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Abstract

Automatic camera-assisted monitoring of insects for
abundance estimations is crucial to understand and coun-
teract ongoing insect decline. In this paper, we present two
datasets of nocturnal insects, especially moths as a subset of
Lepidoptera, photographed in Central Europe. One of the
datasets, the EU-Moths dataset, was captured manually by
citizen scientists and contains species annotations for 200
different species and bounding box annotations for those.
We used this dataset to develop and evaluate a two-stage
pipeline for insect detection and moth species classification
in previous work. We further introduce a prototype for an
automated visual monitoring system. This prototype pro-
duced the second dataset consisting of more than 27 000 im-
ages captured on 95 nights. For evaluation and bootstrap-
ping purposes, we annotated a subset of the images with
bounding boxes enframing nocturnal insects. Finally, we
present first detection and classification baselines for these
datasets and encourage other scientists to use this publicly
available data.

1. Introduction
Climate change and the decline of species richness are

severe challenges that influence the living conditions of hu-
mans around the world. Especially the dramatic loss of in-
sects [6, 29] plays a crucial role in many ecological pro-
cesses that affect agriculture and others. Hence, moni-
toring insect species populations becomes more important
nowadays to better understand insect decline and long-term
trends in species distributions. Furthermore, there are about
one million named species on our planet [23], making man-
ual counting of individuals unrealistic. Consequently, auto-
mated monitoring of insects is inevitably required to infer
abundance estimations across larger regions. One possible
way is to use camera traps to collect images of insects that
computer vision algorithms can then process to recognize

Figure 1. The prototype of the moth scanner: a white planar sur-
face and an automated camera system. At night, UV light illumi-
nates the surface to attract moths that land on the surface and the
camera takes an image with flash every two minutes.

the depicted species automatically.
In this paper, we focus on nocturnal insects, mainly noc-

turnal moths (Lepidoptera). Even for this subset, there exist
hundred thousands of different species worldwide and de-
pending on the habitat, species lists can be narrowed down
based on the study region. For example, image datasets con-
taining hundreds of moth species from Ecuador and Costa
Rica are publicly available and can directly be used for eval-
uating fine-grained recognition algorithms [18]. Here, we
are interested in monitoring moth species in Central Eu-
rope. We present datasets of moth images we have collected
so far and our analysis of algorithms for insect localization
and species classification.

Our work is part of a larger project called AMMOD1,
which aims at developing self-sustaining multi-sensor sta-
tions for monitoring species diversity [31]. One component
of these stations is a light-based camera trap for nocturnal
insects, called the moth scanner [11,17]. It is a non-invasive
monitoring system for automatically gathering images at
nighttime. A UV-LED lamp illuminates a white planar sur-
face to attract the insects that land on this surface. A high-
resolution camera takes an image of the whole surface every
two minutes. Our prototype is shown in Figure 1.

1AMMOD = Automated Multisensor Station for Monitoring of Biodiversity
(https://ammod.de/)

https://ammod.de/


With this setup, we can collect large-scale datasets of
nocturnal insects over a long period that can then be used
to develop and evaluate appropriate fine-grained species
recognition algorithms. The moth scanner takes several
hundred images during one night, and within five months,
we collected more than 27 000 images with our prototype.
In this paper, we refer to the resulting dataset as the noc-
turnal insects dataset (NID), and more details are given in
Section 3. Note that this dataset is supposed to be extended
over time as our system will be in operation within the fol-
lowing years. We plan to maintain multiple sensor stations
in parallel at different locations. Hence, it has the poten-
tial to become a valuable source for large-scale learning and
continuous learning within a fine-grained domain.

Besides its impact on research in fine-grained recogni-
tion, our developments for automated visual monitoring of
nocturnal insects are beneficial for ecologists. Until now,
insect monitoring is mainly done by hand and supported by
citizen scientists who manually take images of individual
insects in their gardens. Previously, we published an image
dataset of nocturnal moths captured manually by citizen sci-
entists, called EU-Moths dataset at a local workshop [11].
This paper also includes a dataset description and our base-
line results for insect localization and species classification.
There are two reasons for this. First, we want to announce
this dataset to a broader audience interested in fine-grained
recognition because it can directly be used for algorithm
development and evaluation. Second, we want to highlight
the challenges for recognition algorithms that arise when
processing automatically captured camera trap images com-
pared to manually taken images with hand-held cameras.

In general, our paper aims to promote the application of
moth species identification as a fine-grained visual recogni-
tion problem. We underpin this with existing datasets, re-
sults of baseline algorithms, and a light-based camera trap
setup that will be used during the following years to auto-
matically collect further large-scale image data. We believe
that research on automated visual identification of hundreds
to thousands of different nocturnal moth species can have
a major impact on developing fine-grained recognition al-
gorithms in general, and we, therefore, want to share our
insights and datasets with the community.

2. Related work
Besides insect monitoring [1,8,11,17,24], there also ex-

ist automatic recognition systems for other animals. They
are often used to re-identify individuals of a certain species,
e.g., great apes [3, 5, 9, 20, 32], elephants [12, 13], or
sharks [7], to name a few. Of course, the field of fine-
grained recognition mainly benefited from bird species
datasets like CUB [30] and NA-Birds [27].

For moth species identification, datasets exist with in-
sects from Ecuador and Costa Rica containing images of
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Figure 2. Example images from the EU-Moths dataset. The first
two rows show two different moths species, whereas the third row
shows images with more than one insect. These examples illus-
trate the versatility in the appearance of the moths in the dataset.

675 and 331 different species, respectively [18]. There is
only a single individual in each image spanning the whole
image area. In contrast to these datasets, we consider im-
ages of moth species from Central Europe recorded by light-
based camera traps. First, the recorded insects are still alive
and may take various positions, making it harder to analyze
the image. Second, the captured image contains multiple in-
sects, and individuals need to be localized before inferring
the species. Furthermore, we extend our datasets over time
due to continuous monitoring.

There are also similar camera trapping systems devel-
oped by other groups, e.g., as reported in [1]. So far, they
only consider eight different moth species and do not pro-
vide ground truth bounding box annotations for the individ-
ual insects. In contrast, our EU-Moths dataset contains 200
different species, and we provide algorithms that can reli-
ably recognize individuals from this larger set of species.

3. The datasets

In the following, we present two datasets that we are us-
ing within our project for moth detection and species recog-
nition. They contain images of nocturnal insects, primarily
moths, photographed on a white background. In contrast
to other publicly available datasets constructed for species
classification such as iNaturalist [28], standardized camera
trap images lead to a more homogeneous setting: the insects
are photographed on a uni-color planar surface.
European moths (EU-Moths) dataset2: This dataset
consists of 200 species most common in Central Europe.
Each of the species is represented by approximately 11 im-
ages. We consider a random but balanced split in eight train-
ing and three test images per species, resulting in roughly
1600 training and 600 test images in total. Furthermore,
we manually annotated bounding boxes for each insect. For
this dataset, citizen scientists photographed the insects man-

2https://inf-cv.uni-jena.de/eu_moths_dataset
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Figure 3. An example image of the NID dataset. Two of the bound-
ing boxes and the corresponding image patches are shown. Note
that even though these are relatively small parts of the original im-
age, the visual species-related features in the patches have a high
level of detail.

ually and mainly on a relatively homogeneous background.
About 92% of the images contain only a single individual
like it is shown in the first two rows of Figure 2. The last
row depicts images with more than one insect of interest.
Nocturnal insects dataset (NID)3: Our camera trap setup
takes high-resolution images of the insects resting on an il-
luminated surface. We use a UV-LED lamp since this is
the most attractive radiation for nocturnal insects than white
light [2]. A 20-megapixel camera captured the images at an
interval of two minutes (setup shown in Figure 1).

In five months (June - October 2021), the system cap-
tured images during 95 nights, and we removed empty im-
ages without any insects at the beginning and the end of
every night. In total, we gathered more than 27 000 images.

We first selected images from ten nights equally dis-
tributed over the entire period and manually annotated
bounding boxes around insects in 818 images to evaluate
detection methods. As a result, we ended up with 9095
bounding box annotations. Figure 3 shows one of the im-
ages with two exemplary bounding boxes and the corre-
sponding image patches. In our baseline experiments, we
use the first five nights for training and parameter tuning
and data from the last five nights for the evaluation.

4. Baseline methods
As presented in preliminary work [11], we deploy a two-

stage pipeline for moth species detection and classification:
(1) insect localization and (2) fine-grained moth species
identification. This separation is vital since the later proto-
types will operate autonomously in the field and transmit the
gathered images to central storage. To reduce the amount of
transmitted data, we will perform the detection directly at
the moth scanner and transfer only the small image patches
to the central storage.

4.1. Single-shot detector

We used a CNN-based state-of-the-art object detection
model, namely the single-shot MultiBox detector (SSD)
proposed by Liu et al. [15]. The authors utilize feature maps

3https://inf-cv.uni-jena.de/nid_dataset

from multiple intermediate stages of the backbone CNN to
predict location offsets and class confidences for a set of
prior locations. For more details about the loss functions,
we refer to the original paper of Liu et al. [15].

4.2. Fine-grained species classification

Neural networks, especially CNNs, yield state-of-the-art
results in image classification tasks. As we presented in our
previous work [10], one can utilize a linear classifier with a
sparsity-inducing L1-regularization to identify the most in-
formative feature subsets of a high-dimensional (e.g., 2048
in case of InceptionV3) feature vector. In combination with
gradient maps [21], we use this subset of features to iden-
tify the regions of interest, the so-called saliency map, for
an input image. Afterward, we estimate with k-means clus-
tering the spatial extent of coherent regions based on the
identified saliency map and place bounding boxes around
each region. The image patches of these bounding boxes
serve as an unsupervised part representation, i.e., each re-
gion corresponds to a single part. These detected parts are
finally used as additional input for the CNN classifier. We
refer to our previous work [10,11] for more detail about the
method and implementation details.

5. Baseline results
We performed detection and classification experiments

to produce the first baseline results on the presented
datasets. Species classification is only done on the EU-
Moths dataset since the NID dataset has only bounding box
annotations so far. For evaluating the species classifier,
we utilized the ground-truth bounding box annotations and
only used the cropped image patches as inputs.

We repeated each experiment ten times and provided in
Tables 1 and 2 the mean and standard deviation of the eval-
uation metrics across different runs. We fine-tuned all mod-
els for 60 epochs and L2-regularization with a weight decay
of 5× 10−4. For both models, we utilized standard image
augmentation methods: random cropping, random horizon-
tal and vertical flipping, and color jittering (contrast, bright-
ness, and saturation).

The SSD model was trained with an AdamW [16] opti-
mizer and a learning rate of 1× 10−3 for all epochs. We
used the VGG16 [22] backbone architecture pre-trained on
the ImageNet [19] with an input size of 300px for the EU-
Moths dataset and 512px for the NID dataset.

The classification model was trained with an
RMSProp [26] optimizer with an initial learning rate
of 1× 10−4, reduced by 0.1 after 20 and 40 epochs.
Further, we utilized label smoothing [25] with a smoothing
factor of 0.1. We used the InceptionV3 CNN architec-
ture [25] with the default input size of 299px. Additionally,
we used two different pre-training methods. Besides the
typical ImageNet [19] pre-training, we used a pre-training

https://inf-cv.uni-jena.de/nid_dataset


MAP@0.75 MAP@0.50

EU-MOTHS 88.88 (±0.77) 99.01 (±0.09)

NID DATASET 26.19 (±5.64) 91.21 (±0.34)

Table 1. Detection results on the EU-Moths and NID datasets.

IMAGENET INATURALIST

PRE-TRAINING PRE-TRAINING

NO PARTS 89.46 (±0.88) 90.54 (±1.10)

WITH PARTS 91.50 (±0.61) 93.13 (±0.76)

Table 2. Baseline classification results (accuracy in %) on cropped
images of the EU-Moths dataset.

on the iNaturalist [28] dataset provided by Cui et al. [4].
Finally, we extract additional parts, as described in
Sect. 4.2, and combine the predictions on these parts with
the predictions on the entire image.

5.1. Insect detection

First, we report the detection performance on both
datasets in Table 1 and we use mean average precision
(mAP) as the evaluation metric. The precision is com-
puted based on two different intersection over union (IoU)
thresholds of the predicted and the ground-truth bounding
boxes. The IoU-thresholds 0.5 and 0.75 (corresponding
mAP denoted as mAP@0.50 and mAP@0.75) are two typi-
cal choices used in the MC-COCO object detection bench-
mark [14].

Based on the results, the SSD method performs signif-
icantly better on the EU-Moths dataset. The baseline de-
tector for the NID dataset achieves a stable mean-average
precision of over 90% for the mAP@0.50 metric. Never-
theless, the detector performs much worse for the more pre-
cise metric, the mAP@0.75. A possible explanation for this
may be many small insects (as seen in Figure 3), where mi-
nor discrepancies between the prediction and ground truth
degrade the results. Even though we increased the input size
for this dataset, the small sizes of some insects represent a
challenge for the applied detection model.

5.2. Species classification

Table 2 shows the classification accuracies on the EU-
Moth dataset for different setups. First, we can observe the
effect of the pre-training on different datasets. Data used in
the pre-training proposed by Cui et al. [4] is more related
to the domain of insects, and we can see this benefit in our
reported results.

Finally, utilizing methods for additional information ex-
traction in the form of parts also improves the classifica-

tion performance by approximately 2%, as Table 2 shows.
We achieved the best results using the part-based approach:
91.50% and 93.13% with ImagenNet and iNaturalist pre-
training, respectively.

6. Challenges of automated insect monitoring

As we worked with the images captured by our
moth scanner, we faced some challenges that may interest
others. First, we obtained many images in a short period,
and each image contains many insects of different sizes.
Annotating this huge amount of gathered data is very time-
consuming. Especially the manual species identification
that requires expert knowledge is still ongoing, even though
we use an annotation tool that supports with automatically
inferred suggestions. We further encountered typical chal-
lenges in real-world datasets like a long-tailed species dis-
tribution.

In our experiments, we also observed that current state-
of-the-art detection models have problems with detecting
tiny objects, as mentioned in Sect. 5.1. Although the uni-
form background might suggest that insect detection is an
easy task in this scenario, fallen leaves and dirt on the sur-
face and the large variability of insect sizes pose further
challenges. In contrast to the images recorded by citizen
scientists with hand-held cameras that can focus on indi-
vidual resting insects, automatically captured images of the
light-based camera trap also contain motion blur and insects
flying around that also (partially) occlude others.

Finally, the most challenging task is to perform the de-
tection directly at the moth scanner (edge computing). As
mentioned previously in Sect. 4, we plan to operate the cam-
era traps autonomously in the field. To reduce the amount
of transmitted data, it is desirable to transfer only the small
image patches instead of the entire image. Unfortunately,
this implies that current CNN-based state-of-the-art detec-
tion methods cannot be deployed on the hardware of the
moth scanner with limited computational power and re-
stricted energy budgets. Hence, we will need to consider de-
tection methods based on basic computer vision algorithms,
like the blob detector presented by Bjerge et al. [1].

7. Conclusions

In this paper, we presented a prototype of an automatic
light-based camera trap for monitoring nocturnal insects.
The so-called moth scanner allows for capturing large-scale
image datasets that can be used for moth localization and
fine-grained species recognition. Hence, this application
domain can become an important area for research on fine-
grained recognition with a large impact on ecology. Besides
the presented datasets, we also provided baseline results of
a two-stage pipeline for detecting and classifying insects in
images.
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and Joachim Denzler. Towards automated visual monitor-
ing of individual gorillas in the wild. In ICCV Workshop
on Visual Wildlife Monitoring (ICCV-WS), pages 2820–2830,
2017. 2

[4] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and
Serge Belongie. Large scale fine-grained categorization and
domain-specific transfer learning. In Proceedings of CVPR,
6 2018. 4

[5] Alexander Freytag, Erik Rodner, Marcel Simon, Alexander
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