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and they allow for unsupervised event detection in a natural way. Various OCC

schemes have been tested and compared, and additionally, an approach based on the
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challenging publicly available thermal video data-set. The results are promising and

show the suitability of our approaches for the task of temporal video segmentation.
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1. INTRODUCTION

In many computer vision applications, like surveillance, microscopy videos etc., it is often

the case that there is a large video corpus/stream with interesting events sparsely spread

over it. It then becomes a challenging task to extract interesting portions from the huge

amount of data. The aim of this work is to achieve this interesting event extraction by

segmenting the input video into various semantic phases.

In addition, temporal video segmentation gets us into important theoretical issues such as

what defines an interesting event and how can a machine guess by itself what an interesting

event may be. As definitions of events are application dependent, a generic definition of an

event can only be stated as : “Something that is not normal in the video”, i.e., something

novel. This leads us to the main contribution of this work: the application of one-class clas-

sification (OCC) algorithms to generic and unsupervised temporal video segmentation. In

our approach, detecting temporal novelties in a video is a big step towards temporal video

segmentation. To perform one-class classification, we look among the various approaches

that have been proposed in the field of object classification, such as one-class support vec-

tor machine (1SVM) [18], support vector data description (SVDD) [21], Gaussian process

regression (GPR) [10], or the recently introduced null space approach of [1] based on kernel

null Foley-Sammon transform (KNFST). One can clearly see that the OCC setup matches

our problem scenario: a model of normality (or known patterns) has to be built by clustering

in the feature space and novelty is declared in case an outlier is met in the testing phase.

We show in the following sections how one-class classification techniques can be used for

temporal video segmentation.

Furthermore, as an additional contribution, the application of temporal self-similarity

maps (TSSMs) to temporal video segmentation is studied. This method has been applied

for activity recognition tasks in works such as [9], and we adapt this approach to our problem.

The remainder of this paper is organized as follows. First, in section 2, we review re-

lated work in the field of temporal video segmentation. A brief discussion of their relative

advantages and shortcomings is provided. In section 3, we review the OCC techniques we

apply within our temporal video segmentation framework. We then present our approach

for temporal video segmentation in section 4 together with the explanation how to use OCC

techniques for event detection in videos. In addition, we describe the temporal self-similarity

maps and how we adapt it for the present problem. The results on the thermal videos of

the CVPR change detection dataset [7] are presented in section 5 highlighting the suitability

of our approach. A summary of our findings and suggestions for future research directions
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conclude the paper.

2. PREVIOUS WORK ON TEMPORAL VIDEO SEGMENTATION

The work by Koprinksa and Carrato [11] provides a good survey of temporal video seg-

mentation techniques based on a very diverse range of theoretical concepts and for various

applications. Most of the algorithms presented there concentrate on directly finding the

differences between frames through some distance measure between feature vectors of con-

secutive frames. A threshold is then applied to this distance to achieve segmentation. Some

examples of the features they used are global or local color histograms [20, 23] and edge

pixels [22] beside others. These approaches yield reasonable results but are based on directly

finding inter-frame differences without modeling the underlying scenario, which limits their

applicability to scenarios requiring semantic modeling.

In the work of Boreczky and Wicox [2] Hidden Markov Models (HMM) are used for

temporal video segmentation. The states in the HMM model various camera parameters

and changes in states represent indicate a new temporal segment. The model transition

probabilities are learned from labeled training data and segmentation is performed using the

standard Viterbi algorithm. This method is suitable only in situations where the states of

the HMM are defined clearly and well-labeled training data is available.

Liu et al. [13] have presented an approach based on the perceived motion energy feature,

where optical flow vectors in each frame are averaged and multiplied with a factor arising

out of the dominant direction of motion. These features are then clustered to form segments

of the video corpus. This method is very useful for videos containing a lot of motion, but

when events happen that do not alter the motion profile of the frames (e.g., color changes),

it is likely to fail.

[5] is a more recent work providing a framework for segmentation in various media in-

cluding video. Here, the authors use a similar approach to our Temporal Self-Similarity

Maps. They extract low-level features from the frames and then construct an inter-frame

similarity matrix. Thereafter, they perform a matched filter operation on the matrix and

then supervised classification (k Nearest Neighbors in their case). But this approach requires

supervision and is thus not applicable for the present problem situation.

Another interesting work which also performs multimedia segmentation is [19]. The au-

thors use a modification of the well-known Scene Transition Graphs (STGs) to perform

segmentation in modality and in the end, fuse the segmentation results probabilistically.

This probabilistic fusion basically calculates an overall segmentation probability by weighted
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merging of individual STG outputs. This method is basically designed for multi-modal data,

with multiple parallel STGs for each modality. When reduced to single modes like in our

case, it effectively compares feature similarities between sub-segments of the video called

shots and clusters them accordingly into more refined segments. While this method yields

good results, the speed of execution is still a possible issue, as the inter-shot distances will

have to be calculated on a large number of shot combinations in long videos.

We propose a fast, generic and unsupervised framework for temporal video segmentation

without assumptions on application scenarios. The next section provides the theoretical

aspects of our proposed approach based on one-class classification.

3. ONE-CLASS CLASSIFICATION TECHNIQUES

In this section, we briefly describe the idea behind OCC as well as the different methods

we are using within our framework, namely one-class support vector machine, Gaussian

process regression, and kernel null Foley-Sammon transform.

3.1. The Task of One-Class Classification

In an OCC scenario, there are only training samplesX =
{
x(1), . . . ,x(N)

}
⊂ X of a single

class available. Thus, all of them have the same constant label, e.g., y = 1 = (1, 1, . . . , 1)T.

This class is often referred to as target class and the corresponding samples as target data

or target set [21]. The aim is to find an appropriate description of the class distribution to

distinguish this single class from every other possible and currently unknown class. Therefore,

a novelty score should be inferred for each test sample x∗ such that a large score indicates

strong membership to the target class. If this score is below a certain threshold, the test

sample will be treated as an outlier not belonging to the estimated distribution. The following

methods allow for a suitable modeling with samples that only stem from a single class.

3.2. One-Class Support Vector Machine

Probably the most common method for one-class classification is one-class support vector

machine (1SVM) introduced by Schölkopf et al. [18]. The aim of this approach is to separate

the distribution of class samples from the origin in some (often high-dimensional) kernel

feature space F by a hyperplane with maximum margin. There is no need to specify the

mapping Φ of feature vectors x to the kernel feature space F explicitly, since it is usually
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given implicitly by a kernel function κ that computes the inner product in F solely using

representations in the input space X . The optimal separating hyperplane can be obtained

by solving the following quadratic optimization problem:

min
w,ξ,ρ

1

2
‖w‖2 + 1

νN

N∑
i=1

ξi − ρ

s.t.
〈
w,Φ

(
x(i)
)〉
≥ ρ− ξi

ξi ≥ 0 ∀ 1 ≤ i ≤ N ,

(1)

where w ∈ F describes the hyperplane that has an additional offset ρ ∈ IR, ξ ∈ IRN is

the vector containing slack variables (one for each of the N training samples), and ν is a

parameter indicating the upper bound on the fraction of outliers that are located on the

other side of the hyperplane. According to [18], the hyperplane w is specified by a linear

combination of mapped input features:

w =
N∑
i=1

αiΦ
(
x(i)
)

, (2)

such that inner products in Eq. (1) can be computed by the kernel function κ. This also

allows for computing the novelty score of a test sample x∗ as follows:

s (x∗) = 〈w,Φ (x∗)〉 − ρ

=
N∑
i=1

αiκ
(
x(i),x∗

)
− ρ

(3)

Closely related to 1SVM is SVDD [21], where the class distribution is described by a

hypersphere with minimum volume but enclosing the training samples. It is shown in [18]

that using kernel functions with constant self-similarities κ (x,x), both methods 1SVM and

SVDD solve the same optimization problem and hence generate equivalent classification

models. In our experiments, we apply 1SVM and use the implementation of libsvm [4].

3.3. Gaussian Process Regression

The Gaussian process framework is a well-known probabilistic methodology that is suc-

cessfully used for tasks such as regression and classification [17]. In the case of Gaussian

process regression (GPR), outputs y(x) are assumed to be generated according to a latent

function g and a noise term ε:

y(x) = g(x) + ε . (4)
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Following a Bayesian framework, output values of unknown samples x∗ are predicted prob-

abilistically by marginalizing over both latent function values and noise. While this is in

most cases infeasible to realize exactly, a few assumptions on the entities in equation 4 make

the prediction tractable. The first assumption is that latent functions g are drawn from a

Gaussian process prior with zero mean and covariance function κ that is usually a kernel

function: g ∼ GP (0, κ( · , · )). Second, the noise term ε is assumed to be zero mean Gaussian:

ε ∼ N (0, σ2
n).

Using these assumptions, the predictive distribution over output values is normally dis-

tributed, i.e., y∗|X,y,x∗ ∼ N (µ∗, σ
2
∗), where moments µ∗ and σ2

∗ can be computed in closed

form. The work of [10] shows how GPR can be used to solve OCC problems. The au-

thors propose using either the predictive mean µ∗ (GPR-Mean) or negative variance −σ2
∗

(GPR-Var) as novelty scores:

µ∗ = k
T
∗
(
K + σ2

nI
)−1

1 and

−σ2
∗ = −

(
k∗∗ − kT

∗
(
K + σ2

nI
)−1

k∗ + σ2
n

)
,

(5)

whereK = κ (X,X) ,k∗ = κ (X,x∗) , k∗∗ = κ (x∗,x∗), and I is the unit matrix. To evaluate

our video segmentation approach equipped with both GPR methods, either GPR-Mean or

GPR-Var, we use the code provided by the authors of [10].

3.4. Kernel Null Foley-Sammon Transform

In [1], the authors propose using a null space approach based on the kernel null Foley-

Sammon transform (KNFST) for novelty detection. The idea of this method is to project

all samples of the same class to a single target point but different classes to different target

points in some subspace called the null space of the training data. This projection is carried

out by KNFST and the novelty score of a test sample is calculated based on the distances

in the null space between the projected test sample and target points of the classes known

during training. The transformation is fully described by the null projection directions ϕ

that maximize the Fisher discriminant criterion J based on the between-class scatter matrix

Sb and the within-class scatter matrix Sw:

J (ϕ) =
ϕTSbϕ

ϕTSwϕ
. (6)

The null projection directions achieve J (ϕ) =∞ and thus best separability with respect to

this criterion, since they set the within-class scatter to zero but ensure a positive between-
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class scatter:

ϕTSwϕ = 0 , (7)

ϕTSb ϕ > 0 . (8)

Although focusing on multi-class novelty detection in their experiments, the authors also

provide two strategies for one-class classification:

1. Separating the target class from the origin in the kernel feature space.

2. Separating the target class from an artificial second class created by switching the sign

of the features of the target class samples.

Since they claim that the first strategy is more appropriate in general and the artificial

second class can be avoided, we apply this one within our framework. The source code of

all methods described in [1] has already been made publicly available and is used in our

experiments.

4. VIDEO SEGMENTATION BY EVENT DETECTION

In this section, we describe how OCC and TSSMs can be used to perform the task of

temporal video segmentation.

4.1. The Idea of Our Approach

To achieve temporal video segmentation, an approach similar to work flow segmentation

can be used, where different phases of the video are marked based on their semantic content.

We assume that each stage has a certain minimum number of frames, denoted by the param-

eter F . These frames are used to build a model of the scene for the current segment. Then,

for each succeeding frame, we compare it with the model and classify a detected novelty as

the start of a new segment. Figure 1 demonstrates the basic idea behind our method.

Thus, in our approach we detect events that lead to a change of the current phase by

using OCC methods as explained in the following subsection.

4.2. Our One-Class Classification Approach

We follow an OCC approach similar to the one used for novelty detection in [1]. Let us

assume that there are features available for each frame stored in a specific feature vector.
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Learned model

Figure 1. Viewing video segmentation as an OCC problem. The first few frames, parametrized by F ,

model the normal situation in the scene and deviations are marked as the start of next segment.

The feature extraction methods will be explained in section 5. We start with learning a one-

class model (Sec. 3) using the features of the first F frames of the video. Here, we assume

that there is no event within these first frames and assign them with phase count 1. In most

real-life situations, a few frames in the order of 20 to 60 correspond to 1-3 seconds, where it

is reasonable to assume that no interesting event happens. For every consecutive frame, we

evaluate the learned model to obtain its novelty score (depending on the OCC method that

is used). This is done until the score of a frame drops below a specified threshold T . If this

is the case, we have detected an event leading to a phase change.

Assuming that such events, which indicate a phase change, are sparsely spread over time

(i.e., do not happen closely, with a gap of at least F frames between them), we learn a new

one-class model with the features of the next F frames. The unlabeled previous frames are

assigned with the phase count of the old model and we update the phase count of the current

model. The video sequence is segmented this way, completely unsupervised. An overview of

our approach can be seen in Fig. 2.

Note that our approach does not need a training step using manually labeled sequences

to learn a suitable model. Moreover, it can be directly applied to any video sequence since

the model is learned on-the-fly within the sequence that should be segmented. We may

only have to adjust the parameters F and T as well as method specific parameters of the

OCC model. Additionally, we are able to process a video online without knowing the whole
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Figure 2. Overview of our one-class classification approach for temporal video segmentation.

sequence at the beginning.

4.3. Event Segmentation using Temporal Self-Similarity

In order to put our approach and its performance into perspective and present baseline

results, we will briefly describe an alternative way to segment videos into shorter clips of

certain actions, which in contrast does not rely on a prior learning phase but bases on

heuristic assumptions.

When capturing videos of actions performed by humans, this can be regarded as observa-

tions of dynamic systems. Then, the concept of temporal self-similarity maps (TSSM) [12]

can be used in order to detect abrupt changes in their evolution, which are assumed to

separate certain actions. Here, we will briefly describe the concept of TSSMs and show how

they can be used for event detection tasks.

Given a sequence I1:N = {I1, . . . , IN} of images Ii, 1 ≤ i ≤ N , a temporal self-similarity

map is generically defined as a square and symmetric matrix

SI1:Nf,d = [d(f(Ii), f(Ij))]i,j ∈ RN×N (9)

containing pairwise similarities d(·, ·) of low-level image features f(·) computed indepen-

dently for every frame. In the literature, it has already been shown that TSSMs preserve

invariants of the dynamic systems they capture [15], they are stable wrt. different embedding

dimensions [8, 15], and invariant under isometric transformations [15]. Though not being

invariant under projective or affine transformations, TSSMs are heuristically shown to be

stable under 3d view changes [9].
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4.3.1. Image Features

The choice for low-level image features f(·) is of inherent importance and has to suit the

given scenario. In the following, we will discuss some possible alternatives.

Intensity Values The simplest way to convert an image into a descriptive feature vector

fint(I) ∈ RM ·N is to append its intensities, as proposed for human gait analysis [6]. While

this is suitable for sequences with a single stationary actor, it yields large feature vectors

and is very sensitive to noise and illumination changes.

Landmark Positions Assuming to be able to track anatomical or artificial landmarks of

the actor over time, their positions fpos(I) = (x0,x1, . . .) ,xi = (xi, yi, zi) , can be used to

represent the current system configuration [9]. This is sufficient as long as the tracked points

are distributed over moving body parts, but it demands points to be able to be tracked

continuously.

Histograms of Oriented Gradients (HOG) Histograms of Oriented Gradients have

been shown to give good representations of shape for object detection. For this purpose,

the image is subdivided into overlapping cells, where the distribution of gradient direc-

tions is approximated by a fixed-bin discretization. These certain local orientation his-

tograms are normalized to the direction of the strongest gradient in order to obtain local

rotation invariance. Appending those local gradient histograms gives the final descriptor

fHOG(I) = (h0,h1, . . .) ,hi = (n0
i , n

1
i , . . .) [9].

Histograms of Optical Flows (HOF) When analyzing the displacements of each pixel

between two succeeding frames, this optical flow field represents an early fusion of temporal

dynamics. Building a global histogram over discretized flow orientations or appending his-

tograms obtained from smaller subimages yield the HOF descriptor fHOF(I).

Fourier Coefficients When computing the 2-dimensional discrete Fourier trans-

form (DFT) âk,l =
∑M−1

m=0

∑N−1
n=0 Im,n · e

−2πi(mk
M

+nl
N ), 0 ≤ k ≤ M − 1, 0 ≤ l ≤ N − 1, âk,l ∈ C

of an image patch I, the series [âk,l] of Fourier coefficients contain spectral information

up to a given cutoff frequency 0 ≤ k ≤ Mc − 1, 0 ≤ l ≤ Nc − 1 and inherently

provides invariance against translation. Since the first Fourier coefficient â0,0 represents

the mean intensity of the transformed image patch I, the Fourier coefficient descriptor

fFourier = (â0,1, â0,2, . . . , â1,Nc−1, . . . , âMc−1,NC−1) is further invariant wrt. global illumina-

tion changes. By tuning the cutoff frequencies Mc, Nc, statistical noise can be suppressed as

it is represented by higher-order frequencies. Since DFT can be implemented in parallel on

modern GPU environments, these features can be computed very efficiently.
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(a) Intensity (b) HOG (c) HOF (d) Fourier

Figure 3. TSSMs extracted from the diningRoom sequence from the CVPR 2012 Change Detection

dataset using different low-level image features.

A qualitative comparison of these features extracted from different action classes is given

in Fig. 3. It can be seen that the HOF feature shows many abrupt changes, while the other

TSSMs contain more smooth transitions between the certain similarity values. The HOG

feature seems to be more sensitive so temporal changes at small time scale, which could be

explained by image noise and might harm the further processing. Hence, we concentrate on

using the proposed Fourier coefficients, since they are easily and fast to compute and provide

some handy invariants by design.

4.3.2. Similarity Measures

Beside the choice for a suitable image representation f(·), the distance measure d(·, ·)
plays an important role when computing self-similarities. Distance measures are related to

similarity measures as follows: small distances correspond to high similarity and vice versa.

Euclidean Distances The euclidean distance deucl(f1, f2) = ‖f1 − f2‖2 serves as a

straightforward way to quantify the similarity between two image feature descriptors f1 =

f(I1) and f2 = f(I2) of equal length, as proposed by [9]. While this is easy to compute,

it might be unsuited for histogram data [14], since false bin assignments would cause large

errors in the euclidean distance.

Normalized Cross-Correlation From a signal-theoretical point of view, the image

feature descriptors f1, f2 can be regarded as D-dimensional discrete signals of equal size.

Then, the normalized cross-correlation coefficient NCC(f1, f2) =
〈

f1
‖f1‖ ,

f2
‖f2‖

〉
∈ [−1, 1] mea-

sures the cosine of the angle between the signal vectors f1 and f2. Hence, the distance

measure dNCC(f1, f2) = 1− NCC(f1, f2) ∈ [0, 2] is independent from their lengths.

Histogram Intersection The intersection HI(h1,h2) =
∑D−1

i=0 min (h1,i, h2,i) of two
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histograms h1,h2 ∈ RD was shown to perform better for codebook generation and image

classification tasks [16]. In case of comparing normalized histograms, the histogram inter-

section distance dHI(h1,h2) = 1− HI(h1,h2) is bounded by [0, 1].

4.3.3. Observations

According to Körner et al.[12], atomic action primitives induce similar structures within

the corresponding TSSM. They further observed, that the local structure of these TSSMs

reflects the temporal relations between different system configurations over time, as summa-

rized in Tab. 1.

Having these observations in mind, action segmentation can be performed by identifying

phases of high similarity (i.e., stationary phases), abrupt changes of similarity values, or

descriptive structures within the TSSM. For this purpose, we project all similarity values

of a TSSM SI1:Nf,d ∈ RN×N onto one of the matrix dimensions and smooth it by convolution

with a Gaussian kernel gGauss in order to obtain a self-similarity signature

sI1:Nf,d =
(
SI1:Nf,d · 1

>
N

)
∗ gGauss, sI1:Nf,d ∈ RN (10)

of the complete image sequence I1:N . Then, zero crossings of the first-order derivative ∇sI1:Nf,d

indicate possible break points of the video stream, which are further filtered wrt. plausibility

considerations, e.g., the minimal clip length. In contrast to the OCC methods described

before, this approach is designed to act in an offline manner, so the whole video data is

available at evaluation time.

5. EXPERIMENTS

As generic temporal semantic segmentation of video sequences is a new challenge in

computer vision, we are not aware of any existing dataset specifically intended for this

purpose. For this reason, the change detection dataset for the CVPR 2012 change detection

workshop [7] is used to test our approach and to demonstrate its suitability. The thermal

images from this dataset have been used because they contain sequences with large variance

in object size and intensity contrast. The ground truth data provided with the dataset

is oriented towards motion detection and hence, we created our own ground truth for our

application.1 The data is in the form of grayscale frames of size 320x240 pixels. There are

1 Readers interested in obtaining the ground truth for their own further research or verification of our
methods can contact the authors.
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Table 1. Semantic interpretations of patterns shown in TSSMs introduced by recorded actions.

Pattern Interpretation

Homogeneous areas The corresponding atomic action represents a stationary process

Fading in corners The recorded action represents a Non-stationary process

Periodic structures The recorded action contains a cyclic/periodic motion

Isolated points The recorded action contains an abrupt fluctuation

(Anti-) Diagonal straight lines The recorded action contains different atomic actions with

similar evolutionary characteristics in (reversed) time

Horiz. & vert. lines No or slow change of states for a given period of time

Bow structures The recorded action contains different atomic actions with

similar evolutionary characteristics in reversed time with

different velocities

Figure 4. Example frames of the five sequences within the CVPR change detection dataset: (a) corridor,

(b) lakeSide, (c) diningRoom, (d) library, (e) park.

five sequences, namely corridor, diningRoom, lakeSide, library, and park. Example frames

of the dataset are shown in Figure 4. Each sequence contains different kind of motion and

different zoom levels such that the object sizes are very different.

5.1. Features for Each Frame

Due to the fact that we want to build a generic framework for temporal video segmentation

without using specific knowledge about the target application scenarios and definition of

events, it is extremely challenging to choose a suitable feature set for the algorithm. For the

present implementation for OCC methods, evaluated on the thermal surveillance videos, we

use pyramidal histogram of oriented gradients (PHOG) as proposed in [3]. This is a very

suitable feature because in surveillance sequences, events are defined by entry of a person,

change in the normal movements of the people in the scene, etc., and PHOG features are
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(a) corridor (b) diningRoom (c) lakeSide (d) library (e) park

Figure 5. TSSMs extracted from the CVPR 2012 Change Detection dataset using Fourier descriptors as

low-level image features.

very efficient at representing object shapes in the frame. In this feature representation, local

features are represented as histograms of edge orientations. Each histogram bin represents

the number of edges orientated in a specific direction. To represent shapes of various sizes

within a frame, an image pyramid is built for the frame and histograms from each pyramid

level are concatenated. For more details, the reader is referred to [3]. In our implementation,

we used 4 levels in the pyramid and 16 bins at each level. For the TSSM part, we used the

Fourier features as discussed in Sec. 4.

5.2. Experimental Setup

For evaluation we designed two sets of experiments. In the first experiment, the TSSM-

based method was tested in order to provide baseline results. For this purpose, we used

Fourier descriptors as low-level features and histogram intersection to compute similarities,

as proposed by Körner et al. [12]. The obtained temporal self-similiarity maps are shown in

Fig. 5.

In the second experiment, the OCC methods were tested. Here, we tested the effects of

the two parameters: T and F . The threshold T was varied depending on the OCC method

used, as different methods yielded different ranges on scores. Table 2 gives a list of threshold

values for different methods.

The parameter F , i.e., the number of frames used for training the model, was varied from

20 to 75 in steps of 5. Thus, the first F frames in each new phase are assumed not to have

any special event. At the normal rate of 25 frames per second, this means we are assuming

constancy for only about 1 to 3 seconds, which is a very realistic and reasonable assumption.
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Table 2. Threshold ranges used in the experiments (parameter T ).

Method Threshold range

GPR-Var 0.015 to 0.028, in steps of 0.001

GPR-Mean -0.984 to -0.997, in steps of 0.001

1SVM 0.012 to 0.04 , in steps of 0.002

KNFST 0.001 to 0.025, in steps of 0.002

5.3. Evaluation Criteria

In most of the published works including [13], the performance measures used are subjec-

tive and do not lend themselves to comparison. The reason is that in problems like temporal

video segmentation, it is very difficult to define a good performance measure for the algo-

rithms. Hence, we concentrated on the fact that our algorithm works on the principle of

detecting events and use performance measures for event detection. To evaluate the results

of the algorithm qualitatively, we used the detection rate η:

η =
number of correct detections

number of events in ground truth
. (11)

It is often the case that the detection of the algorithm and the ground truth vary by about

20-25 frames, because the algorithm makes hard decisions using a threshold and ground truth

is marked by human observers. This is not a serious problem, since in real-life videos 25

frames corresponds to a time span of 1 second, in which generally not many events happen.

For most applications, this difference is not a major problem.

Additionally, over-segmentation is expected, because our algorithm works completely un-

supervised. As the threshold is set without any prior knowledge about the video and is

thus completely independent of it, often very small and insignificant changes in the video

result in a new segment being reported. However, this is also not a cause for alarm as this

stage is usually intended to be followed by a higher processing stage or a human observer in

most applications. Thus, at the higher level, we can choose to ignore these particular extra

segments in a post-processing step. We represent the effect of over-segmentation with the

over-segmentation ratio γ:

γ =
number of false detections

number of events in ground truth
. (12)

This represents the average number of extra segments for every segment in the ground truth.
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Table 3. Results on the thermal video subset of the CVPR change detection dataset for the TSSM

approach using detection rate η (Eq. (11)) and over-segmentation ratio γ (Eq. (12)).

Video η γ

corridor 0.95 0.94

diningRoom 1.00 0.55

lakeSide 0.65 1.76

library 1.00 4.56

park 1.00 0.50

Table 4. Results in terms of detection rate η (Eq. (11)) and over-segmentation ratio γ (Eq. (12)) on the

thermal video subset of the CVPR change detection dataset using the GPR-Var method.

Video η γ

corridor 0.68 0.49

diningRoom 0.9 0.48

lakeSide 0.23 0.05

library 1 1.67

park 0 0

5.4. Results

As can be seen in Tab. 3, the results of the TSSM approach show quite a good performance.

However, this algorithm works in an offline mode, limiting its applicability. Therefore, we

need the OCC methods, which offer the dual advantages of online capabilities and the ability

of trade-off accuracy and over-segmentation ratio. Table 4 shows the results for each video

in the dataset, using the GPR-Var OCC method. The parameters are set as follows: F = 50

and T = 0.02.

The result for the park video is not very promising at the first look. No event is detected

in this video at this threshold level. The reason is that contrast in this video is very low and

the events are detected only when the threshold is raised much higher. For example, at a

threshold of T = 0.28, we have η = 0.17 at γ = 0.17. Furthermore, the KNFST algorithm

performs better here, achieving η = 0.83 at the same over-segmentation ratio (see Fig. 8).

The results for the lakeSide video appear to be poor compared to the other videos. It is

heavily under-segmented, i.e., many events are missed. This is due to the fact that the video

has extremely low contrast and even for a human observer it is very challenging to locate
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Figure 6. Segmentation timeline for the library video (with T = 0.175 and F = 50), with the ground

truth. The yellow patches indicate the matched detections (the figure is best viewed in color)

the events. In addition, the events and objects in the video are of very small size. Again,

to detect events in this scenario, one has to set the threshold extremely low, which would

increase the false detection rate in other generic cases. On the other hand, we see that the

library video is over-segmented, which is a result of a threshold value that is too low.

Often, it is even desirable to have over-segmented videos, e.g., in the library video, the

detected extra events are basically the person under observation turning pages. These are

not labeled in the ground truth because they are minor events but could be interesting for

the application. In the diningRoom video, the extra events detected are basically the person

turning, which is an interesting change but again not labeled in the ground truth. Further-

more, a higher processing stage or a human observer is generally present after segmentation

and that stage may be used to handle over-segmentation, whereas a missed event is a more

difficult problem to tackle.

Figure 6 shows a segmentation timeline for the library video and Fig. 7 shows segmentation

example frames for library and corridor videos. Similar to ROC curves showing true positive

detections against false positive detections, we plot η-vs.-γ curves as can be seen in Fig. 8

for the five videos. We have varied T as in Tab. 2.

Figures 9 and 10 show the changes in η and γ as T is varied for the case of corridor and

diningRoom videos. The parameter F is set to 50, and the OCC method used is KNFST.

Smaller values of the threshold result in an over-segmented video, i.e., high γ, whereas larger

values result in under-segmented videos. Clearly, there is the expected strong correlation

between η and γ, and the parameter T is an important factor in trading-off between the

two. An interesting point to note is that at some points, we sometimes obtain slightly lower

detection rates η at higher values of γ than those at lower γ (e.g., for the corridor video, as

the threshold is increased from 0.015 to 0.02). This is due to the training time F . Often,

an event is detected when there is none (i.e., over-segmentation) and during the following

training time, an actual event is missed.
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(a) library (b) corridor

Figure 7. Segmentation results on the library and the corridor videos.

The effect of the parameter F can be observed in Fig. 11 and Fig. 12. For this, we used

the KNFST-based OCC method and the parameter T is set to 0.02 for the corridor and

diningRoom videos. Clearly, the parameter F does not have such a large impact on the

detection rate compared to T . Other than that in some cases, if an event occurs sooner

than the first F frames after the previous event, that event will be missed. Also, as in the

case of the diningRoom video, the events happen in quick succession and the parameter F

doesn’t have a predictable effect on the performance. A similar trend can be observed in

the over-segmentation ratio. Overall, a value of F chosen too large clearly results in poor

performance. Such high values lead to models that cover a large amount of variations and

detect only very large deviations as events. On the other hand, very low values result in

models that don’t cover the corresponding segment well enough and result in larger number

of segments. Thus, the often unpredictable effects of this parameter make it unsuitable for

managing the trade-off between η and γ and generally, our experiments show that setting F

to some value between 40 and 60 and varying T is a better solution.

Overall, the results are promising and there are strong indications that a video dependent

threshold determination will solve most of these existing issues.

6. CONCLUSIONS AND FUTURE WORK

Our work was aimed at segmenting the video sequences into activity phases in an unsu-

pervised way, enabling us to further process the smaller units and extract the interesting

parts. We used a one-class classification approach, comparing various well-known methods



19

0 0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

Over-segmentation Ratio γ

D
et
ec
ti
on

R
at
e
η

GPR-Mean

GPR-Var

1SVM

KNFST

(a) corridor

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

0.8

1

Over-segmentation Ratio γ

D
et
ec
ti
on

R
at
e
η

GPR-Mean
GPR-Var
1SVM
KNFST

(b) diningRoom

0 0.25 0.5 0.75 1 1.25 1.5
0

0.2

0.4

0.6

Over-segmentation Ratio γ

D
et
ec
ti
on

R
at
e
η

GPR-Mean
GPR-Var
1SVM
KNFST

(c) lakeSide

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.75

0.8

0.85

0.9

0.95

1

Over-segmentation Ratio γ
D
et
ec
ti
on

R
at
e
η

GPR-Mean
GPR-Var
1SVM
KNFST

(d) library

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

Over-segmentation Ratio γ

D
et
ec
ti
on

R
at
e
η

GPR-Mean
GPR-Var
1SVM
KNFST

(e) park

Figure 8. Change point detection rate η vs. over-segmentation ratio γ.
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Figure 9. Effects of the parameter T on detection rate η for the corridor and diningRoom videos.
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Figure 10. Effects of the parameter T on over-segmentation ratio γ for the corridor and diningRoom

videos.
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Figure 11. Effects of varying the parameter F on the detection rate η for the corridor and diningRoom

videos.

to do this successfully as seen in the previous section. We also tested an approach based on

the temporal self-similarity maps and achieved good performance. The accuracy in event

detection is quite impressive even with the simple PHOG features used in this implementa-

tion. This demonstrates the possibility of using one-class classification schemes, especially

KNFST and GPR-Var, for the task of temporal video segmentation.

As noted earlier, the accuracy of the system can be further enhanced by intelligent se-

lection of parameters. Automated parameter optimization is one topic of future work. This

may yield better results because then the parameters will be dependent on the video instead

of being universal and it may avoid situations as the one encountered in the case of the

lakeSide video.

Furthermore, feature selection should be a part of further research. The authors believe

that feature selection is of critical importance in this case and the use of more sophisticated

features could drastically improve the performance of the approach. To exploit features
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Figure 12. Effects of varying the parameter F on the over-segmentation ratio γ for the corridor and

diningRoom videos.

representing shape and motion in a combined descriptor is a promising idea for future work.
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