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Abstract. Fine-grained visual categorization is a classification task for
distinguishing categories with high intra-class and small inter-class vari-
ance. While global approaches aim at using the whole image for perform-
ing the classification, part-based solutions gather additional local infor-
mation in terms of attentions or parts. We propose a novel classification-
specific part estimation that uses an initial prediction as well as back-
propagation of feature importance via gradient computations in order
to estimate relevant image regions. The subsequently detected parts are
then not only selected by a-posteriori classification knowledge, but also
have an intrinsic spatial extent that is determined automatically. This is
in contrast to most part-based approaches and even to available ground-
truth part annotations, which only provide point coordinates and no
additional scale information. We show in our experiments on various
widely-used fine-grained datasets the effectiveness of the mentioned part
selection method in conjunction with the extracted part features.

1 Introduction

Fine-grained visual categorization (FGVC) is a challenging subdiscipline of com-
puter vision and aims at distinguishing similar classes of objects that belong to a
common major class like birds [19,21], cars [11] or flowers [13]. The latest FGVC
challenges (like [20]) highlight both importance and difficulties of fine-grained
categorization. As shown by others before, a careful selection of data [1] or gath-
ering additional data from the Internet [10] for the pretraining of a convolutional
neural network (CNN) can yield impressive state-of-the-art results.

In general, the proposed solutions found in the literature can be divided
into algorithms working with global image features [12,16] and part-based or
attention-based methods [3,4,7,22,23]. From the empirical results reported in
these works, it is difficult to conclude which basic approach (global or part-based)
works best, since both are competitive in terms of recognition performance. Due
to the fact that categories of fine-grained recognition tasks often differ only in
small details, part-based features that consider local image regions seem to be
promising because they are able to explicitly focus on such distinct patterns.
For example, if two bird species can only be distinguished by a characteristic
spot on the head, a part feature representing the image region covered by the
head of the bird would be beneficial for separating these two classes. Further-
more, parts can support the classification in case of only few training samples or
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Fig. 1. An example from our experiments as a motivation for our approach: two visually
similar classes are confused by a baseline classifier with global features. A part-based
classifier using ground-truth annotations for anatomical parts is able to correct some of
the predictions due to additional local information. However, our parts are estimated
using a-posteriori classification knowledge and therefore focus on distinguishing highly
similar classes. This allows for resolving misclassifications with the additional benefits
of automatically determining the spatial extent of each part and being independent
from manual annotations.

highly imbalanced class distributions in the training set, e.g., by applying trans-
fer learning techniques [5]. For analyzing classification results and failure cases,
the attribution of classifier decisions to features and relevant image regions is an
important step and parts are helpful for detailed investigations in order to gain
a better understanding of the specific recognition task and the problem domain.

If ground-truth (GT) annotations for part locations are provided, they are
usually referring to an underlying concept, e.g., the anatomical parts of a bird
such as head, beak, belly, wings, and legs. Although being plausible from a
human perspective, these parts may not be the best choice for achieving the
highest classification accuracy with a machine learning model. In addition, not
all annotated parts are equally relevant for every test image and it can be shown
that an optimal part selection would lead to superior performance compared
to state-of-the-art methods using all available parts [8]. Especially in case of
noise, few characteristic parts can be outweighed by the remaining larger set of
irrelevant parts that confuse the classifier and lead to misclassifications. In our
experiments, we have observed that quality of parts is more important for an
improved classification accuracy than quantity. For example, if we regroup the
provided ground-truth parts for the CUB-200-2011 birds dataset [21] in more
coarse but also more distinct parts, namely “head”, “body”, “legs”, and “tail”,
the recognition performance can be enhanced.

However, since ground-truth annotations are not available for all applica-
tions and manual part annotations are expensive, an efficient and robust part
detector is required. Such a detector has to deal with the following two main
questions. First, what are the interesting and important locations that enhance
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the classification performance? Second, given certain part location, how and to
which extent should the part features be extracted?

In this work, we tackle those questions and show that our classification-
specific part estimation is able to improve classification accuracies on various
fine-grained datasets. By studying failure cases of a baseline classifier that makes
use of either global image features or part-based features extracted from avail-
able ground-truth annotations of the CUB-200-2011 birds dataset [21], we have
observed that many class confusions occur between visually very similar classes
(more details in Sect. 3 and Fig. 2). Hence, the idea of our approach is to identify
relevant parts based on an initial classification with global features. By consider-
ing only the most important features for this initial decision, we estimate parts
that are likely to be relevant for visually similar classes as well. With these new
parts that are specifically estimated for a given test image based on additional
knowledge from an initial classification, we aim at resolving misclassifications
between very similar classes. This scenario is also visualized in Fig. 1.

Our proposed approach consists of the following steps. First, we perform a
feature selection in order to estimate the most important features for the current
classification task using a baseline classifier with global image features. The idea
is then to estimate the most important regions in the image with respect to
the actual classification task by only taking the most important features for the
part localization into account. From these regions, we estimate parts as bounding
boxes with automatically determining the spatial extent (scale) of each part. This
is an advantage over most part-based approaches and ground-truth annotations.
These provide only x and y coordinates of the part locations such that the size
of each part has to be selected appropriately (and is usually fixed for all parts
and all images). Given the newly estimated parts, we extract features for these
parts as a rich representation that can then be used to improve the classification.
More details are given in Sect. 3.

As it is common practice for many computer vision applications nowadays,
our classification scheme relies on features computed with a CNN (called CNN
features). Such features can easily be computed by applying either a pretrained
CNN model as it is or a pretrained model that has been fine-tuned on the
training set of the desired application. In our experiments (Sect. 4) we show
that our approach: (i) improves the performance of the baseline methods, (ii) is
competitive with other part-based classification approaches, and (iii) achieves
state-of-the-art accuracies in some applications.

2 Related Work

Fine-grained visual categorization is a challenging and non-trivial classification
task. Hence, there are diverse ways to tackle the problem. On the one hand,
there are approaches that only use the global information of the image. The idea
is either to use a clever way of pretraining the classifier or to use different feature
pooling strategies. On the other hand, part-based approaches are applied which
differ in the various part detection and extraction techniques.
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2.1 Global Feature Representations

First, we consider approaches using only the global information of the image.
Cui et al. [1] use a smart strategy in order to pretrain a CNN by taking large-
scale datasets like ImageNet or iNaturalist into account, which offer a lot of
data. Unfortunately, the difference between these datasets and the desired fine-
grained datasets is too big. Hence, they suggest to preselect certain classes from
the large-scale datasets which match best to the fine-grained training images
and show that this preselection improves the performance drastically.

Krause et al. [10] enrich the training data with images from the Internet.
They use Google Image Search in order to gather additional images for every
training class. Though, the retrieved samples may not belong to the queried
class, they show that even this noisy data improves the recognition performance
by a large amount. Nevertheless, they cannot ensure that the collected data does
not contain some images from the validation or the test set, since all these images
are also publicly available. Hence, although an impressive effectiveness of noisy
data is shown, one should look at the reported results with caution.

Other approaches focus on advanced ways of feature pooling. Here, bilinear
pooling by Lin et al. [12] or more general the alpha-pooling by Simon et al. [16]
are the most common techniques. Their aim is to highlight features that may
have a greater impact on the classification task.

2.2 Part-based Recognition Approaches

The second main direction for tackling fine-grained recognition tasks consists
of methods that rely on part-based representations. A straightforward way of
implementing a part-based recognition system is to employ the ground-truth
part annotations if they exist (e.g., for the CUB-200-2011 birds dataset [21]).
Since these annotations are expensive and most fine-grained datasets do not
provide them, weakly supervised part detectors are a common choice [3,7,15,23].
The only supervision that these detectors use are class label annotations.

Fu et al. [3] and Zheng et al. [23] present similar approaches to extend CNNs
with attention networks. The first work considers adjusting the attention recur-
rently and extracting additional information defined by the attention on different
scales. On the other hand, the later work extracts multiple attentions in a single
step. The extraction is done by localizing interesting areas from feature maps,
regrouping them, and using these grouped areas as parts. In both cases, the
whole system is trained end-to-end.

He et al. [7] propose a sophisticated reinforcement learning method in order
to estimate how many and which image regions are helpful to distinguish the
categories. They use multi-scale image representations in order to localize the
object and then estimate discriminative part regions.

Simon et al. [15] identify part proposals with the aid of back-propagation.
Afterwards, these proposals are used to fit a constellation model that determines
which of the proposals are more likely to identify real parts. The part proposals
with the highest match are then used to extract part features on different scales.
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Fig. 2. Confusion matrix created from CUB-200-2011 predictions using global features
only. The values are absolute number of correct predictions in log-scale. Similar classes
have consecutive class indexes and are confused more often. Here you can see the classes
59-66, which are different gull species, e.g. California Gull, Herring Gull, Ivory Gull or
Western Gull

3 Classification-Specific Part Estimation

In this section we describe our classification-specific part estimation approach
that makes use of an initial classification based on global image features. The
goal is to estimate parts depending on this first (and probably wrong) decision,
such that these parts can help to spot the tiny details. These details are im-
portant for distinguishing visually similar classes in order to either confirm an
initially correct classification based on the specific part features or to correct an
initially wrong classification due to an enhanced representation of the impor-
tant parts only. Here, we assume that many confusions of a classifier based on
the global image features occur between visually very similar classes and that
in those cases, the small details that are characteristic for distinguishing them
are not well represented by the global features (which in general have to work
for distinguishing all classes). Fig. 2 visualizes this confusion and confirms our
assumption. Hence, we look for the important image regions that have led to
the initial classification. Then we derive new parts from these regions under
the assumption that the resulting parts are also more relevant for disentangling
visually similar classes. Our estimated parts are therefore classification-specific
rather than based on human knowledge, e.g., from an anatomical point of view
in case of the birds.

The pipeline we propose in this paper is visualized in Fig. 3 and will be out-
lined in the following. First, we describe the feature selection method (Sect. 3.1).
Next, based on these selected features, we illustrate how relevant pixels and im-
age regions are identified as candidates for the part locations (Sect. 3.2). Third,
we explain our algorithm for estimating bounding-box-parts with the advan-
tage of automatically determining the scale of each part (Sect. 3.3). Finally,
an overview about the part feature extraction from the classification-specific
bounding-box-parts and about the part-based classification is given in Sect. 3.4.
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Fig. 3. The pipeline for our classification-specific part estimation.

3.1 Feature Selection

Nowadays, a common approach in computer vision tasks is to use a pretrained
neural network like a CNN, fine-tune its parameters on a dataset for the desired
application, and extract features by concatenating the outputs of its penultimate
layer in order to obtain a high-level descriptions of the image content. Our ap-
proach relies on those CNN features, which typically results in high-dimensional
feature vectors (D = 2048 in our case). In case of a fine-grained recognition task,
the recognition system often has to focus on some specific information within
the features in order to spot tiny details that distinguish two similar classes.

Therefore, we first perform a feature selection in order to estimate the most
important features for the current classification task. This is done by utilizing
a sparsity-inducing classifier equipped with L1-regularization, which could be
either a corresponding classification layer in a CNN that allows for end-to-end
learning or an L1-regularized linear SVM classifier for the CNN features. Opti-
mization with L1-regularization forces the classifier decisions to be performed on
only a small subset of the CNN features. In our experiments, we tried both and
found empirically that an SVM performs better in terms of recognition accuracy
while still being fast during learning due to efficient SVM solvers in standard
libraries like liblinear [2].

In the end, our feature selection is classification-based and determines rele-
vant features for the underlying task by optimizing feature weights during learn-
ing of SVM classifiers. Since we consider multi-class recognition scenarios, we
train a separate classifier for each class using the “one-vs-rest” strategy. As
the result, we obtain a subset of relevant features for each class that best dis-
tinguishes this class from all the other classes by only selecting features with
nonzero weights.

3.2 Identifying Relevant Pixels and Image Regions

The main idea within our part detection approach is to estimate the most impor-
tant regions in the image with respect to the actual classification task. Hence,
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the part localization should only take those important features into account,
which have been computed with the classification-based feature selection from
the previous section. To this end, we use gradient maps [17] to identify the
most relevant pixels in the image (indicated by large gradients), which have the
largest influence on the feature extraction from the CNN model. By restricting
the gradient map computations to only the previously selected subset of fea-
tures, regions with large gradients are more adjusted to the classification task
compared to propagating back the gradients of all features to the input image.
Since our feature selection is based on a multi-class one-vs-rest SVM classifier,
only selected features of the class assigned by this classifier are used for the gra-
dient map computations. Thus, we incorporate knowledge of a baseline classifier
with global features in our part detection algorithm.

The gradient maps are treated as saliency maps in our approach in order to
guide the part detection and they depend on the used CNN features. In case
of many currently used CNN architectures (Inception [18], ResNet [6], etc.),
features are computed by averaging the values within each of the D output
channel of the last convolutional layer. Typically, these output channels are
called feature maps and the aforementioned average pooling results in a single
number for each feature map. Given D feature maps F (1)(I), . . . , F (D)(I) of
size s × u for an image I, this pooling step for computing the elements f (d)(I)
of the D-dimensional feature vector f(I) can be written as follows:

f (d)(I) =
1

s · u

s∑
j=1

u∑
j′=1

F
(d)
j,j′(I) ∀ d ∈ {1, . . . , D} . (1)

Consequently, each value in a feature vector corresponds to a single feature map
and since the feature selection method mentioned in Sect. 3.1 is applied to the
feature vectors, it can also be viewed as applying the feature selection to the
feature maps, i.e., the output channels of the last convolutional layer.

Like Simonyan et al. [17] and Simon et al. [15], we use back-propagation
through the CNN to identify the regions of interest for each selected feature
map. Based on the feature map subset D ⊂ {1, . . . , D} chosen by the feature
selection from Sect. 3.1, we compute a saliency map M(I) for an image I as
follows:

Mx,y(I) =
1

|D|
∑
d∈D

∣∣∣∣ ∂

∂Ix,y
f (d)(I)

∣∣∣∣ =
1

|D|
∑
d∈D

∣∣∣∣∣∣ ∂

∂Ix,y

1

s · u

s∑
j=1

u∑
j′=1

F
(d)
j,j′(I)

∣∣∣∣∣∣ . (2)

After estimating the saliency maps, we normalize the resulting values to
the range [0 . . . 1] and determine a threshold to discard pixels and regions of
low saliency at an early stage. We use the mean saliency value as a threshold.
We have also tested Otsu’s thresholding method [14] and it achieved similar
performance. The resulting sparse saliency map, which now contains only pixels
with large saliency values, is used in the next step for estimating location and
spatial extent of parts.
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3.3 Estimating Bounding-Box-Parts

Given an image and a sparse saliency map that discards pixels with low saliency,
a set of k peaks P = {p1, . . . , pk} with largest saliency can be computed using
non-maximum suppression. Each peak serves as the initialization for a new part
location. We then determine a region of high saliency around each peak, which
directly defines the spatial extent of the estimated part. Like Zhang et al. [22], we
achieve this by k-means clustering of pixel coordinates (x, y) and the saliencies
Mx,y (Eq. 2). Additionally, we also consider the RGB values at the corresponding
positions in the input image. The clusters are initialized with the previously
determined peaks p1, . . . , pk.

This has the effect that the number of selected peaks determines the number
of clusters and hence the number of parts to detect. Second, since the peaks are
sorted by their saliency values, the most important part is identified by the first
cluster. Afterwards, it is easy to translate the clusters into bounding boxes for
the parts. For each cluster we estimate the upper left and lower right corners
in order to maximize the recall of the cluster pixels surrounded by the corners.
The motivation behind the recall maximization is to get bounding boxes that
contain as few false negatives as possible.

The resulting bounding boxes serve as parts for the following part-based
classification with the advantage that we automatically determine the spatial
extent (scale) of the parts by inferring the size of the bounding boxes based on
the clustering and the regression. In contrast to this, most approaches estimate
only x and y coordinates of the part locations such that the size of each part has
to be selected appropriately. The same holds for the ground-truth annotations
of many fine-grained datasets [19,21]. In most cases, the size for all parts of
an image is fixed, which is obviously not very suitable since parts often have
different extents in the image, e.g., consider bird parts that correspond to an eye
and a wing.

With our part estimation strategy, we are able to automatically determine
different sizes for different parts depending on the content of the image. Hence,
we want to emphasize again that we treat parts as bounding boxes with esti-
mated position and estimated spatial extent in our framework rather than only
considering point locations with fixed extent.

3.4 Part Feature Extraction and Part-based Classification

After we have estimated the bounding boxes around the maximum peaks of
the sparse saliency map for each image, we extract CNN features from these
bounding boxes. This is achieved by treating each bounding box as a single
image that is then processed by a pretrained CNN to extract meaningful features
from the penultimate layer. Note that this could even be the same CNN that was
initially used to extract global image features for the part localization and we use
the same CNN architecture for both steps. The resulting part features and the
global features are then concatenated prior to applying a linear SVM classifier.
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This classifier has been trained using part features of the training images that
have been computed with our part estimation approach described before.

To summarize, our part descriptors are classification-specific in the sense that
we estimate location and spatial extent of parts via bounding boxes based on
an initial classifier decision with its involved feature selection, i.e., our estimated
parts focus on the important aspects that are relevant for the classification.

4 Experiments

4.1 Datasets and Implementation

Datasets All of the experiments are performed on widely used fine-grained
datasets. These datasets belong to a single common domain (birds, cars, flowers,
etc.). Though, some of these datasets provide additional part or bounding box
annotations besides the class annotations, we use only the class labels in our
experiments. A short description of these datasets can be found in the following.

CUB-200-2011 [21] consists of 5994 training and 5794 test images from 200
different bird species. Besides the class labels, this dataset provides bounding
box and part annotations.

NA-Birds [19] is similar to the CUB-200-2011 dataset. It provides besides
class annotations also ground-truth part annotations. This dataset is more chal-
lenging, since it has 555 classes spread over 23 929 training and 24 633 test im-
ages. Although there are more training samples, the training set is not as bal-
anced as the training set of the CUB-200-2011 dataset. Additionally, this dataset
provides a hierarchy information about the classes.

Stanford-Cars [11] contains 8144 training and 8041 test images for 196 car
models. This dataset provides only bounding box annotations.

Flowers-102 [13] has 102 different flower species spread over 2040 training
and 6149 test images. Class labels are the only provided annotations.

Implementation As backbone for our method, we use the ResNet-50 [6] CNN
architecture for Stanford-Cars and Inception-V3 CNN architecture [18] for the
other datasets. For different datasets we use CNN weights proposed by Cui
et al. [1]. These weights are pretrained on either the ImageNet or the iNaturalist
2017 dataset. To allow for fair comparisons with the recognition performances
mentioned in [1], we use ImageNet weights for Stanford-Cars and iNaturalist
weights for all other datasets. This separation makes sense, since iNaturalist
consists of living things only, which matches the datasets of flowers and birds
best. On the other hand, ImageNet classes are more variable and contain also
objects and vehicles, which is more suitable for a dataset of car images. For
every fine-grained dataset, we fine-tune a CNN on the corresponding training
set, perform the feature selection, part localization and part extraction. Finally,
the extracted part features and the global feature are concatenated and a linear
SVM classifier is trained. In order to match the number of regrouped ground-
truth parts for the CUB-200-2011 dataset mentioned in the introduction, we use
k = 4 in the part localization step, which results in four parts.
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Table 1. Comparison of our part extraction algorithm with and without our proposed
feature selection method (bold = best per dataset).

CUB-200-2011 NA-Birds Flowers-102 Stanford-Cars

Global features (baseline) 88.5 87.5 97.8 91.5

Our parts
no feature selection 89.1 88.4 97.0 92.2
with feature selection (Sect. 3.1) 89.5 88.5 96.9 92.5

4.2 Results

Feature Selection Evaluation First, we show that the usage of a classification-
specific feature selection improves the quality of the extracted parts. For this
experiment, we first compute the gradients from the entire feature vector with
respect to the input image. Based on this gradient, we detect parts and extract
features as mentioned before in Sections 3.2, 3.3, and 3.4. The results obtained
with these features can then be compared to the results of our approach. Al-
though the features derived from gradients of the entire feature vector improve
the recognition performance compared to the linear classification baseline, using
feature selection as presented in Sect. 3.1 yields a larger improvement, as shown
in Table 1. We observe that the feature selection is an important ingredient in
our approach. The additional information, in form of the part features deter-
mined from the gradients of the entire feature vector, improves the classification
performance. Nevertheless, the benefits of the feature selection indicate that this
additional information should be picked with care.

The saliency maps that determine the parts are computed by the sum of the
gradients of every single CNN feature with respect to the input image (Eq. 2).
Hence, the feature selection reduces the summation to selected gradients only.
This means that in the experiment with feature selection, we use less informa-
tion but this information is more precise which results in better classification
performance. These findings hold for all presented datasets except for the flow-
ers dataset. In case of flowers we see that the baseline linear classifier performs
best. One possible explanation is overfitting to the training data. Compared to
other datasets, there are on average only 20 training samples per class. The other
datasets contain an average of 30 to 40 samples per class.

Furthermore, as Fig. 4 shows, the number of selected features by a L1-
regularized linear classifier is beneath 3 % for used datasets. As a consequence,
the number of aggregated gradients (Eq. 2) is also beneath 3 %. This fact and the
results from Table 1 confirm the assumption, that quality of selected information
is more important than the quantity.

Part Feature Evaluation Second, we compare the recognition performance
of our extracted parts with the one obtained with ground-truth parts. We have
chosen the CUB-200-2011 dataset for this experiment, since it is one of the few
datasets that provides these annotations. As indicated in the introduction, we
also regrouped the provided ground-truth parts in more coarse but also more
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Fig. 4. Since we perform multi-class classification with the “one-vs-rest” strategy, we
obtain for each class a vector of sparse weights for the linear SVM due to the L1 regu-
larization. The distribution of the number of nonzero weights over the different classes
(different “one-vs-rest” models) is shown for each dataset that is used in our experi-
ments. Note that both relative and absolute quantities are shown (for 2048 features in
total), which correspond to the number of selected features.

Table 2. Evaluation of the extracted parts on the CUB-200-2011 dataset. Note that
we have used the same CNN to extract features from the different part locations:
ground-truth (GT), regrouped GT, NAC parts [15], and our classification-specific parts
(bold = best, italic = best without GT annotations).

global parts parts + # of
features only global parts

Global features (baseline) 88.5 - - -

GT parts - 87.9 89.8 15
Regrouped GT parts - 86.9 90.2 4

NAC part locations of [15] - 87.9 89.0 20
Our parts - 87.4 89.5 4

distinct parts, namely “head”, “body”, “legs”, and “tail”. Compared to original
ground-truth part annotations, our experiments show that these parts yield a
better recognition performance (Table 2). This indicates again that the quality
of parts is more important than the quantity. In the same table, we compare
our classification-specific part detection with the part-based approach of Simon
et al. [15], who have provided their extracted part locations. Additionally, we
report in the table the recognition based on the global feature only. Best results
are achieved when combining part features and the global image feature. While
using ground-truth part annotations is slightly better, we are able to achieve
better recognition results than the NAC parts proposed by Simon et al. [15].
Thus, our approach yields competitive recognition accuracies without relying on
ground-truth part annotations, which makes it applicable in a wider range of
applications where part annotations are not available.

Comparison to State-of-the-Art Finally, we compare our proposed method
with current state-of-the-art approaches on commonly used fine-grained datasets.
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Table 3. Comparison of our part-based approach for fine-grained recognition with
various state-of-the-art methods (bold = best, italic = best part-based).

CUB-200-2011 NA-Birds Flowers-102 Stanford-Cars
maximum

# of parts

G
lo

b
a
l

fe
a
tu

re
s Linear SVM

88.5 87.5 97.8 91.5 -
(baseline)

Lin et al. [12] 84.1 - - 91.3 -

Simon et al. [16] 86.5 - 96.7 91.6 -

Cui et al. [1] 89.6 87.9 97.7 93.5 -

P
a
rt

-b
a
se

d
fe

a
tu

re
s Simon et al. [15] 81.0 - 95.3 - 20

Krause et al. [9] 82.0 - - 92.6 30
Fu et al. [3] 85.3 - - 92.5 2
Zhang et al. [22] 85.4 - - 92.3 4
Zheng et al. [23] 86.5 - - 92.8 5
He et al. [7] 87.2 - - 93.3 15
Ge et al. [4] 90.4 - - - 10

Our parts 89.5 88.5 96.9 92.5 4

The results are shown in Table 3 and the mentioned baseline uses only global
image features extracted from the whole image. Furthermore, we differentiate
between methods that use only the global information and part-based methods.
Besides the method of Cui et al., which utilizes clever pretraining of the CNN
weights, we compare to other methods that use sophisticated pooling methods:
bilinear pooling [12] and alpha-pooling [16]. We also report recognition results
and the number of used parts for other part-based approaches. Note that none
of the approaches used ground-truth part annotations, neither during training
nor in the test phase.

Table 3 shows that our approach is competitive in various fine-grained ap-
plications and achieves state-of-the-art performance on the NA-Birds dataset.
For the CUB-200-2011 dataset, we outperform a lot of part-based methods even
if they are using much more parts. This highlights once again that the qual-
ity of the parts is important and that our estimated parts contain meaningful
information in only four locations.

5 Conclusion

In this paper, we proposed a weakly supervised classification-specific part esti-
mation approach for fine-grained visual categorization. Unlike other part-based
approaches, we estimate the part extents based on an initial classification of the
whole image. We have shown that part features extracted in a classification-
specific manner result in improved categorization performance. Furthermore,
each estimated bounding box part has an implicit spatial extent that automati-
cally determines an appropriate scale of the part.
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