users simultaneously based
on different application programming interfaces (APIs). In
the following, we firstly present the data used in our imple-
mentation of the ESDL which is available online, and sec-
ondly describe the implementation strategy for the API we
developed in this project.

3.1 Data streams in the ESDL

The data streams included so far were chosen to enable re-
search on the following topics (a complete list is provided in
Appendix A):

— Ecosystem states at the global scale in terms of rele-
vant biophysical variables. Examples are leaf area in-
dex (LAI), the fraction of photosynthetically active ra-
diation (FAPAR), and albedo (Disney et al., 2016; Pinty
et al., 2006; Blessing and Low, 2017).

— Biosphere—atmosphere interactions as encoded in land
fluxes of CO,, i.e. GPP, terrestrial ecosystem respira-
tion (Reco), and the net ecosystem exchange (NEE) as
well as the latent heat (LE) and sensible heat (H) en-
ergy fluxes. Here, we rely mostly on the FLUXCOM
data suite (Tramontana et al., 2016; Jung et al., 2019).

— Terrestrial hydrology requires a wide range of variables.
We mainly ingest data from the Global Land Evapora-
tion Amsterdam Model (GLEAM; Martens et al., 2017,
Miralles et al., 2011) which provide a series of relevant
surface hydrological properties such as surface (SM)
and root-zone soil moisture (SMyoot) but also poten-
tial evaporation (Ep) and evaporative stress (S) condi-
tions, among others. Ingesting entire products such as
GLEAM ensures internal consistency.

— State of the atmosphere is described using data gener-
ated by the Climate Change Initiative (CCI) by the Eu-
ropean Space Agency (ESA) in terms of aerosol opti-
cal depth at different wavelengths (AODs509, AODsss,
AODgs9, and AOD410; Holzer-Popp et al., 2013), to-
tal ozone column (Van Roozendael et al., 2012; Lerot
etal., 2014), as well as surface ozone (which is more rel-
evant to plants), and total column water vapour (TCWYV;
Schrider et al., 2012; Schneider et al., 2013).

www.earth-syst-dynam.net/11/201/2020/
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[ Data cube ]

@ python juli.(:] . '

[ Cloud resources ]

Data readers
Pre-processing
Common grids
Chunking

+ Metadata

» Users implementing
diverse use cases
» Sharing examples

» Data access and
analysis API for
Python and Julia
(and R)

« Cubes in the cloud
« Computing resources
« Distribution

« Selected data sets
» Sourcing data sets

Figure 2. Workflow putting the ESDL concept into practice: selected data sets are preprocessed to common grids and saved in cloud-ready
data formats (Zarr). Based on these cubed data sets, a global Earth system data cube can be produced that is either stored locally or in the
cloud. Via appropriate application programming interfaces (APIs), users can efficiently access the ESDC in their native language. Users can

fully focus on designing user-defined functions and workflows.

— Meteorological conditions are described via the reanal-
ysis data, i.e. the ERAS5 product. Additionally, precipita-
tion is ingested from the Global Precipitation Climatol-
ogy Project (GPCP; Adler et al., 2003; Huffman et al.,
2009).

Together, these data streams form data cubes of intermedi-
ate spatial and temporal resolutions (0.25, 0.083°; both 8 d),
visualized in Fig. 3. The variables described here are de-
scribed in more detail in a list provided in Appendix A, which
may, however, already be incomplete at the time of publica-
tion, as the ESDL is a living data suite, constantly expanding
according to users’ requests. For the latest overview, we refer
the reader to the website (https://www.earthsystemdatalab.
net/, last access: 21 February 2020). Note that we have not
considered the integration of uncertainty as another dimen-
sion in the current implementation. The rationale is that each
of the data products comes with a specific uncertainty flag or
estimate that cannot be merged in an own dimension. This is
an open aspect that needs to be addressed in future develop-
ments.

To show the portability of the approach, we have devel-
oped a regional data cube for Colombia. This work supports
the Colombian Biodiversity Observational Network activities
within the Group on Earth Observations Biodiversity Obser-
vation Network (GEO BON). This regional data cube has
a 1km (0.083°) resolution and focuses on remote-sensing-
derived data products (i.e. LAI, fAPAR, the normalized dif-
ference vegetation index (NDVI), the enhanced vegetation
index (EVI), LST, and burnt area). In addition to the global
ESDL, monthly mean products such as cloud cover (Wil-
son and Jetz, 2016) have been ingested given their recur-
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rent applicability in biodiversity studies at regional scales.
Data layers from governmental organizations providing de-
tailed information about ecosystems are also available that
allow a national characterization and deeper understanding
of ecosystem changes by natural or human drivers. These are
maps of biotic units (Londofio et al., 2017), wetlands (Flérez
et al., 2016), and agriculture frontier maps (MADR-UPRA,
2017). Additionally, GPP, evapotranspiration, shortwave ra-
diation, PAR, and diffuse PAR from the Breathing Earth Sys-
tem Simulator (BESS; Ryu et al., 2011, 2018; Jiang and Ryu,
2016b) and albedo from QA4ECV (http://www.qadecv.eu/,
last access: 21 February 2020) are available, among others.
This regional Earth system data cube should serve as a plat-
form for analysis in a region with variability of landscape,
high biodiversity and ecosystem transitions gradients, and
facing rapid land use change (Sierra et al., 2017).

3.2 Implementation

To put the concept of an Earth system data cube as out-
lined in Sect. 2 into practice, we need suitable access APIs
(see Fig. 2). A co-author of this paper (FG) developed one
APT in the relatively young scientific programming language
Julia (https://julialang.org/, last access: 21 February 2020;
Bezanson et al., 2017) which is provided via the ESDL. j1
package. Additionally, all functionalities are also available
in Python based on existing libraries and documented online.
In both cases, the goal was that the user does not have to
explicitly deal with the complexities of sequential data in-
put/output handling and can concentrate on implementing the
atomic functions and workflows, while the system takes care
of necessary out of core and out-of-memory computations.
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Figure 3. Visualization of the implemented Earth system data cube (an animation is provided online at https://youtu.be/9L4-fq48Ev0, last
access: 21 February 2020). The figure shows from the top left to bottom right the variables sensible heat (H), latent heat (LE), gross primary
production (GPP), surface moisture (SM), land surface temperature (LST), air temperature (74;;), cloudiness (C), precipitation (P), and water
vapour (V). References to the individual data sources are given in Appendix A. Here, the resolution in space is 0.25° and 8 d in time, and we
are inspecting the time from May 2008 to May 2010; the spatial range is from 15° S to 60° N, and 10° E to 65° W.

The following is a sketched description of the principles of
the Julia-based ESDL . j1 implementation. We chose Julia to
translate the concepts outlined into efficient computer code
because it has clear advantages for data cube applications
besides its general elegance in scientific computing in terms
of speed, dynamic programming, multiple dispatch, and syn-
tax (Perkel, 2019). Specifically, Julia allows for generic pro-
cessing of high-dimensional data without large code repe-
titions. At the core of the Julia ESDL. j1 toolbox are the
mapslices and mapCube functions, which execute user-
defined functions on the data cube as follows:

— Given some large data cube C = (L, G, X), the ESDL
function subsetcube(C) will retrieve a handle to C
that fully describes L and G.
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— Knowledge of the desired L and G allows us to develop
a suitable user-defined function f g .

— Depending on the exact needs, mapslices and
mapCube will then be used to apply the ff on a cube
as illustrated in Fig. 1. mapCube is a strict implementa-
tion of the cube mapping concept described here, where
it is mandatory to explicitly describe E and R such that
the atomic function is fully operational. mapslices
is a convenient wrapper around the mapCube func-
tion that tries to impute the output dimensions given the
user function definition to ease the application of the
functions where the output dimensions are trivial. In-
ternally, mapslices and mapCube verify that E C L
and other conditions.

The case studies developed in Sect. 4 are accompanied by
code that illustrates this approach in practice.

Of course there are also alternatives to Julia. Lu et al.
(2018) recently reviewed different ways of applying func-
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tions on array data sets in R, Octave, Python, Rasdaman, and
SciDB. One requirement of such a mapping function is that it
should be scalable, which means that it should process data
larger than the computer memory and, if needed, in paral-
lel. While existing solutions are sufficient for certain applica-
tions, most are not consistent with the cube mapping concept
as described in Sect. 2. For instance, the required handling of
complex workflows of multiple cubes (Eq. 8) is typically not
possible in the existing solutions that have been reviewed. In
some cases, issues in the computational efficiency of the un-
derlying programming languages render certain solutions not
suitable. This is particularly the case when user-defined func-
tions become complex. Likewise, certain properties such as
the desired indifference to the ordering in axes dimensions
are often not foreseen. One suitable alternative to Julia is
available in Python. The xarray (http://xarray.pydata.org,
last access: 21 February 2020) and da sk packages have been
successfully utilized in the Open Data Cube, Pangeo, and
xcube initiatives. Extensive descriptions on how to work in
the ESDL with both Python and Julia can be accessed from
the following website: https://www.earthsystemdatalab.net/
(last access: 21 February 2020). The open-source implemen-
tation of the ESDL also implies that one can easily extend the
stored data sets. The online documentation shows in detail
how additional data can be added to the ESDL. In particular,
if the data share common axes and are stored in a compatible
format (as described below in Sect. 3.3), this does not require
major efforts.

3.3 Storage and processing of the data cube

The ESDL has been built as a generic tool. It is prepared
to handle very large volumes of data. Storage techniques
for large raster geodata are generally split into two cat-
egories: database-like solutions like Rasdaman (Baumann
et al.,, 1998) or SciDB (Stonebraker et al., 2013) access
data directly through file formats that follow metadata con-
ventions like HDFS5 (https://www.hdfgroup.org/, last ac-
cess: 21 February 2020) or NetCDF (https://www.unidata.
ucar.edu/software/netcdf/, last access: 21 February 2020).
Database solutions shine in settings where multiple users re-
peatedly request (typically small) subsets of data cube, which
might not be rectangular, because the database can acceler-
ate access by adjusting to common access patterns. However,
for batch processing large portions of a data cube, every data
entry is ideally accessed only once during the whole compu-
tation. Hence, when large fractions of some data cube have to
be accessed, users will usually avoid the overhead of build-
ing and maintaining a database and rather aim for accessing
the data directly from their files. This experience is often per-
ceived as more “natural” for Earth system scientists who are
used to “touching” their data, knowing where files are lo-
cated, and so forth. Databases instead offer, by construction,
an entry point to an otherwise unknown data set.
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One disadvantage of the traditional file formats used for
storing gridded data is that their data chunks are contained in
single files that may become impossible to handle efficiently.
This is not problematic when the data are stored on a regular
file system where the file format library can read only parts
of the file. In cloud-based storage systems, it is not com-
mon to have an API for accessing only parts of an object,
so these file formats are not well suited for being stored in
the cloud. Recently, novel solutions for this issue were pro-
posed, including modifications to existing storage formats,
e.g. HDF5 cloud, or cloud-optimized GeoTiff, among others,
as well as completely new storage formats, in particular Zarr
(https://zarr.readthedocs.io/, last access: 21 February 2020)
and TileDB (https://tiledb.io/, last access: 21 February 2020).
While working with these formats is very similar to tradi-
tional solutions (like HDF5 and NetCDF), these new formats
are optimized for cloud storage as well as for parallel read
and write operations. Here, we chose to use the new Zarr for-
mat. The reason is that it enables us to share the data cube
through an object storage service, where the data are public
and can be analysed directly. Python packages for accessing
and analysing large N-dimensional data sets like xarray
and dask, which make a wide range of existing tools read-
ily usable on the cube, and a Julia approach to read Zarr data
have been implemented as well.

At present, the ESDL provides the same data cube in dif-
ferent spatial resolutions and different chunkings to speed up
data access for different applications. In chunked data for-
mats, a large data set is split into smaller chunks, which can
be seen as separate entities where each chunk is represented
by an object in an object store. There are several ways to
chunk a data cube. Consider the case of a multivariate spa-
tiotemporal cube C({lat, long, time, var}). One common strat-
egy would be to treat every spatial map of each variable and
time point as one chunk, which would result in a chunk size
of |grid(lat)| x |grid(long)| x 1 x 1. However, because an ob-
ject can only be accessed as a whole, the time for reading a
slice of a univariate data cube does not directly scale with
the number of data points accessed but rather with the num-
ber of accessed chunks. Reading out a univariate time se-
ries of length 100 from this cube would require accessing
100 chunks. If one stored the same data cube with complete
time series contained in one chunk, read operations could
perform much faster. Table 2 shows an overview of the im-
plemented chunkings for different cubes in the current ESDL
environment.

4 Experimental case studies

The overarching motivation for building an Earth system data
cube is to support the multifaceted needs of Earth system sci-
ences. Here, we briefly describe three case studies of vary-
ing complexity (estimating seasonal means per latitude, di-
mensionality reduction, and model—data integration) to illus-
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Table 2. Resolutions and chunkings of the currently implemented
global Earth system data cube per variable. Here, the cubes with
chunk size 1 in the time coordinate are optimized for accessing
global maps at a time, while the other cubes are more suited for
processing time series or regional subsets of the data cube. The
cubes are currently hosted on the Object Storage Service by the
Open Telecom Cloud under https://obs.eu-de.otc.t-systems.com/
obs-esdc-v2.0.0/ (last access: 21 February 2020) (state: Septem-
ber 2019).

Resolution  Chunk size along axis
Grid  Grid Grid
(time) (lat)  (long)
0.083° 184 270 270
0.083° 1 2160 4320
0.25° 184 90 90
0.25° 1 720 1440

trate how the concept of the Earth system data cube can be
put into practice. Clearly, these examples emerge from our
own research interest, but the concepts should be portable
across different branches of science (the code for producing
the results on display is provided as Jupyter notebooks at
https://github.com/esa-esdl/ESDLPaperCode.jl, last access:
21 February 2020).

4.1 Inspecting summary statistics of
biosphere—atmosphere interactions

Data exploration in the Earth system sciences typically starts
with inspecting summary statistics. Global mean patterns
across variables can give an impression on the long-term sys-
tem behaviour across space. In this first use case, we aim
to describe mean seasonal dynamics of multiple variables
across latitudes.

Consider an input data cube of the form C({lat, long, time,
var}). The first step consists in estimating the median sea-
sonal cycles per grid cell. This operation creates a new di-
mension encoding the “day of year” (doy) as described in the
atomic function of Eq. (9):

f[{t?;g : C({lat, long, time, var}) — C({lat, long, doy, var}). (9)
In a second step, we apply an averaging function that sum-
marizes the dynamics observed at all longitudes:

f{{l(}mg} : C({lat, long, doy, var}) — C({lat, doy, var}).  (10)

The result is a cube of the form C({lat, doy, var}) describ-
ing the seasonal pattern of each variable per latitude. Fig-
ure 4 visualizes this analysis for data on GPP, air tempera-
ture (7yir), and surface moisture (SM; all references for data
streams used are provided in Appendix A). The first row vi-
sualizes GPP; on the left side, we see the Northern Hemi-
sphere, where darker colours describe higher latitudes and
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the background is the actual value of the variable. Together,
the left and right plots describe the global dynamics of phe-
nology, often referred to as the “green wave” (Schwartz,
1998). We clearly see the almost nonexistent GPP in high-
latitude winters and also find the imprint of constantly low to
intermediate productivity values at latitudes that are charac-
terized by dry ecosystems. Pronounced differences between
Northern and Southern Hemisphere reflect the very different
distribution of productive land surface.

For temperature, the observed seasonal dynamics are less
complex. We essentially find the constantly high temperature
conditions near the Equator and visualize the pronounced
seasonality at high latitudes. However, Fig. 4 also shows that
temperature peaks lag behind the June/December solstices
in the Northern Hemisphere, while in the Southern Hemi-
sphere, the asymmetry of the seasonal cycle in temperature
is less pronounced. While the seasonal temperature gradient
is a continuum, surface moisture shows a much more com-
plex pattern across latitudes, as reflected in summer/winter
depressions in certain midlatitudes. For instance, a clear drop
at, e.g. latitudes of approximately 60° N and even stronger
depressions in latitudinal bands dominated by dry ecosys-
tems.

This example analysis is intended to illustrate how the se-
quential application of two basic functions on this Earth sys-
tem data cube can unravel global dynamics across multiple
variables. We suspect that applications of this kind can lead
to new insights into apparently known phenomena, as they
allow to investigate a large number of data streams simulta-
neously and with consistent methodology.

4.2 Intrinsic dimensions of ecosystem dynamics

The main added value of the ESDL approach is its capac-
ity to jointly analyse large numbers of data streams in inte-
grated workflows. A long-standing question arising when a
system is observed based on multiple variables is whether
these are all necessary to represent the underlying dynamics.
The question is whether the data observed in ¥ € RM could
be described with a vector space of much smaller dimen-
sionality Z € R™ (where m <« M), without loss of informa-
tion, and what value this “intrinsic dimensionality” m would
have (Lee and Verleysen, 2007; Camastra and Staiano, 2016).
Note that in this context the term “dimension” has a very dif-
ferent connotation compared to the “cube dimensions” intro-
duced above.

When thinking about an Earth system data cube, the ques-
tion about its intrinsic dimensionality could be investigated
along the different axes. In this study, we ask if the multi-
tude of data streams, grid(var), contained in our Earth system
data cube is needed to grasp the complexity of the terrestrial
surface dynamics. If the compiled data streams were highly
redundant, it could be sufficient to concentrate on only a few
orthogonal variables and design the development of the study
accordingly. Starting from a cube C({lat, long, time, var}),
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Figure 4. Polar diagrams of median seasonal patterns per latitude (land only). The values of the variables are displayed as grey gradients and
scale with the distance to the centroid. For each latitude, we have a median seasonal cycle specified with the central colour code. Panels (a—
¢) show the patterns for the Northern Hemisphere; panels (d—f) are the analogous figures for the Southern Hemisphere. Here, we show the
patterns for GPP, air temperature at 2 m (7,;;), and surface moisture (SM).

we ask at each geographical coordinate if the local vector
space spanned by the variables can be compressed such that
Myar K |grid(var)|.

Estimating the intrinsic dimension of high-dimensional
data sets has been a matter of research for multiple decades,
and we refer the reader to the existing reviews on the sub-
ject (e.g. Camastra and Staiano, 2016; Karbauskaite and Dze-
myda, 2016). An intuitive approach is to measure the com-
pressibility of a data set via dimensionality reduction tech-
niques (see, e.g. van der Maaten et al., 2009; Kraemer et al.,
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2018). In the simplest case, one can apply a principal compo-
nent analysis (PCA, using different time points as different
observations) and estimate the number of components that
together explain a predefined threshold of the data variance.
In our application, we followed this approach and chose a
threshold value of 95 % of variance. The atomic function
needed for this study is described in Eq. (11):

b enay : C({lat, long, time, var}) — C({lat,long}). (1)

Earth Syst. Dynam., 11, 201-234, 2020
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(b) Long-term variability
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Figure 5. Intrinsic dimension of 18 land ecosystem variables. The intrinsic dimension is estimated by counting how many principal com-
ponents would be needed to explain at least 95 % of the variance in the Earth system data cube. The results for the original data are shown
in panel (a). The analysis is then repeated based on subsignals of each variable, representing different timescales. In panel (b), we show the
intrinsic dimension of long-term modes of variability, in (¢) for modes representing seasonal components, and (d) for modes of short-term
variability. Light grey areas indicate zones where at least one data stream was incomplete and no intrinsic dimension could be estimated

based on the same set of variables.

The output is a map of spatially varying estimates of intrin-
sic dimensions my,. We performed this study considering
the following 18 variables relevant to describing land surface
dynamics: GPP, Reco, NEE, LE, H, LAI fAPAR, black- and
white-sky albedo (each from two different sources), SMygot,
S, transpiration, bare soil evaporation, evaporation, net radi-
ation, and LST.

Figure 5 shows the results of this analysis for the origi-
nal data, where the visualized range of intrinsic dimensions
ranges from 2 to 13 (the analysis very rarely returns values
of 1). At first glance, we find that ecosystems near the Equa-
tor are of higher intrinsic dimension (up to values of 12)
compared to the rest of the land surface. In regions where
we expect pronounced seasonal patterns, the intrinsic dimen-
sionality is apparently low. We can describe these patterns
by 4-7 dimensions. One explanation is that in cases where
the seasonal cycle controls ecosystem dynamics, much of the
surface variables tend to covary. This alignment implies that
one can represent the dominant source of variance with few
components of variability. In regions where the seasonal cy-
cle plays only a marginal role, other sources of variability
dominate that are, however, largely uncorrelated.
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To verify that seasonality is the main source of variabil-
ity in our analysis, we extend the workflow by decomposing
each time series (by variable and spatial location) into a se-
ries of subsignals via a discrete fast Fourier transform (FFT).
We then binned the subsignals into short-term, seasonal, and
long-term modes of variability (as in Mahecha et al., 2010a;
Linscheid et al., 2020), which leads to an extended data cube
as we have shown in Eq. (12).

f{{ time, freq}

time} :C({lat, long, time, var})

— C({lat, long, time, var, freq}) (12)

The resulting cube is then further processed in Eq. (13)
(which is the analogue to Eq. 11) to extract the intrinsic di-
mension per timescale:

f{“ | : C({lat, long, time, var, freq}) — C({lat, long, freq}). (13)

time, var

The timescale-specific intrinsic dimension estimates only
partly confirm the initial conjecture (Fig. 5). Short-term
modes of variability always show relatively high intrinsic di-
mensions; i.e. the high-frequency components in the vari-
ables are rather uncorrelated. This finding can either be a
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Figure 6. Histogram of the intrinsic dimension estimated from
18 land ecosystem variables the Earth system data cube. The high-
est intrinsic dimension emerges in the short-term variability, while
the original data are enveloped by the complexity of seasonal and
long-term subsignals.

hint that we are seeing a set of independent processes or
simply mean noise contamination. Seasonal modes, indeed,
are of low intrinsic dimensionality, but considering that these
modes are driven essentially by solar forcing only, they are
surprisingly high dimensional. Additionally, we find a clear
gradient from the inner tropics to arid and northernmost
ecosystems. Warm and wet ecosystems seem to be character-
ized by a complex interplay of variables even when analysing
their seasonal components only (see also Linscheid et al.,
2020). One reason could be that seasonality in these regions
is only marginally relevant to the total signal, or that tropical
seasonality is inherently complicated. In the northern regions
of South America, we find that arid regions seem to have low
intrinsic seasonal dimensionality compared to more moist re-
gions.

Long-term modes of land surface variability show a rather
complex spatial pattern in terms of intrinsic dimensions:
overall, we find values between 6 and 7 (see also the sum-
mary in Fig. 6). The values tend to be higher in high-
altitude and tropical regions, whereas arid regions show low-
complexity patterns. Long-term modes of variability in land
surface variables are probably more complex than one would
suspect a priori and should be analysed deeper in the near
future.

The analysis shows how a large number of variables can be
seamlessly integrated into a rather complex workflow. How-
ever, the results should be interpreted with caution: one crit-
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icism of the PCA approach is its tendency to overestimate
the correct intrinsic dimensions in the presence of nonlin-
ear dependencies between variables. A second limitation is
that the maximum intrinsic dimensions depend on the num-
ber of Fourier coefficients used to construct the signals, lead-
ing to different theoretical maximum intrinsic dimensions
per timescale.

The question of the underlying dimensionality could also
be investigated in a different way. While this study investi-
gates the intrinsic dimensionality locally, i.e. along the di-
mensions of latitude and longitude, another recent study
based on the ESDL by Kraemer et al. (2019) used a global
PCA. Each observation is a point with coordinates “lat”,
“long” and “time”, and the aim is to compress the “var” di-
mension. The form of the analysis is the following:

f{{viff comp} :C({lat, long, time, var})

— C({lat, long, time, princomp}), (14)

and was applied to a subset of ESDL variables that describe
dynamics in terrestrial ecosystems. This study corroborates
the idea that land surface dynamics can be well represented
in a surprisingly low-dimensional space. The analysis pre-
sented by Kraemer et al. (2019) suggests globally a much
lower intrinsic dimensionality of 3 compared to what we find
here based on a grid-cell-level analysis. This number corre-
sponds to areas that are marked by a strong seasonality in
our case. This is plausible, because the areas that show high
intrinsic dimensionality in Fig. 5 are those where seasonal
variability is low compared to the high-frequency variabil-
ity (Linscheid et al., 2020). Local effects of this kind vanish
when all spatial points are jointly analysed.

4.3 Model parameter estimation in the ESDL

Another key element in supporting Earth system sciences
with the ESDL (and related initiatives) is to enable model
development, parameterization, and evaluation. To explore
this potential, we present a parameter estimation study that
considers two variables only, but it helps to illustrate the ap-
proach. In fact, the approach could be extended to exploit
multiple data streams in complex models. The example pre-
sented here quantifies the sensitivities of ecosystem respira-
tion — the natural release of CO; by ecosystems — to fluc-
tuations in temperature. Estimating such sensitivities is key
for understanding and modelling the global climate—carbon
cycle feedbacks (Kirschbaum, 1995). The following simple
model (Davidson and Janssens, 2006) is widely used as a di-
agnostic description of this process:

Ti —Tret

Reco,i = RleolO s (15)

where Reco,; 1S ecosystem respiration at time point i, and the
parameter Q1o is the temperature sensitivity of this process,
i.e. the factor by which Reco; would change by increasing
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(b) Scale dependent parameter estimation (SCAPE)
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Figure 7. Global patterns of locally estimated temperature sensitivities of ecosystem respiration Q¢ (a) via a conventional parameter esti-
mation approach and (b) via a timescale-dependent parameter estimation method. The latter reduces the confounding influence of seasonality

and leads to a fairly homogeneous map of temperature sensitivity.

(or decreasing) the temperature 7; by 10°C. An indication
of how much respiration we would expect at some given
reference temperature Tief is given by the pre-exponential
factor Rp. Under this model, one can directly estimate the
temperature sensitivities from some observed respiration and
temperature time series. Technically, this is possible, and
Eq. (16) describes a parameter estimation process as an
atomic function:

f{{par},{time} .

time,var}

C({lat, long, time, var}))
— C({lat, long, par} x C({lat, long, time}), (16)

that expects a multivariate time series and returns a parameter
vector. Figure 7a visualizes these estimates, which are com-
parable to many other examples in the literature (see, e.g.
Hashimoto et al., 2015) and depict pronounced spatial gradi-
ents. High-latitude ecosystems seem to be particularly sensi-
tive to temperature variability according to such an analysis.

However, it has been shown theoretically (Davidson and
Janssens, 2006), experimentally (Sampson et al., 2007), and
using model—data fusion (Migliavacca et al., 2015), that the
underlying assumption of a constant base rate is not justi-
fied. The reason is that the amount of respirable carbon in
the ecosystem will certainly vary with the supply, and hence
phenology, as well as with respiration-limiting factors such
as water stress (Reichstein and Beer, 2008). In other words,
ignoring the seasonal time evolution of R;, leads to substan-
tially confounded parameter estimates for Q1.

One generic solution to the problem is to exploit the vari-
ability of respiratory processes at short-term modes of vari-
ability. Specifically, one can apply a timescale-dependent
parameter estimation (SCAPE; Mahecha et al., 2010b), as-
suming that R, varies slowly, e.g. on a seasonal and slower
timescale. This approach requires some time series decom-
position as described in Sect. 4.2. The SCAPE idea requires
to rewrite the model, after linearization, such that it allows
for a time-varying base rate:
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T; — Tret

InReco i =InRy ; ~I—Tln Q0. 17
The discrete spectral decomposition into frequency bands of
the log-transformed respiration allows to estimate In Q¢ on
specific timescales that are independent of phenological state
changes (for an in-depth description, see Mahecha et al.,
2010b, supporting materials). Conceptually, the model es-
timation process now involves two steps (Egs. 18 and 19):
a spectral decomposition where we produce a data cube of
higher order,

f{{time’freq} :C({lat, long, time, var})

time}

— C({lat, long, time, var, freq}), (18)

followed by the parameter estimation, which differs from the
approach described in Eq. (16), as this approach only returns
a singular parameter (Q1¢), whereas In R, ; now becomes a
time series:

{}.{time}
i

me, var, freq

| :C({lat, long, time, var, freq})
— C({lat,long}) x C({lat, long, time}).  (19)

The results of the analysis are shown in Fig. 7b, where we
find generally a much more homogeneous and better con-
strained spatial pattern of Q1. As suggested in the site-level
analysis by Mahecha et al. (2010b) and later by others (see,
e.g. Wang et al., 2018), we find a global convergence of the
temperature sensitivities. We also find that, e.g. semi-arid and
savanna-dominated regions clearly show lower apparent Q19
(Fig. 7a) compared to the SCAPE approach (Fig. 7b). Dis-
cussing these patterns in detail is beyond the scope of this pa-
per, but in general terms these findings are consistent with the
expectation that in semi-arid ecosystems confounding factors
act in the opposing direction (Reichstein and Beer, 2008).
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Figure 8. Bivariate histograms summarizing the joint distribution of surface moisture and gross primary production. The estimates are
computed over the entire time series for the different Intergovernmental Panel on Climate Change (IPCC) regions. The density is square root
transformed to emphasize areas of higher density. In arid regions (e.g. CAM, NEB, WAF, SAFM, EAF), the tight relation between surface

water and primary production is evident.

From a more methodological point of view, this research
application shows that it is well possible to implement a mul-
tistep analytic workflow in the ESDL that combines time se-
ries analysis and parameter estimation. Once the analysis is
implemented, it requires essentially two sequential atomic
functions. The results obtained have the form of a data cube
and could be integrated into subsequent analyses. Examples
include comparisons with in situ data, ecophysiological pa-
rameter interpretations, or assessment of parameter uncer-
tainty in more detail. As mentioned above, this case study
only considers two variables and thereby does not exploit the
wider multivariate potential of the ESDL. The example of
temperature sensitivity could easily be combined with further
estimations of water stress, linked to primary production, or
even become part of a simple terrestrial surface scheme.

www.earth-syst-dynam.net/11/201/2020/

4.4 Bivariate relations in vector cubes

The original idea of the data cube concept emerged from the
need for working with large multivariate gridded data sets.
However, the idea of data cubes can be possibly extended
to other types of geographical data. One example is vector
data cubes, where, e.g. polygons form an axis in their own
right and each polygon points to a complex spatial shape.
Consider, for instance, the need for statistical inferences on
the spatial polygons often used in Intergovernmental Panel
on Climate Change (IPCC) reports. One relevant question is,
for example, understanding the relations of GPP and surface
moisture. Figure 8 shows the bivariate histograms between
both variables within a selected set of regions. This analysis
clearly shows that in many regions of the world, GPP and
surface moisture are strongly coupled. Examples are Cen-
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tral America/Mexico (CAM), north-east Brazil (NEB), west
Africa (WAF), southern Africa (SAF), east Africa (EAF),
south Asia (SAS), or south Australia/New Zealand (SAU).
All of these regions contain significant fractions of semi-arid
climates, which can explain the constraints that water avail-
ability has on photosynthetic CO; uptake. In other regions,
this relation is less obvious and often not pronounced, prob-
ably because the cases of water shortage are rare compared
to the normal dynamics that might be constrained by other
factors such as temperature. From a computational point of
view, this example follows a very different logic, compared
to the concept of applying an UDF on some of the cube
axis. Rather, this example was computed using an “online”
approach which sequentially updates some statistics (here
the bivariate histograms) over a given class (here the IPCC
regions). Such an approach allows calculations with large
amounts of data and shows that the ESDL framework can
also be coupled with conceptually very different analytical
frameworks that might be particularly relevant when work-
ing with living data, i.e. with data streams that are constantly
updated. In these cases, it is not desirable to constantly re-
estimate all relevant quantities across the entire data cube.

5 Discussion

In the following, we describe the insights gained during the
development of the concept and the implementation of the
ESDL, addressing issues arising and critiques expressed dur-
ing our community consultation processes. We also briefly
discuss the ESDL in light of other developments in the field.
Finally, we highlight some challenges ahead and proposed
future applications.

5.1 Insights and critical perspectives

During a community consultation process across various
workshops and summer schools, users expressed confu-
sion about the equitable treatment of data cube dimensions
(Sect. 2). Considering that an unordered nominal dimension
of “variables” is a dimension as “time” or “latitude” seems
counterintuitive at first glance. Also, concerns have been ex-
pressed about whether “time” can be treated analogously to,
e.g. “latitude”. Our main argument during the development
of the ESDL was that it is possible, as long as the UDFs are
not applied to dimensions where they would produce non-
sense results. But the practical arguments for a common in-
terface prevail. Also, and this is key, the concept and im-
plementation are sufficiently flexible to allow users to de-
ploy a more classical approach to deal with such data, e.g.
analysing variables separately, or writing specific UDFs that
specifically require spatial or temporal dimensions. However,
for research examples structured like the second use case
(Sect. 4.2), the proposed approach was key, as it is allowed to
efficiently navigate through the variable dimension. It is ob-
viously irrelevant to algorithms of dimensionality reduction

Earth Syst. Dynam., 11, 201-234, 2020

M. D. Mahecha et al.: The Earth System Data Lab concept

which dimension is compressed, and we could have equally
asked the question in time domain or across a spatial dimen-
sions, which relates to the well-known empirical orthogo-
nal functions (EOFs) as used in climate sciences (Storch and
Zwiers, 1999). In exploratory approaches of this kind, where
there is no prior scientific basis for presupposing where the
“information-rich zones” are in the data cube, a dimension-
agnostic approach clearly pays off. We also favour this idea
as it is in-line with other approaches discussed in the com-
munity. For instance, the “data cube manifesto” (Baumann,
2017) states that “datacubes shall treat all axes alike, irre-
spective of an axis having a spatial, temporal, or other se-
mantics”, a principle that we have radically implemented in
the ESDL. j1 Julia package (Sect. 3). The flexibility we gain
is that we are, in principle, prepared for comparable cases
where one has to deal with, e.g. multiple model versions,
model ensemble members, or model runs based on varying
initial conditions.

One of the most commonly expressed practical concerns is
the choice of a unique data grid. The curation of multiple data
streams within such a data cube grid requires that many data
have to undergo reformatting and/or remapping. Of course,
this can be problematic at times, in particular when data have
been produced for a given spatial or temporal resolution and
cannot be remapped without violating basic assumptions. For
instance, keeping mass balances, integrals of flux densities,
and global moments of intensive properties as consistent as
possible should always be a priority. However, for the data
cube approach implemented here, we decided to accept cer-
tain simplifications. The availability of a multitude of rele-
vant data to study Earth system dynamics is a key incentive
to use the ESDL and goes far beyond many disciplinary do-
mains. But, as we have learned in this discussion, it comes
at the price of some pragmatic trade-offs. A fundamental ad-
vancement of our approach would be to natively deal with
data streams from unequal grids.

The current notation of the concept has been criticized for
being unsuitable for dealing with so-called vector data cubes
(Pebesma and Appel, 2019). Indeed, other conceptual ap-
proaches are more suited than ours to treat such examples
(see, e.g. Gebbert et al., 2019). But the research example
briefly described in Sect. 4.4 and Fig. 8 does showcase such a
possibility. In this case, the idea of mapping a single function
across some dimensions cannot be trivially realized, but it
opens novel perspectives to compute statistics based on very
big data. Further research needs to be done on developing the
ESDL in such directions because it would allow not only for
dealing with big data issues but also to update statistics with-
out having to recompute data processed in earlier steps. This
can solve the challenges of dealing with “living data”.

One of the main concerns expressed by users, in particular
by 30 young researchers who participated in the project dur-
ing an early adopter phase, is the demand for the latest data
in the ESDL. This is why the concept presented here and
its implementation should be further developed into a persis-
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tent infrastructure. Such a step is challenging and there is a
trade-off to be made between wishing to include latest data
streams (ideally even in near-real time) and constantly ex-
panding the access API and portfolio of example workflows.
The ESDL thus depends on the enduring enthusiasm of the
user community and funding agencies to support the idea in
this respect and grow steadily into new domains, help us add
data streams, and actively co-develop the approach.

5.2 Relation to other initiatives and platforms

Over the past few years, several initiatives, platforms, and
software solutions (Lu et al., 2018; Sudmanns et al., 2019)
have emerged based on similar considerations as those moti-
vating the Earth System Data Lab. Some of these platforms
and software solutions are explicitly constructed around the
idea of data cubes (e.g. Baumann et al., 2016; Lewis et al.,
2017; Appel and Pebesma, 2019). Nevertheless, the concept
of “data cube” is still not fully consolidated in the Earth sys-
tem science. It was only in 2019 that the Open Geospatial
Consortium (OGC) opened a public discussion towards es-
tablishing standards for data cubes.

Among the other existing initiatives, the Climate Data
Store (CDS) of the Copernicus Climate Change Service
(https://cds.climate.copernicus.eu/, last access: 21 Febru-
ary 2020) is conceptually probably the closest one to the
ESDL. The CDS was primarily designed as key infrastruc-
ture to analyse climate reanalysis data and related variables.
These data often require to be analysed at very high temporal
resolutions (e.g. using hourly time steps). The CDS offers a
similar Python interface to analyse these data. Likewise, the
Google Earth Engine (GEE; https://earthengine.google.com,
last access: 21 February 2020; Gorelick et al., 2017) is
probably the most widely known platform for implementing
global-scale analytics. GEE offers access to a wide range of
satellite data archives and increasingly also to climate data
in their native resolutions. One strength of GEE is the mas-
sive computing power offered to the scientist, such that some
use cases nicely showcased the power of the infrastructure.
The user has a wide range of predefined operators available
that can be used and coupled to build workflows that are
particularly suitable for time series. Another recent develop-
ment in the field is the Open Data Cube (ODC; https://www.
opendatacube.org/, last access: 21 February 2020; formerly
Australian Data Cube; Lewis et al., 2017). This project was
initially designed to offer access to the well-processed re-
mote sensing data over Australia with an emphasis on the
Landsat archive. In the past years, the ODC technology was
used to implement regional data cubes for Colombia (CDCol;
Ariza-Porras et al., 2017; Bravo et al., 2017), Switzerland
(SDC; http://www.swissdatacube.org/, last access: 21 Febru-
ary 2020; Giuliani et al., 2017), and Armenia (Asmaryan
et al., 2019), among many other countries. The aim of the
open-access ODC is also to effectively enable access to
time series data from high-resolution data archives, targeting
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mainly changes in land surface properties. The ESDL has de-
veloped into a conceptually different direction than most of
the other initiatives that make it unique.

First, we note that most of the data cube initiatives were
motivated by the need to access and/or analyse big, e.g. very-
high-resolution, data (Lewis et al., 2017; Nativi et al., 2017;
Giuliani et al., 2019). Initially, this problem was not in the
focus of the ESDL, which rather aimed at downstream data
products. Our data cube approach primarily intends to sup-
port the joint exploitation of multiple data streams efficiently.
This multivariate focus is rarely found as a key design ele-
ment in the other approaches.

Second, most initiatives intend to preserve the resolutions
of the underlying data. The ESDL, instead, is built around
singular data cubes that then include variables as an ad-
ditional dimension. The inevitable trade-off, as discussed
above, is the need for a data curation and remapping process
prior to the analyses.

Third, there is a wide consensus that data cube technolo-
gies need to enable the application of UDFs. However, at this
stage, this aspect often appears not to be a priority of other
data cube initiatives and, consequently, users are restricted in
their analysis by the available tools. In this context, we see
the strength of the ESDL, as it allows for the development of
complex workflows and adding arbitrary functionalities effi-
ciently. This is actually one reason why we decided to im-
plement the ESDL in the quite young language of scientific
computing Julia (side by side with the more commonly used
Python tools).

Taken together, the ESDL has probably conceptually de-
veloped (and implemented) the most radical cubing principle
following a strict dimension agnostic approach. We envisage
that the ESDL front end could be coupled to a data cube tech-
nology as proposed by any of the other initiatives to combine
its analytic strength with the efficiencies achieved by others
in dealing with high-resolution data streams.

5.3 Priorities for future developments

During the development of the ESDL, we identified several
methodological challenges on the one hand and, on the other,
application domains that could be addressed. With regard
to potentially relevant methodological paths, we can only
briefly mention, with no claim to completeness, some of the
most ardently and widely discussed topics:

— Machine learning. Data-driven approaches have always
been part of the DNA of Earth system sciences (see clas-
sical textbooks, e.g. Storch and Zwiers, 1999) and clas-
sically complement process-driven modelling efforts
(Luo et al., 2012). However, with the rise of modern ma-
chine learning, new perspectives have emerged (Mjol-
sness and DeCoste, 2001; Hsieh, 2009). Depending on
the purpose, we find purely exploratory analysis based
on, e.g. nonlinear dimensionality reduction (Mahecha
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et al., 2010a) or predictive techniques (Jung et al., 2009)
being transferred from computer sciences to the Earth
system sciences. Today, deep learning is on everybody’s
lips and could mark one step forward in Earth system
science (Karpatne et al., 2018; Shen et al., 2018; Bergen
et al., 2019; Reichstein et al., 2019). Through providing
an easy access to relevant data streams, the Earth sys-
tem data cube idea may attract further researchers from
data sciences into the field. It furthermore provides the
perfect platform for studying complex tasks such as de-
tecting multidimensional extreme events (Flach et al.,
2017), characterization of information content and de-
pendencies in the data with information-theoretic mea-
sures (Sippel et al., 2016), or causal inference (Runge
etal., 2019; Pearl, 2009; Peters et al., 2017; Christiansen
and Peters, 2020; Krich et al., 2019). We believe that
the clear and easy-to-use interface of the ESDL ren-
ders it well suited for being part of machine learning
challenges such as the ones organized by Kaggle (https:
/Iwww.kaggle.com/competitions, last access: 21 Febru-
ary 2020) or during premier conferences of the field.

Spatial interactions. For interpreting the interactions
and mechanisms of the land and ocean, or land and at-
mosphere that involve lateral transport, the ESDL would
require more developments. Statistical approaches like
spatial network analyses (e.g. Donges et al., 2009; Boers
etal., 2019) or process-oriented ideas like explicit mois-
ture transport (e.g. Wang-Erlandsson et al., 2018) would
be very valuable to be explored but would require a sub-
stantial rethinking of the actual implementation in order
to achieve high performance.

Model evaluation and benchmarking. Our third use case
(Sect. 4.3) illustrates the suitability of the ESDL for pa-
rameter estimation and model evaluation purposes. To-
day, typical model evaluation frameworks in the Earth
system sciences prepare predefined benchmark met-
rics on some reference data sets (Luo et al., 2012).
Prominent examples are the benchmarking tools await-
ing the sixth phase of the Coupled Model Intercom-
parison Project (CMIP6) model suites (Eyring et al.,
2019). However, these model evaluation frameworks
typically do not give the user the full flexibility to ap-
ply some user-defined metrics to the model ensemble
under scrutiny. We believe that mapping UDFs on such
big Earth system model output could greatly benefit the
development of novel evaluation metrics in the near fu-
ture. Building data cubes from multi-model ensembles
would be straightforward, as different models or ensem-
bles would simply lead to one additional dimension in
our setup. In fact, the ESDL approach is perfectly suited
to handle, e.g. the output of the actual CMIP data, as we
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have already exemplified”. Of course, any other model
ensembles can be treated analogously.

In terms of application domains, we see high potential in
the following areas:

— Human—environment interactions. Addressing the com-

plexities of human—environment interactions (Schimel
et al., 2015) is a particular challenge. Making the ESDL.
fit for this purpose would require integrating a vari-
ety of (at least) spatially explicit population estimates
(Doxsey-Whitfield et al., 2015) and socioeconomic data
Smits and Permanyer (2019). The latter represent a fun-
damentally novel development that has great potential
for understanding, e.g. dynamics of disaster impacts
(Guha-Sapir and Checchi, 2018), among other issues.
In fact, this integration is a grand challenge ahead (Ma-
hecha et al., 2019) but not out of reach for the ESDL.

— Biodiversity research. Another question of high soci-

etal relevance is to understand how patterns of bio-
diversity affect ecosystem functioning (Emmett Duffy
et al., 2017; Garcia-Palacios et al., 2018). In light of
a global decline in species richness (see latest global
reports; https://www.ipbes.net/, last access: 21 Febru-
ary 2020), this question is of uttermost importance. The
ESDL is only partly fit for this purpose, as it would re-
quire the ingestion of a wide range of essential biodi-
versity variables (Pereira et al., 2013; Skidmore et al.,
2015), beyond the ones we have already available. But
still, the ESDL is conceptually prepared to deal with
these challenges (compare, e.g. the demands described
in Hardisty et al., 2019) and would be particularly suit-
able for relating biodiversity patters to the so-called
ecosystem function properties (Reichstein et al., 2014;
Musavi et al., 2015). In fact, in the regional applica-
tion of the ESDL, we have focused on Colombia and
its wider region to explore linkages of this kind relying
on remote-sensing-derived variables that are relevant for
this context.

— Oceanic sciences. Extending the ESDL for ocean data

is desired and conceptually possible. Surface parame-
ters, e.g. phytoplankton phenology derived from remote
sensing (Racault et al., 2012), can be treated analo-
gously to terrestrial surface parameters. Other dynam-
ics, e.g. the analysis and exploration of ocean—land cou-
pling mechanisms, ocean—atmosphere interactions, and
land—atmosphere interactions triggered by ocean circu-
lation dynamics, could in principle be facilitated via the
ESDL but require either vertical or lateral dynamics.

— Solid Earth. The step towards global, fully data in-

formed model data is also made in geophysics. For

2https:// gist.github.com/meggart/

2d544be2c1368£8774d0a21ea4633985 (last access: 21 Febru-
ary 2020).
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instance, recently Afonso et al. (2019) used an inver-
sion approach to develop a 3-D model that fully de-
scribes multiple parameters in the Earth interior, in-
cluding, e.g. crustal and lithospheric thickness, average
crustal density, and a depth-dependent density of the
lithospheric mantle, among other variables. They pro-
posed a tool allowing for inspecting the data interac-
tively at a spatial resolution of 2° x 2° grid at different
depths. Clearly, in this case, other dimensions are rel-
evant, but the principle remains the same and, in fact,
can be treated in a very similar manner. Future model—
data assimilation approaches of this kind could be per-
formed in the context of the ESDL, as well as the afore-
mentioned machine learning for the solid Earth (Bergen
etal., 2019).

In summary, we have demonstrated that the ESDL is a
flexible and generic framework that can allow various dif-
ferent communities to explore and analyse large amounts
of gridded data efficiently. Thinking about the potential
paths ahead, the ESDL could become a valuable tool in
various fields of Earth system sciences, biodiversity re-
search, computer sciences, and other branches of science.
The widespread social and political uptake of the concept of
planetary boundaries (Rockstrom et al., 2009; Steffen et al.,
2015) underlines the global demand for better quantified pro-
cess understanding of environmental risks and resource bot-
tlenecks based on empirical evidence. Along these lines, the
ESDL concept could be used to address some of the most
pressing global challenges. For example, it could become
an interface for direct interaction with ECVs, global climate
projections, and EBVs. Such an interactive interface would
allow a much broader community to better understand the
data underlying the global assessment reports of the IPCC
(IPCC, 2014) and Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services (IPBES) (Diaz
et al., 2019). If coupled to some visual interfaces, the ESDL
could also be used by a broader community, enhancing ed-
ucation, communication, and decision-making process, con-
tributing to knowledge democratization about a deeper un-
derstanding of the complex and dynamic interactions in the
Earth system.
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6 Conclusions

Exploiting the synergistic potential of multiple data streams
in the Earth sciences beyond disciplinary boundaries requires
a common framework to treat multiple data dimensions,
such as spatial, temporal, variable, frequency, and other grids
alike. This idea leads to a data cube concept that opens novel
avenues to efficiently deal with data in the Earth system sci-
ences. In this paper, we have formalized the concept of data
cubes and described a way to operate on them. The outlined
dimension-agnostic approach is implemented in the Earth
System Data Lab, which enables users applying a wide range
of functions to all thinkable combinations of dimension. We
believe that this idea can dramatically reduce the barrier to
exploit Earth system data and serves multiple research pur-
poses. The ESDL complements a range of emerging initia-
tives that differ in architectures and specific purposes. How-
ever, the ESDL is probably the most radical data cubing
approach, offering novel opportunities for cross-community
data-intensive exploration of contemporary global environ-
mental changes. Future developments in related branches of
science and latest methodological developments need to be
considered and addressed soon. At its actual state of imple-
mentation, the ESDL can already contribute to the deeper
understanding and more effective implementation of policy-
relevant concepts such as the planetary boundaries, essential
variables in different subsystems of the Earth, and global as-
sessment reports. We see a particularly high future potential
for data cube concepts as presented for, firstly, interpreting
large-scale model ensembles, and secondly, analysing new
multispectral satellite remote sensing data with their con-
stantly increasing spatial, temporal, and spectral resolutions.
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Appendix A: Data streams in the Earth System Data
Lab

In the following, we give an overview of the actually avail-

able variables in the Earth System Data Lab. The list is con-
stantly being updated.
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Table A1. Data streams in the current implementation of the ESDL.
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Domain

Variable Short Coverage

Description

References

Atmosphere

2001-
2011

2 m temperature Tom

The 2m air temperature data ([T ,] =K) are
part of the ERA-Interim reanalysis product and
therefore produced by data assimilation tech-
niques in combination with a forecast model.
The original spatial sampling (T255 spectral
resolution) approximates to 80 km and the orig-
inal temporal sampling is 6 h for analyses and
3 h for forecasts.

Dee et al. (2011)

Atmosphere

2002—
2012

Aerosol optical
thickness at
550 nm

AOD550

The ESA CCI aerosol optical thickness (depth)
data sets were created by using algorithms
which were developed in the ESA aerosol_cci
project. The data used here were created from
Advanced Along-Track Scanning Radiometer
(AATSR) measurements (ENVISAT mission)
using the algorithm and represent total column
AOD at the specified wavelength. Horizontal
resolution of the daily data is 1° x 1° on a
global grid.

Holzer-Popp
et al. (2013)

Atmosphere

2002—
2012

Aerosol optical
thickness at
555nm

AOD555

The ESA CCI aerosol optical thickness (depth)
data sets were created by using algorithms
which were developed in the ESA aerosol_CCI
project. The data used here were created from
AATSR measurements (ENVISAT mission) us-
ing the ... algorithm and represent total column
AOD at the specified wavelength. Horizontal
resolution of the daily data is 1° x 1° on a
global grid.

Holzer-Popp
et al. (2013)

Atmosphere

2002-
2012

Aerosol optical
thickness at
659 nm

AODgs9

The ESA CCI aerosol optical thickness (depth)
data sets were created by using algorithms
which were developed in the ESA aerosol_cci
project. The data used here were created from
AATSR measurements (ENVISAT mission) us-
ing the ... algorithm and represent total column
AOD at the specified wavelength. Horizontal
resolution of the daily data is 1° x 1° on a
global grid.

Holzer-Popp
et al. (2013)

Atmosphere

2002—-
2012

Aerosol optical
thickness at
865 nm

AODggs

The ESA CCI aerosol optical thickness (depth)
data sets were created by using algorithms
which were developed in the ESA aerosol_cci
project. The data used here were created from
AATSR measurements (ENVISAT mission) us-
ing the ... algorithm and represent total column
AOD at the specified wavelength. Horizontal
resolution of the daily data is 1° x 1° on a
global grid.

Holzer-Popp
et al. (2013)

Atmosphere

2002—
2012

Aerosol optical
thickness at
1610 nm

AODj610

The ESA CCI aerosol optical thickness (depth)
data sets were created by using algorithms
which were developed in the ESA aerosol_cci
project. The data used here were created from
AATSR measurements (ENVISAT mission) us-
ing the ... algorithm and represent total column
AOD at the specified wavelength. Horizontal
resolution of the daily data is 1° x 1° on a
global grid.

Holzer-Popp
et al. (2013)
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Domain

Variable

Short

Coverage

Description

References

Biosphere

Gross primary
productivity

GPP

2001-
2012

By training an ensemble of machine learn-
ing algorithms with eddy covariance data from
FLUXNET and satellite observations in a cross-
validation approach, regressions from these ob-
servations to different kinds of carbon and en-
ergy fluxes were established and used to gener-
ate data sets with a spatial resolution of 5 arcmin
and a temporal resolution of 8 d. The GPP re-
sembles the total carbon release of the ecosys-
tem through respiration and is expressed in
units of gC m~2d-1

Tramontana
et al. (2016)

Biosphere

Net ecosystem
exchange

NEE

2001-
2012

By training an ensemble of machine learn-
ing algorithms with eddy covariance data from
FLUXNET and satellite observations in a cross-
validation approach, regressions from these ob-
servations to different kinds of carbon and en-
ergy fluxes were established and used to gener-
ate data sets with a spatial resolution of 5 arcmin
and a temporal resolution of 8d. The NEE re-
sembles the net carbon exchange between the
ecosystem and the atmosphere and is expressed
in units of gC m—2d-1

Tramontana
et al. (2016)

Land

Latent energy

LE

2001-
2012

By training an ensemble of machine learn-
ing algorithms with eddy covariance data from
FLUXNET and satellite observations in a cross-
validation approach, regressions from these ob-
servations to different kinds of carbon and en-
ergy fluxes were established and used to gener-
ate data sets with a spatial resolution of 5 arcmin
and a temporal resolution of 8 d. The LE resem-
bles the latent heat flux from the surface and is
expressed in units W m~2,

Tramontana
etal. (2016)

Land

Sensible heat

2001-
2012

By training an ensemble of machine learn-
ing algorithms with eddy covariance data from
FLUXNET and satellite observations in a cross-
validation approach, regressions from these ob-
servations to different kinds of carbon and en-
ergy fluxes were established and used to gener-
ate data sets with a spatial resolution of 5 arcmin
and a temporal resolution of 8d. The H resem-
bles the sensible heat flux from the surface and
is expressed in units of W m~—2,

Tramontana
et al. (2016)

Land

Monthly burnt
area

Burnt area

1995—-
2014

This data set was taken from the fourth
generation of the Global Fire Emissions
Database (GFED4). It was created as a combi-
nation of data from infrared sensor satellite ob-
servations and resembles the estimated monthly
burnt area in hectares. The spatial resolution of
this data set is 0.25°. Small fires were exempt
in the production of the data.

Giglio et al. (2013)

Earth Syst.
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Domain Variable Short

Coverage

Description

References

Land Carbon dioxide Emission
emissions due

to natural fires

expressed as

carbon flux

2001-
2010

This data set was taken from the fourth
generation of the Global Fire Emissions
Database (GFED4). It was created by applying
a model based on the Carnegie—Ames—Stanford
approach (CASA) to the burnt area estimates
and has the same temporal (monthly) and spa-
tial (0.25°) resolution as the monthly burnt
area data set and expresses the carbon diox-
ide emissions of natural fires as a carbon flux
(gC m~2d~!). Small fires were included in this
approach.

Giglio et al. (2013),
van der Werf et al. (2017)

Land Evaporation E

2001-
2011

The GLEAM data sets are created by using
a set of algorithms, input forcing data sets
from reanalyses, optical and microwave satel-
lites, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.

Martens et al. (2017),
Miralles et al. (2011)

Land Evaporative N

stress factor

2001-
2011

The GLEAM data sets are created by using
a set of algorithms, input forcing data sets
from reanalyses, optical and microwave satel-
lites, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.

Martens et al. (2017),
Miralles et al. (2011)

Land Potential Ep

evaporation

2001-
2011

The GLEAM data sets are created by using
a set of algorithms, input forcing data sets
from reanalyses, optical and microwave satel-
lites, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.

Martens et al. (2017),
Miralles et al. (2011)

Land Interception loss  Ej

2001-
2011

The GLEAM data sets are created by using
a set of algorithms, input forcing data sets
from reanalyses, optical and microwave satel-
lites, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.

Martens et al. (2017),
Miralles et al. (2011)
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Table A1. Continued.

Domain Variable Short Coverage  Description References
Land Root-zone soil moisture  SM;oot 2001- The GLEAM data sets are created by using Martens et al. (2017),
2011 a set of algorithms, input forcing data sets Miralles et al. (2011)

from reanalyses, optical and microwave satel-
lites, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.

Land Surface soil moisture SMgurf 2001- The GLEAM data sets are created by using Martens et al. (2017),
2011 a set of algorithms, input forcing data sets Miralles et al. (2011)
from reanalyses, optical and microwave satel-
lites, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.

Land Bare soil evaporation Ey 2001- The GLEAM data sets are created by using Martens et al. (2017),
2011 a set of algorithms, input forcing data sets Miralles et al. (2011)
from reanalyses, optical and microwave satel-
lites, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.

Land Snow sublimation Eq 2001- The GLEAM data sets are created by using Martens et al. (2017),
2011 a set of algorithms, input forcing data sets Miralles et al. (2011)
from reanalyses, optical and microwave satel-
lites, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.

Land Transpiration E¢ 2001- The GLEAM data sets are created by using a  Martens et al. (2017),
2011 set of algorithms, input forcing data sets from  Miralles et al. (2011)
reanalyses, optical and microwave satellite sen-
sors, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.
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Domain

Variable

Short

Coverage

Description

References

Land

Open-water
evaporation

Ey

2001-
2011

The GLEAM data sets are created by using a
set of algorithms, input forcing data sets from
reanalyses, optical and microwave satellite sen-
sors, and other merged sources. The model it-
self consists of four modules: potential evapo-
ration (Priestley—Taylor equation), interception
(Gash analytical model), soil (multilayer soil
model plus data assimilation), and stress (semi-
empirical). The data are sampled on a graticule
of 0.25° and have a daily temporal coverage.

Martens et al. (2017),
Miralles et al. (2011)

Land

White-sky
albedo for visible
wavelengths

BHR_VIS

1998—
2012

White-sky albedo, also known as bihemispheri-
cal reflectance (only diffuse illumination), esti-
mated from satellite radiometer data. The spa-
tial resolution of this product is 1km with a
temporal sampling of 8 d.

Lewis et al. (2012)

Land

Black-sky albedo
for visible
wavelengths

DHR_VIS

1998—
2012

Black-sky albedo, also known as directional—
hemispherical reflectance (only direct illumina-
tion), estimated from satellite radiometer data.
The spatial resolution of this product is 1km
with a temporal sampling of 8 d.

Lewis et al. (2012)

Water

Fractional snow
cover

MFSC

2003—
2013

Global fractional snow cover product us-
ing mainly satellite infrared radiometer data
(ATSR-2, AATSR). Glaciers, continental ice
shields, and snow on ice are exempt from the
data. Values stand for the percentage of the area
of a grid cell covered by snow integrated over
time (daily, weekly, or monthly). The spatial
resolution is 1 km.

Luojus et al. (2010),
Metsamaiki et al. (2015)

Water

Snow water
equivalent

SWE

1980-
2012

Snow water equivalent product covering the
Northern Hemisphere (35-85° N), created by
using microwave sensor data (SMMR, SSM/I,
SSMIS). Glaciers, continental ice shields, and
mountainous regions are exempt from the data.
Values stand for the water equivalent of snow
per grid cell in millimetres aggregated over time
(daily, weekly, or monthly). The weekly data
are produced by giving every day the mean
value of a sliding window (—6d). The monthly
data are given as the weekly mean and maxi-
mum per calendar month. The spatial resolution
is approximately 25 km.

Luojus et al. (2010)

Land

Land surface
temperature

LST

2002-
2011

The GlobTemperature Land Surface Tempera-
ture product used here is a product of a satel-
lite infrared radiometer (AATSR). It has global
coverage with a spatial sampling of 0.05° and
consists of two measurement averages (day and
night). The values are an approximation of the
average land surface temperature per grid cell
in K. It is an improved version of the ESA
AATSR data set (UOL_LST_3P, v2.1).

Ghent (2012)
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Table A1. Continued.

Domain Variable Short Coverage  Description References
Atmosphere Total column water vapour TCWV 1996— The TCWYV product was derived through com-  Schroder et al. (2012),
2008 bination of various satellite spectrometer and  Schneider et al. (2013)

microwave sensor data sets. It resembles the
total mass of water contained in a column
of air from the surface to 200hPa. The unit
is kgm’z, the spatial sampling is 0.5°, and
the data are provided as daily composites.
From 1996 to 2002 (inclusive), the data consist
of weekly/monthly means.

Atmosphere Precipitation Precip 1980— The Global Precipitation Climatology Adler et al. (2003),
2015 Project (GPCP) Huffman et al. (2009)
Atmosphere Mean total ozone column Ozone 1996— The total ozone column data from the Ozone Van Roozendael et al. (2012),
2011 CCI project is derived from the Global Ozone Lerot et al. (2014)

Monitoring Experiment (GOME) spectrome-
ter acquisitions. For the ESDL, level 2 data
have been used. They are given in Dobson
units (DU) and have a spatial resolution of
320km x 40km. The temporal resolution de-
pends on the latitude, with the longest revisit
time being 3 d at the Equator.

Land Fraction of absorbed photo- fAPAR_ TIP 1982— The fAPAR, describing the amount and produc-  Disney et al. (2016),
synthetically active radiation 2016 tivity of vegetation, was derived by using atwo-  Blessing and Low (2017)
stream inversion package (TIP) method based
on the two-stream model developed by Pinty
et al. (2006). The product is delivered in two
spatial resolutions (0.05 and 0.5°) and with a
daily temporal coverage.

Land Leaf area index LAI 1982— The LAI, defined as half the total canopy area  Disney et al. (2016),
2016 per unit ground area (m? m~2), was derived by Blessing and Low (2017)
using a TIP method based on the two-stream
model developed by Pinty et al. (2006). The
product is delivered in two spatial resolutions
(0.05 and 0.5°) and with a daily temporal cov-

erage.
Land White-sky albedo for visible BHR_VIS 1982— White-sky albedo, also known as bihemispheri-  Lewis et al. (2012),
wavelengths from AVHRR 2016 cal reflectance (only diffuse illumination), esti-  Danne et al. (2017)

mated from satellite radiometer data. This data
set extends the GlobAlbedo data by using addi-
tional input data sources (Advanced Very High
Resolution Radiometer (AVHRR), geostation-
ary satellites). The product is delivered in two
spatial resolutions (0.05 and 0.5°) and with a
daily temporal coverage.

Land Black-sky albedo for visible DHR_VIS 1982~ Black-sky albedo, also known as directional- Lewis et al. (2012),
wavelengths from AVHRR 2016 hemispherical reflectance (only direct illumina-  Danne et al. (2017)
tion), estimated from satellite radiometer data.
This data set extends the GlobAlbedo data by
using additional input data sources (AVHRR,
geostationary satellites). The product is deliv-
ered in two spatial resolutions (0.05 and 0.5°)
and with a daily temporal coverage.

Land Fraction of absorbed photo- fAPAR 1982— The AVHRR-derived fAPAR, describing the  Gobron et al. (2017)
synthetically active radiation _AVHRR 2006 amount and productivity of vegetation, was de-
from AVHRR rived from AVHRR black-sky albedo data. The

product is delivered in two spatial resolutions
(0.05 and 0.5°) and with a daily temporal cov-
erage.
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Table A1. Continued.

Domain Variable Short Coverage Description References
Land Soil moisture SM 1978- The ESA CCI soil moisture data combine vari- Liu et al. (2012),
2017 ous active and passive microwave sensors intoa  Dorigo et al. (2017),

homogenized product. It represents the soil wa- ~ Gruber et al. (2017)
ter content in the upper 5cm of the soil, pro-

duced at a spatial sampling of 0.25° and a tem-

poral sampling of 1d. Gaps exist in periods of

snow cover or frozen conditions and in areas

with very dense vegetation.

www.earth-syst-dynam.net/11/201/2020/ Earth Syst. Dynam., 11, 201-234, 2020




228

Code availability. All code necessary to build and analyse the
ESDL is available from https://github.com/esa-esdl (last access:
21 February 2020) (Fomferra, 2020). The case studies pre-
sented in Sect. 4 can be fully reproduced from https://github.
com/esa-esdl/ESDLPaperCode.jl (last access: 21 February 2020),
https://doi.org/10.5281/zenodo.3670743 (Gans, 2020).

Data availability. All data are available via  https:
/Iwww.earthsystemdatalab.net/ (last access: 21 February 2020) or
from the original data providers as indicated in Table Al in the

paper.
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