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Abstract

Plant community data, like the species composition of the community and the phenology
of the occurring species, are paramount for environmental research. Such data can be
used to detect species responses to environmental changes, but the collection is very
laborious, slow, and prone to human error. These detriments can be counteracted with
automatic camera systems in combination with machine learning approaches that are
able to extract the vegetation data from collected images in a consistent and fast manner.
We introduce PlantCAPNet, an application to automate the analysis of herbaceous plant
communities from images by extracting plant cover and phenology, addressing the tedious
and biased nature of manual field collection. The system has an easy-to-use web interface
with a single image prediction tool, a batch prediction function for image series, and a
training interface for users to build novel models. We offer PlantCAPNet with two
operational modes: a ’cover-trained’ mode for predicting cover and phenology using user-
provided labeled data, and a ’zero-shot’ mode capable of predicting cover using only web-
sourced data, thus lowering the barrier for entry. Our evaluations show that PlantCAPNet
performs comparably or better than independent human experts in estimating plant
cover. The zero-shot method reflects the reference estimates with a correlation of 0.625,
and the cover-trained method with one of 0.790 compared to a correlation of 0.620 from
independent experts. Moreover, we show that our system performs reliably for dataset
with few species, and the cover prediction is also reliable for the most abundant species in
datasets with many species, while the phenology prediction is dependent on the amount
of training data. In total, our system offers higher consistency than human experts,
and enables the extraction of high-temporal-resolution ecological data, facilitating novel
environmental research.

Keywords: Plant Biodiversity, Plant Cover, Deep Learning, Convolutional Neural
Networks, Artificial Intelligence, Application, Web-tool
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1. Introduction

Collecting data on plant communities is a tedious task, but of paramount importance
for many ecological studies. For example, the plant species composition is an important
indicator for environmental changes like climate change (Rosenzweig et al., 2007; Liu
et al., 2018; Lloret et al., 2009), but also responds to changes in insect abundance (Souza
et al., 2016; Ulrich et al., 2020) and land use (Gerstner et al., 2014; Helm et al., 2019).
Beyond the species composition, also their phenology responds to these changes in the
environment (Root et al., 2003; Rosenzweig et al., 2007; Liu et al., 2018; Ulrich et al.,
2020; Souza et al., 2016; Gerstner et al., 2014; Helm et al., 2019).

Community data is usually collected manually in the field by ecologists. However, this
manual collection introduces several issues. The potentially strongest limitation is that
experts require a lot of time to assess the community, and consequentially can only collect
such data on few plots and in a low temporal resolution. Moreover, human estimation
can be very inaccurate and biased, potentially changing the estimates due to influences
like observer bias, leading to reproducibility issues. However, with automatic image
collection systems combined with automated intelligent analysis methods, we can reduce
the observer bias and provide detailed data across the season, therewith offering larger
and more concise datasets.

While several freely available applications already exist for plant species determination,
like Flora Incognita (Mäder et al., 2021) or Pl@ntNet (Affouard et al., 2017), they focus
only on single plant individuals. In Flora Incognita, for example, the user can take
several images of the same plant individual to improve species identification. However, as
many ecological research projects focus on plant communities, such applications facilitate
species identification, but not estimation of species covers.

While the automated estimation of plant cover from images has been investigated, ex-
isting scientific approaches are not suited for determining species-specific cover in the
complex, dense herbaceous communities that are central to many ecological studies. For
instance, some methods use CNNs on UAV imagery to assess vegetation (Kattenborn
et al., 2020; Du et al., 2021), but these typically analyze visually distinct subjects like
trees or shrubs where plants are relatively easy to discern and occlusion is not a major
issue. Other ground-level approaches are often limited to simple color analysis, separat-
ing green from non-green parts of an image, or use classical computer vision and machine
learning to differentiate between broad functional groups like grasses, forbs, or mosses
(McCool et al., 2018; Bauer and Strauss, 2014; King et al., 2020; Sellers et al., 2023;
Coy et al., 2016). Finally, while a recent work by Picard-Krashevski et al. (2025) also
employs deep learning to predict the plant cover of herbaceous and shrub species by per-
forming a patch-wise classification for each image, the setup is comparably simple with
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few plant species and occlusion is not considered. Critically, many of these methods rely
on pixel- or patch-level delineations for training, which are extremely labor-intensive to
produce and not available in our case. Consequently, a significant gap persists: there is
no existing, accessible solution that can automatically and accurately estimate the cover
of individual species within dense, overlapping plant communities directly from images
without requiring manual annotations.

We introduce PlantCAPNet as an easy-to-use application enabling the automatic extrac-
tion of the species composition and phenology of herbaceous plant communities from
images. The system comprises an interface of three parts. The first part is for single
image predictions and can be used to check the correctness of the underlying model’s
predictions. The second interface is for batch-processing a series of images in a fast and
convenient way, which enables inference for very long image sequences, and offers a down-
load of the prediction results in form of CSV files. Finally, the third interface allows for
configuring model training, providing default parameters and generating a downloadable
script. When executed, the script trains a new model on custom data such that a user
can easily create custom models on their own data with which they can obtain the most
accurate predictions.

The methods used in PlantCAPNet are based on our previous works (Körschens et al.,
2024, 2023b). Thus, PlantCAPNet features two modes: a cover-trained mode and a zero-
shot mode. The former allows for training and inference of the species-wise plant cover
and phenology, if a fully-labeled vegetation dataset is available. The zero-shot mode,
in contrast, allows for training cover-prediction-only models solely based on web-sourced
training data, and, thus, does not require a labeled vegetation dataset.

Additionally, PlantCAPNet features three major practical extensions to the methods in-
troduced in previous works. The first extension is the usage of two recent network archi-
tectures, namely the EfficientNetV2 (Tan and Le, 2021) and ConvNeXt (Liu et al., 2022)
families of architectures, thereby replacing the ResNet50 (He et al., 2016) used in pre-
vious works and providing a considerable performance boost. Second, we employ model
ensembles, which enable the aggregation of information of several equally or differently
trained models to make predictions more robust. Finally, we also introduce temporal
aggregation of the predictions, with which is becomes possible to use temporally close
images (like images from the previous and following week of the image to predict) to
make the predictions even more robust and accurate.

With our novel application it becomes straightforward to train models on series of images
of vegetation relevées and perform predictions using such models to extract consistent
data in a high temporal resolution. To be able to use or train our system, no coding is
required, resulting in simple adaptations to custom datasets.

In the following, we provide an introduction to the system, including a detailed overview
over its components and present the typical workflow when working with it. Additionally,
we also show that it performs comparable or better than independent experts, and present
important aspects we found that are paramount for good prediction performance when
applying the system to custom data.
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(a) Cover predictions

(b) Flowering phenology predictions

Figure 1: An example of the single prediction interface showing heatmaps and bar plots for the detected
plants, their flowers and senescent areas.

2. PlantCAPNet

In this section, we first introduce the web interface and its components, followed by an
explanation of the backend and the general usage workflow, and conclude details and
requirements for setting up the application.

2.1. Web Interface

The web interface to our system comprises three interfaces: two for prediction, and one
for setting up a training workflow to create new models.

2.1.1. Single Prediction

The single prediction interface allows running the system on individual images in order to
obtain visualizations of the models’ detections and for the user to confirm the correctness
of the prediction results. For the cover and phenology prediction modes, the interface
shows a heatmap for each species. These heatmaps show the model’s detections, i.e., the
pixel-wise likelihood for each species according to the model. In addition to each of these
maps, the model’s cover and phenology percentage predictions are summarized as bar
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(a) An exemplary output table for the batched prediction
interface showing variations in cover for all species over
time.

(b) An exemplary plot for the batched prediction interface.
Each line represents the development of the plant cover of
a single species over time.

Figure 2: Exemplary outputs of the batched cover prediction interface.

plot for a better overview of the total model predictions. An example of this interface is
shown in Figure 1.

2.1.2. Batched Prediction

To speed up analysis, we introduce a batch prediction interface that processes an entire
series of images at once. The images can be handled independently or as a time series
by interpreting dates and times from the filenames. This temporal information is used
in two ways. First, for aggregation, where images over a set time unit (like a day) are
averaged to produce more robust predictions by reducing noise from lighting changes or
movement. This can be done over minutes, days, or years. Second, temporal smoothing
uses neighboring data points over weeks or months to further refine the final predictions.

After processing, results are presented in tables (Figure 2a) and line plots (Figure 2b),
and can be downloaded as a CSV file for further ecological analysis.

2.1.3. The Training Interface

The provided training interface facilitates fine-grained configuration across the entire
model training pipeline, encompassing pre-training, cover and phenology training, and
ensemble generation.

Pre-training Configuration. Users can independently configure parameters for both clas-
sification and segmentation pre-training stages (see Körschens et al. (2024)). Common
adjustable parameters include the learning rate schedule, dataset selection, choice of loss
function, and the underlying network architecture.

Plant Cover Training Configuration. For the final plant cover training phase, the interface
permits the selection of task-specific hyperparameters and target datasets. Additionally,
parameters controlling the methodology for subsequent plant cover and phenology calcu-
lations can be precisely defined.

Ensemble Methods. Integrated support for ensemble methods allows users to configure,
train and automatically construct model ensembles to improve generalization and robust-
ness. Ensembles can be formed using various strategies, such as: (i) combining models
based on heterogeneous architectures, (ii) aggregating model checkpoints trained with dif-
ferent training epochs, or (iii) averaging predictions from multiple independent training
runs with identical settings (repetitions).
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Execution Environment. To accommodate diverse computational needs, the interface pro-
vides options for both local execution and distributed training on a SLURM-managed
cluster.

After configuring, the corresponding code can either be copied or downloaded into a script
file that can be executed via the backend framework.

2.2. The Backend Framework

The backend framework, the code-base for system inference and training, can be operated
independently of the interface. It builds upon Körschens et al. (2024, 2023b) but includes
additional features. The backend supports pre-training phases for classification and seg-
mentation, followed by a dedicated cover prediction training phase. Alternatively, the
trained segmentation model can function directly as a zero-shot cover predictor if cover
training data is absent. Thus, the training pipeline is usable with specific plant cover and
phenology data, or even without any annotated data. The GBIF-Downloader detailed
in section 3 can retrieve species images from GBIF1 to train or pre-train a zero-shot or
cover-trained model.

Beyond these core capabilities, the system supports the construction of model ensembles
using techniques like model averaging (Goodfellow et al., 2016). This approach involves
training multiple models independently (e.g., with different initializations, epochs or ar-
chitectures) and averaging their predictions, potentially improving accuracy and reliabil-
ity by leveraging diverse model errors and reducing variance (Goodfellow et al., 2016).
Additionally, the system incorporates training speed optimizations for high-resolution
images, such as Monte-Carlo Cropping (MCC) (Körschens et al., 2023a).

Segmentation pre-training incorporates the Inverted Cutout (IC) augmentation
(Körschens et al., 2022) to enhance robustness against partial occlusion. As plants often
overlap in community analysis, causing significant occlusion, methods addressing this can
improve predictions.

Furthermore, the system currently supports two model architectures: ConvNeXt (Liu
et al., 2022) and EfficientNetV2 (Tan and Le, 2021). They are available via PyTorch
Torchvision (Paszke, 2019), using model weights from ImageNet (Russakovsky et al.,
2015) pre-training.

As mentioned, the configuration of the training can be done via the web system, but the
training needs to be done in the backend directly to have the highest amount of control
and to not interfere with the running web system. As the backend can be operated
independently, it can be deployed without the interface on dedicated computing resources
like HPC clusters. Users can configure runs through the web interface, download the
configuration as a bash script, and execute it on remote servers.

2.3. Workflow

The general workflow using our application is shown in Figure 3, with the usage of the web
interface in Figure 3a and the training of a custom model in Figure 3b. In the training
workflow, the user can first utilize our provided GBIF-Downloader (section 3) to obtain

1https://gbif.org
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a pre-training dataset comprising the species of interest to supplement training. Then,
they can utilize the training web interface to configure the training procedure, generating
a complete training script therewith. In case of training a complete cover-trained model,
annotated cover- and phenology training data has to be prepared before the training can
start. In the case of zero-shot models, as no annotated data is used, no such preparation
is required before the training, and only the pre-training data is used.

After the training process, the newly generated model has to be integrated into the
web interface, after which any of the two prediction interfaces can be used. The single
prediction interface generates visualizations on the localizations of each species in a single
image, while the batch prediction interface can be used to obtain predictions for an entire
series of images at once. After the batch prediction, the results can be downloaded for
further processing and the prediction can be repeated for more images. Notably, the
prediction process only takes a few seconds per image when using a GPU.

2.4. Setup

This section outlines the necessary prerequisites and recommended hardware for installing
and running the application.

Software Prerequisites. A Linux distribution is recommended as the operating system;
development and testing were performed primarily on Ubuntu 22.04 LTS and 24.04 LTS.
The application necessitates Python version 3.10 or newer. We recommend managing
dependencies using Anaconda or a similar virtual environment manager. The core func-
tionality relies on PyTorch (Paszke, 2019) for deep learning model training and inference,
complemented by Torchvision for standard computer vision models. Furthermore, the in-
teractive web interface is built using the Gradio (Abid et al., 2019) library. Setup scripts
are provided to facilitate the installation of these and other dependencies; please refer to
the accompanying README file or documentation for detailed instructions.

Hardware Recommendations. Hardware requirements vary based on the intended use (in-
ference or training). For inference tasks, a CUDA-compatible NVIDIA GPU possessing at
least 8 GB of VRAM (e.g., NVIDIA GeForce RTX 2080 or equivalent) is recommended to
achieve reasonable performance. Model training, being more computationally intensive,
benefits significantly from a CUDA-compatible NVIDIA GPU with 12 GB of VRAM or
more (e.g., NVIDIA GeForce RTX 3080, RTX 4070 Ti, or data center-grade GPUs like
A100). Regardless of the primary task, a minimum of 64 GB of system memory (RAM)
is recommended for the host machine, particularly when performing model training.

Client Access. It should be noted that the software prerequisites and hardware recommen-
dations detailed above apply specifically to the server component responsible for hosting
the backend logic and executing model computations. The web interface itself is designed
to be lightweight and can be accessed and utilized from any standard web browser on any
operating system, provided there is network connectivity allowing communication with
the server.
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(a) The main process of using the web interface.
(b) The process of using the web interface, GBIF-
Downloader and backend for training.

Figure 3: The principal process for using the PlantCAPNet system in UML flowchart notation.
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3. The GBIF-Downloader

We also provide a tool for image retrieval from the Global Biodiversity Information Facil-
ity (GBIF) platform (GBIF.org, 2025). Its primary function is to assemble image datasets
for specified taxonomic groups, initially focused on plant species observed in situ or pre-
served as herbarium specimens. However, the tool’s capabilities extend beyond botany,
enabling dataset creation for various taxonomic ranks (e.g., genus, family) and kingdoms
(e.g., Animalia), encompassing the diverse range of image data hosted within the GBIF
database. This flexibility makes it a valuable resource for constructing comprehensive
image datasets tailored to the requirements of training computer vision algorithms, par-
ticularly when pre-existing, curated datasets for specific taxa or imaging conditions are
unavailable.

4. Evaluation

To provide an overview over the system’s capabilities, we present results evaluated on the
InsectArmageddon dataset (Ulrich et al., 2020; Körschens et al., 2020, 2024) and a novel
dataset collected in the botanical garden of Jena, Germany called BotGardJena21.

4.1. Metrics

We present numerical results based on the Pearson-correlation of the predicted values
and the original annotations, and the DCA-Procrustes-Correlation (DPC), as defined
in Körschens et al. (2024). The Pearson-correlation is used to evaluate how well the
species-wise cover and phenology predictions relate to the ones observed by an ecologist.
It is calculated independently between each predicted and target value for each species,
followed by averaging. The DPC indicates, how well the entire plant cover distribution
over all species is reflected in the predictions compared to the original estimates. The
metric is a combination of the Detrended Correspondence Analysis (DCA) (Hill and
Gauch, 1980), and a Procrustes analysis (Grey, 1981). It is calculated by transforming
both the predicted and target outputs with a DCA, followed by a comparison using a
Procrustes test, resulting in a correlation-like value ranging from 0 to 1, with 1 being the
best.

4.2. InsectArmageddon Dataset

In this section, we introduce the InsectArmageddon dataset, followed by the evaluation
of our methods on it.

4.2.1. Dataset

The InsectArmageddon dataset comprises eight herbaceous plant species from central
Europe in a strongly imbalanced species distribution, as shown in Figure 4a. In the
figure, we also see the flowering and senescence percentages as fractions of the total
plant cover. We see that the amounts of phenological training data are considerably
smaller than the already small and imbalanced cover data, typical for plant community
data. Example images for the flowering and senescence stages are shown in Figure 4b
and Figure 4c, and example images for the species in the dataset can be found in Figure 5.
While the original dataset comprises 682 weekly images with complete annotations, we
employed Label Interpolation (Körschens et al., 2023a) to weakly label the unlabeled
daily images. This increased the size of the dataset to approximately 4900 images. We
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(a) Plant cover and phenology percentages in the Insect-Armageddon
dataset calculated over the entire dataset

(b) Flowering plants (c) Senescent plants

Figure 4: An overview over the InsectArmageddon dataset.

maintain the evaluation protocol from Körschens et al. (2024) and evaluate in a 12-fold
cross-validation. For a comparison with human experts, we compare the results of our
methods with the estimates from the study with six human experts from Körschens et al.
(2024), in which they independently estimated the plant cover for a selection of images.
The DPC is calculated for the estimates for each expert independently and then averaged
for comparison with our provided method. For more details on the InsectArmageddon
dataset, we would like to refer to the aforementioned publications.

4.2.2. Setup

For both the cover-trained model, and the zero-shot model, we utilize ensembles. During
the classification phase (phase 1 in Körschens et al. (2024)), we use an EfficientNetV2 for
both setups. For the cover-trained model, we create an ensemble by averaging predictions
from a total of 9 models. Specifically, we average three models trained for 10 epochs,
three models trained for 20 epochs, and three models trained for 40 epochs. Moreover,
for our zero-shot model, we construct a different ensemble comprising 15 models. For
this ensemble, we average the predictions from five models each of the ConvNeXt Tiny,
ConvNeXt Base, and ConvNeXt Large architectures, which were trained in the same
way. When we employ temporal smoothing, we use an exponential kernel with base of
0.8. I.e., we average the cover percentages by weighting the week to evaluate with a factor
of 0.80 = 1, the week before and after with a factor of 0.81 = 0.8, the second weeks before
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(a) Achillea millefolium (b) Centaurea jacea

(c) Grasses (d) Lotus corniculatus

(e) Medicago lupulina (f) Plantago lanceolata

(g) Scorzoneroides autumnalis (h) Trifolium pratense

Figure 5: Example images of the species contained in the InsectArmageddon dataset.
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Table 1: Comparison of DCA-Procrustes-Correlation (DPC) values for different methods/individuals for
all species.

Method/Individual DPC
Mean ± Std Dev

Human Experts 0.620± 0.140
Cover-Trained Model 0.790± 0.004
Zero-Shot Model 0.625± 0.023
Zero-Shot Model (Temporal) 0.677± 0.011

with a factor of 0.82 = 0.64 et cetera.

4.2.3. Results

In Table 1, we present the DPC results for our methods and the expert ecologists. The
human experts achieved a mean DPC of 0.620±0.140, indicating relatively consistent
performance but with considerable inter-expert variability initially. The cover-trained
model demonstrates the highest performance overall with a DPC of 0.790±0.004, show-
casing very low variance. Furthermore, the standard zero-shot model yields a DPC of
0.625±0.023, comparable to the human experts’ mean. When employing the zero-shot
model and smoothing the species-wise cover values over time using an exponential kernel,
its prediction results in a DPC of 0.677±0.011. Notably, all models exhibit considerably
lower standard deviations compared to the human experts, indicating higher consistency
of the prediction models.

In Figure 6 we present the Pearson-correlations of the predictions with the original expert
estimates. For the cover-trained model, the correlations are generally high for all the
species, peaking at 0.9 for Trifolium pratense and Grasses (not distinguished into different
species in this dataset), with Scorzoneroides autumnalis, the least abundant species in the
dataset, having the lowest correlation with about 0.4. For the zero-shot model, the higher
correlations are primarily focused on the T. pratense and Plantago lanceolata, two of the
most dominant species in the dataset. S. autumnalis and Medicago lupulina show slightly
negative correlations, in parts due to small size in the images (S. autumnalis), and in parts
possibly due to considerable similarity to other species (T. pratense vs. M. lupulina).
Notably, the species with the highest correlations are visually very distinct, leading to a
reliable prediction, while small, thin or visually similar species can be problematic.

Regarding the cover-trained model’s ability to predict flowering phenology (Figure 6c),
we see that the more obvious flowers of T. pratense, M. lupulina and Lotus corniculatus
are recognized reliably, while other, more inconspicuous blossoms, like the one of P.
lanceolata, can be more problematic. Furthermore, the detection of blossoms of a certain
plant species is also relying on the correct identification of the species of the respective
plant, which can potentially result in detrimental results for flowering or senescence, if
the species identification is not working well due to low resolution or similar issues. On
average, the cover-trained model achieves a flowering correlation of 0.529±0.014.

Concerning the senescence-prediction ability shown in Figure 6d, we see that most corre-
lations are high, besides the ones for species with little to no phenological training data.
The average senescence correlation achieved by the model is 0.454±0.009.
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(a) Plant cover correlation for the cover-trained model
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(b) Plant cover correlation for the zero-shot model
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(c) Flowering correlation for the cover-trained model
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(d) Senescence correlation for the cover-trained model

Figure 6: Correlations of model predictions with the reference estimates of the annotating expert.

Overall, for cover and phenology prediction with the cover-trained model, the correlations
considerably depend on the amount of cover and phenology data available. T. pratense,
the most dominant species in the dataset, shows the best correlations with the reference
estimates, due to its prevalence in the dataset. Species with considerably less training
data in phenology or cover perform drastically worse. Regarding the zero-shot model,
clearly differentiable and abundant species show the best performance. This effect is
shown in Figure 7. We see that for all cover and phenology prediction, the amount of
data plays a considerable role in the prediction accuracy, and a clear trend is visible.

Again, it should be noted that the negative correlations for the zero-shot model can be
caused by considerable similarities of the plant leaves, leading to the model mistaking a
species for another. These similarities are, unfortunately, only hard to solve without any
annotated cover data.

4.3. The BotGardJena21 (BGJ21) Dataset

To provide an indication of the performance of our system in considerably more complex
plant communities, we introduce a novel dataset, which we also use for evaluation.

4.3.1. Dataset

The BotGardJena21 (BGJ21) dataset was collected in 2021 at the botanical garden of
Jena, Germany. It consists of hourly images (≈8 AM to 8 PM) of two distinct vege-
tation plots, captured by two overhead cameras in a height of about 2 m from March

13



(a) Accuracy of cover predictions of the cover-trained
model vs. species-wise cover

(b) Accuracy of flowering predictions of the cover-
trained model vs. amount of species-wise flowering data

(c) Accuracy of senescence predictions of the cover-
trained model vs. amount of species-wise senescence
data

(d) Accuracy of cover predictions of the zero-shot model
vs. species-wise cover

Figure 7: The relationship between the accuracy of cover and phenology predictions of the cover-trained
and zero-shot model and amount of species-wise cover and phenology data in the dataset. The cover and
phenology percentages are calculated as averages over the entire dataset.
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(a) Plot 1: June 15, 2021 (b) Plot 2: September 15, 2021

Figure 8: Example images from the BGJ21 dataset showing the two monitored plots at different times
of the year.

to November. Two example images are shown in Figure 8. The dataset documents 52
classes, comprising 51 herbaceous central European plant species and a single combined
”Grasses” class, and is accompanied by weekly vegetation surveys that provide refer-
ence data for plant cover and phenology. The species distribution is highly imbalanced,
dominated by a few frequent species like Lathyrus vernus and Grasses, with a long tail
of many rare species, as shown in the following section. The two monitored plots also
exhibit notable differences in their species composition, which presents a challenge for
model training and validation.

Annotations. We obtained and compare two annotation methods of the images: field-
based and image-based observations. Field-based surveys were conducted on-site by an
ecologist who could interact with the vegetation, providing highly accurate but poten-
tially biased data that includes occluded plants not visible to the camera. In contrast,
image-based annotations were performed by an expert viewing only the camera footage,
aligning the data source with what a machine learning model would see but at the cost
of missing hidden information. This discrepancy led to significant differences. For exam-
ple, field-based surveys identified 52 species, while image-based surveys found only 37.
Furthermore, image-based annotations tended to overestimate the cover of dominant,
visible species and underestimate species like grasses or those hidden in lower vegetation
layers. The species cover and phenology distributions for the two annotation types are
shown in Figure 9. The most abundant species in this dataset are Aegopodium podagraria
(Aeg pod), Campanula rapunculoides (Cam rap), Lathyrus vernus (Lat ver), Trifolium
pratense (Tri pra) and the collective class of Grasses. Notably, the amount of phenolog-
ical information, i.e., flowering and senescence information is extremely low, in addition
to the considerably skewed cover distributions. Few species surpass a flowering rate of
1% of the total plant cover, while senescence is generally more frequent in the dataset.

While this dataset also contains only weekly annotations, as before, we employed Label
Interpolation (Körschens et al., 2023a) to get daily labels, which we use for every hourly
image for each day. Therefore, this dataset has approximately 12×30×9 = 3240 training
images for each of the two sites.
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(a) Field-based annotation: Number of observations per species and phenological stage (log scale).
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(b) Image-based annotation: Number of observations per species and phenological stage (log scale).

Figure 9: Comparison of phenology annotation distributions for field-based and image-based surveys in
the BGJ21 dataset.

Dataset Limitations. The dataset has several limitations that pose challenges for analysis.
These include a relatively low resolution per centimeter, a significant five-week gap in data
collection during the peak flowering season, and heavy occlusion of vegetation by fallen
leaves in autumn, which complicates species identification and cover estimation. The lack
of data during the key flowering period is particularly detrimental to training models for
phenology prediction.

4.3.2. Setup

We train our network using images of 2560 x 1920 pixels. To manage this resolution, we
employ Monte-Carlo-Cropping (MCC) (Körschens et al., 2023a) to create eight smaller
patches of 448 x 448 pixels from each image for processing. To achieve robust and stable
final predictions, we construct an ensemble of 12 sub-models by training three models for
6, 10, 15, and 20 epochs each.

Since the dataset provides hourly images, we leverage this rich temporal data. We ag-
gregate the predictions of the hourly images over an entire day by averaging them. We
also optionally apply temporal smoothing (TS) to these daily aggregated predictions to
further improve temporal consistency. For this, we employ the same exponential kernel
as described in section 4.2.2.

Our evaluation is performed using a cross-validation strategy. We train the model on the
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data from one plot and validate it on the other, then average the results to account for
the differing species compositions between the two sites. For phenology evaluation, we
evaluate the mean correlation across all species, setting the correlation to 0 for species
with no phenology data to ensure a fair average.

4.3.3. Results

The results of our experiments with this dataset are shown in Table 2. We notice that
the cover-trained models have a similarly high DPC with 0.90 for the image-based an-
notations, and 0.94 for the field-based ones. Also the zero-shot methods perform similar
on both kinds of annotations, with values of about 0.8. The prediction of flowering
phenology was very unreliable for both annotation kinds, as the amount of phenological
training data in the dataset was very small. Regarding the senescence prediction, the
model predictions are considerably more accurate for the field-based model, but not for
the image-based one. The reason for this is likely that the senescent plants are usually
in the lower layers of the vegetation plot and therefore usually not visible in the images.
The field-based model learned the prediction of the phenology data from other features in
the image, introducing a substantial bias in the senescence prediction. The image-based
model, however, does not have access to this information and therefore only has little
phenological data to train or predict, resulting in low accuracy.

Finally, the application of temporal smoothing appears to be beneficial in most instances,
raising the performance by up to several percent points. Only in some cases, like the
application in the zero-shot scenario of the image-based annotations it appears to be
detrimental. A possible reason for this is that the weekly predictions are very noisy,
requiring a differently-sized aggregation window to be effective.

An indication of the species-wise correlations for the cover prediction is shown in Fig-
ure 10. Again, in most methods we notice that the most dominant species in the datasets
are among the ones with the highest correlations. Among the most dominant species,
only the Grasses appear to be a considerable challenge to estimate from images due to
their thinness.
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Table 2: The results for plant cover and phenology prediction trained on the BGJ21 field- and image-
based estimates, and the zero-shot predictions evaluated on the each of these estimates. TS is abbreviated
for temporal smoothing.

DPC
Correlation
flowering

Correlation
senescence

Base of
Annotation

Approach TS

Field

Cover-Trained

✗
0.936
±0.009

0.036
±0.012

0.537
±0.019

✓
0.962
±0.004

0.045
±0.013

0.550
±0.016

Zero-Shot
✗

0.793
±0.036

— —

✓
0.859
±0.007

— —

Image

Cover-Trained

✗
0.901
±0.002

-0.004
±0.016

0.042
±0.028

✓
0.894
±0.006

-0.001
±0.018

0.044
±0.024

Zero-Shot
✗

0.805
±0.030

— —

✓
0.653
±0.010

— —
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(a) Field-based cover-trained

Ae
g p

od

Pla
 m

ed

Sm
y p

er

Lat
 ve

r

Lys
 nu

m
Pol

 od
o

Ve
r c

ha

Ane
 ne

m
Ra

n a
ur

Cam
 ra

p
Vic

 sa
t

Ant 
syl

Tax
 ba

c

Car 
be

t

Fra
 ex

c

Ra
n b

ul

Ac
e p

se
Lat

 pr
a

Tri 
pra
Tar

 of
f

Hed
 he

l

Lon
 xy

l
Vio

 hi
r

Cer 
ho

l

Gras
ses

Sco
 au

t

Med
 lu

p
Pri

 vu
l

Gal 
mol

Pil 
off

Ru
m ac

e
Pri

 ve
r

Eu
o e

ur

Que
rcu

s s
p.

Pae
 pe

r

Lis
 ov

a
Tri 

rep
Pla

 la
n

Leu
 vu

l

Tri 
du

b

Her 
sph

Ro
sa 

sp.
Fra

 vir

Aju 
rep

Pol
 m

ul

Cam
 ro

t

Geu
 ur

b
Til 

cor

Hier
aci

um
 sp

.

Cre 
bie

Ra
n a

cr

Lil 
mar

Crat
ae

gu
s s

p.

Species

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pe
ar

so
n 

Co
rre

la
tio

n

(b) Field-based zero-shot

Figure 10: Correlation plots for plant cover predictions on the BGJ21 dataset. Each panel shows the
results for a different annotation source and prediction approach.
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(c) Image-based cover-trained
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(d) Image-based zero-shot

Figure 10: Correlation plots for plant cover predictions on the BGJ21 dataset. Each panel shows the
results for a different annotation source and prediction approach.
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5. Discussion

As shown in our experiment, users can achieve the most accurate cover and phenology pre-
dictions by providing their own annotated data, especially when sufficient training data
for the species and their phenological stages is available. Additionally, PlantCAPNet’s
zero-shot capability allows for data extraction even without any user-provided vegeta-
tion training annotations. This significantly lowers the barrier to entry and enables its
application across a wider range of ecological scenarios and novel research studies.

Unlike existing applications such as Flora Incognita (Mäder et al., 2021) or Pl@ntNet (Af-
fouard et al., 2017), which typically analyze single plant specimens often using multiple
detailed images, PlantCAPNet processes entire plant communities within single images.
This approach drastically accelerates the analysis of community-level vegetation dynam-
ics. While top-down imagery inherently involves potential occlusion of plant features, a
challenge mitigated by the detailed, multi-image approach of single-specimen apps, ana-
lyzing each individual within a community in such detail is often temporally prohibitive.
Therefore, PlantCAPNet is optimized for rapid community assessment, whereas tools like
Flora Incognita are better suited for in-depth analysis of individual plants.

With our easy-to-use system many novel use-cases become possible for plant ecologists.
Since the system can automatically analyze large numbers of images in a short amount
of time, it is not necessary to collect sizable vegetation data manually anymore, lifting a
considerable limitation of data collection. Therefore, future studies can investigate many
plots at the same time by merely setting up a stationary camera collecting images in
regular intervals. With such an application, the scale of ecological experiments can be
extended considerably. Similarly, cameras can be stationed in remote locations or even
in severely underrepresented regions in ecological research, significantly reducing travel
times for researchers.

6. Usability Notes & Limitations

PlantCAPNet offers significant deployment flexibility; it can be hosted on a central com-
putation server and accessed remotely from any network-connected device. It features two
distinct prediction interfaces: one for visually verifying results and the spatial localiza-
tion of detected species, and another for efficient batch processing of large image series,
including capabilities for temporal smoothing. This design ensures both transparency
and practical usability.

To clarify the optimal use cases and inherent limitations of our system beyond our eval-
uation results, we will discuss the key factors influencing its performance.

Our investigations revealed that system performance is critically dependent on data
characteristics. Its effectiveness is constrained by a trade-off between image resolu-
tion and species count. While optimal results are achieved with high-resolution images
(e.g.,≈ 3000× 1500 px) and a limited number of species (5-20), the requirements become
more stringent as complexity increases. For a small number of visually distinct plant
species, a lower resolution might be sufficient. However, as more species are added, the
likelihood of visual similarity between them grows, making subtle distinguishing features
critical for identification. A significant practical limitation is that these subtle features
can often only be captured in very high-resolution images, raising the barrier for data
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acquisition. Furthermore, the system is not well-suited for identifying species with low
abundance. These species are difficult to identify reliably, and attempting to include them
can negatively impact prediction accuracy for more dominant species. Consequently, the
approach is best applied by focusing on a subset of the 10 to 20 most prominent species
in an area.

Another significant constraint is the need for comprehensive data. The system’s accuracy
is severely impaired by data imbalances or a lack of representation across all relevant
species and their different phenological stages. The annotation strategy also introduces
potential limitations. Field-based annotations, where experts work directly in the field,
might introduce biases by including information not visible in the images, which can
improve accuracy for similar sites but harm generalizability. Conversely, image-based
annotations foster evidence-based models that predict only what is visible. Our zero-shot
approach is designed to mitigate this concern as it is inherently evidence-based. Finally,
the reliability of predictions from a single image is a notable limitation. We found that
predictions become considerably more robust and accurate when results from several
images, such as those taken from different angles or at different times, are aggregated by
averaging. This suggests that for critical applications, relying on a single viewpoint may
be insufficient to ensure robust and accurate results.

7. Conclusion

We introduce PlantCAPNet, a novel application designed for ecological research to au-
tomatically extract species-specific plant cover and phenology from images of herbaceous
plant communities. This tool simplifies the application of CNN architectures to user-
collected image data and facilitates the training of custom models.

As shown in our evaluation, it enables the extraction of plant cover data and phenological
data, especially on dominant species in the community. Moreover, we showed that our
cover prediction methods perform well in real-world scenarios, but the phenology predic-
tion is very dependent on the amount of available training data. Hence, depending on the
amount of training data available, our approach can generate high-quality predictions for
images of plant communities. We also showed that the zero-shot approach not requiring
any training data can be a helpful asset, predicting most dominant plant species in the
images well. Hence, it can be utilized in situations, where no training data is available.
Finally, on our second dataset, we showed that both annotations done in the field, but
also ones directly from images can be used. The former foster more biases for data that
can not be seen in the images, potentially leading to more accurate predictions. The
latter lead to more evidence-based models, which, however, leads to potentially worse
predictions.

In summary, PlantCAPNet provides an automated system for extracting high-quality
ecological data at high temporal resolutions. By significantly reducing the required effort,
it facilitates novel, more fine-grained ecological studies than were previously feasible.

8. Future Work

Future work could focus on several key areas. Model architecture can be improved with
more sophisticated loss functions, such as approximations of the non-differentiable DPC
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metric similar to Wasserstein-GANs (Arjovsky et al., 2017), and by adapting amodal
segmentation techniques (Zhan et al., 2020; Ling et al., 2020; Liu et al., 2024) to better
handle occlusion.

Data collection can be enhanced by using dynamic platforms like UAVs (Sun et al.,
2021) and by incorporating advanced sensors like light-field (Lippmann, 1908; Bergen
and Adelson, 1991; Taugourdeau et al., 2022) or hyperspectral cameras (Du et al., 2021;
Rogers et al., 2024; Li et al., 2024).

The pre-training and zero-shot pipeline could be strengthened by using superior CAM
methods (Selvaraju et al., 2017; Wang et al., 2020; Ramaswamy et al., 2020) and by
extending zero-shot prediction to phenology by combining models like SAM (Kirillov
et al., 2023) with Grounding DINO (Liu et al., 2025; Ren et al., 2024).

The methods could also be applied to new data types, such as digitized herbarium spec-
imens (Hussein et al., 2022) and remote sensing imagery (Isaienkov et al., 2020; Hızal
et al., 2024; Hnatushenko and Honcharov, 2024; Kattenborn et al., 2020; Du et al., 2021).
Finally, the analysis could be deepened by extending temporal analysis to the pixel-level
(Moskoläı et al., 2021) and employing fine-grained classification techniques (Wei et al.,
2021), like part-based models (Korsch et al., 2021), for more accurate species identifica-
tion.
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