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Abstract

Global change has a detrimental impact on the environment and changes biodiversity pat-
terns, which can be observed, among others, via analyzing changes in the composition
of plant communities. Typically, vegetation relevées are done manually, which is time-
consuming, laborious, and subjective. Applying an automatic system for such an analysis
that can also identify co-occurring species would be beneficial as it is fast, effortless to use,
and consistent. Here, we introduce such a system based on Convolutional Neural Networks
for automatically predicting the species-wise plant cover. The system is trained on freely
available image data of herbaceous plant species from web sources and plant cover estimates
done by experts. With a novel extension of our original approach, the system can even be
applied directly to vegetation images without requiring such cover estimates. Our extended
approach, not utilizing dedicated training data, performs similarly to humans concerning the
relative species abundances in the vegetation relevées. When trained on dedicated training
annotations, it reflects the original estimates more closely than (independent) human ex-
perts, who manually analyzed the same sites. Our method is, with little adaptation, usable
in novel domains and could be used to analyze plant community dynamics and responses of
different plant species to environmental changes.
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1. Introduction

The estimation of plant cover is an essential part of plant-ecological research, as the thereby
investigated plant species composition allows assessing the effect of, for example, land use
[14, 19] and insect abundance [60, 64] on ecosystems. Moreover, climate change is one of the
most important factors influencing the plant community composition [53, 38, 41] and thus
also subject of a large number of projects [38, 14, 60, 6]. Typically, vegetation is monitored
only once per year, though we do know that it changes in the course of the season and
across years. To capture these seasonal variations in species composition is, however, time
consuming and costly. Especially in the context of experimental approaches, information on
higher temporal resolution would be advantageous (see also [64]).

Collecting images capturing the vegetation can be automated with dedicated camera setups.
The collected images can then be analyzed automatically using state-of-the-art computer
vision and machine learning methods. In combination with such methods, the camera setups
have the potential to generate high-quality data on plant communities. Furthermore, this
high-quality data can also be generated in a very high temporal frequency, allowing for
investigations with high temporal resolution. The latter is usually infeasible with manual
analysis due to being too laborious. Hence, manually generated datasets often only have
a small number of data points, while the high frequency of automated methods allows for
a much better analysis of seasonal variation. Apart from the aforementioned advantages,
automated methods also alleviate the workload of researchers regarding the estimation and
generate consistent output over time while alleviating biases and potential errors introduced
by human estimation. Lastly, with automated methods, expert knowledge, usually necessary
for manual estimation, is not required, and such systems can be used by non-experts as well.

Machine learning methods, and especially deep learning approaches, have become prevalent
tools in a large number of different disciplines over the last years. In the area of computer
vision, they represent the state of the art in tasks like image classification [12, 39, 40] image
instance segmentation [17], and object detection [7]. Also in the field of plant image analysis
they are applied in many different scenarios, like plant species classification [59], plant disease
detection [63] and agricultural applications [22, 45, 1]. Especially the usage of convolutional
neural networks (CNNs) for image analysis has gotten ubiquitous, enabling automatic object
identification and resulting in the automation of a large number of tedious tasks in biological
areas, like animal species identification [5, 51] and plant species identification [2, 25, 34, 49].
A major reason for their prevalent usage is the strong abundance of image data, generated
not only by omnipresent smartphones with cameras but also by automated camera systems
continuously collecting new data. All this data can either be used to satisfy the rather
large training data requirements of CNNs or be automatically analyzed using trained deep
learning models.
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Nevertheless, despite their large potential, CNNs have seen little use in plant ecology re-
search. Up until now, mostly rather simple tasks have been investigated with CNNs in this
area, like single-image species identification [2, 25, 34, 49], blossom detection [70] or phe-
nological analysis of homogeneous communities [61, 71, 23]. However, even more complex
tasks can be solved with CNNs, for example, the prediction of plant cover from images.

The task of predicting the plant cover via CNNs has been investigated before in several
instances. For example, there are two approaches in the area of remote sensing: Kattenborn
et al. [24] investigate UAV imagery containing several kinds of shrubs and trees using a
custom CNN architecture. They utilize delineations in the image as training data for their
segmentation model, which is then used to estimate the cover percentages. In contrast to
our investigations in this work, the trees and shrubs are visually relatively easy to discern,
and no relevant occlusion is taking place. Du et al. [13] similarly analyze hyperspectral data
of wetland communities taken by UAVs, also training with segmentation annotations. The
plant communities surveyed were quite homogeneous and also visually easy to discern.

The automated prediction of vegetation cover from images, i.e., the fraction of ground
covered by vegetation, has also been investigated in several instances [44, 3, 26, 56, 10].
Existing approaches in this area mostly tackle this problem by simple color analysis, as
usually this problem is solvable in most parts by separating the green and non-green parts
in the images. In multiple approaches additional differentiations are performed with classical
computer vision methods. McCool et al. [44], for example, utilize local binary patterns to
differentiate grasses and forbs by texture, Bauer and Strauss [3] use a hand-crafted rule-based
system to separate residues, vegetation, stones and shadow and, similarly, King et al. [26]
also use a rule-based system to distinguish mosses and their health. Sellers et al. [56] utilize
classical (non-deep) machine learning algorithms in conjunction with object-based methods
[4] to differentiate bryophytes, forbs, graminoids, shrubs and lichens. Existing methods,
hence, mostly differentiate vegetation on a high level, while usually also using delineations
as training target, which are not available in our case.

A detailed automatic analysis of species-rich vegetation plots of herbaceous plant species,
despite its significant potential, is a much more complex problem. In addition to subtle
differences between several plant species, the plants in the vegetation plots often grow in
multiple layers, leading to heavy occlusion that is enormously problematic for visual iden-
tification. Moreover, if the plants are monitored over larger time spans, they also undergo
optical changes induced by the growth and aging processes. Their size, form, and color
change over time, making it challenging to consistently identify even the same plant indi-
vidual in a series of images.

Concerning herbaceous plant species, Körschens et al. [33] and Körschens et al. [30, 31] pre-
viously introduced approaches that are the only ones concerned with the automatic analysis
of plant cover. These approaches do not utilize manual segmentation annotations to differen-
tiate the plants from one another but train with plant cover estimations from human annota-
tors directly. These estimates are, especially in large and diverse plant communities, cheaper
to collect than pixel-wise plant segmentation masks like in the abovementioned approaches.
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However, gathering many image annotations is nevertheless a tedious task. Therefore, we
supplement the training process with freely available images from web sources. Nowadays,
several web platforms, e.g., GBIF [66] and iNaturalist [68] gather and curate observation and
image data, which usually includes species information usable as annotations for network
training.

Here, we use and build on the approach from Körschens et al. [31], which involves a three-
phase training process. In the first phase, aforementioned images from web sources are
used to train a classifier to differentiate plant species, which is then used to automatically
generate segmentations, i.e., delineations of the plants in the images. In the second phase,
these generated delineations are used to train another network to segment plant species in
images, thus gathering more comprehensive knowledge about the appearance of the plant
species. This second network is used as the starting point of the plant cover training,
during which we train the network on the cover estimates provided by an expert. In this
work, we propose an extension of the approach from Körschens et al. [31], which eliminates
the need to train on plant cover estimates by directly applying the trained segmentation
model from phase two to the vegetation images for estimating the plant cover. With this
enhancement, no manual data annotations, i.e., no cover estimates from an expert, are
required for automated plant cover prediction, enabling easy adaptation of the network to
new situations and environments. We will refer to this approach as zero-shot plant cover
prediction. As in Körschens et al. [30, 31] only images of plant individuals taken in nature
have been used as pre-training data (i.e., before training with plant cover estimates), in
this work, we also investigate how beneficial the usage of images of preserved herbarium
specimens is instead. While the latter have been investigated with deep learning methods
before [62], to the best of our knowledge, such data has not yet been utilized for pre-training
a neural network for downstream tasks. Herbarium specimens are usually more evenly sized
in the images than specimens taken in the wild, and the former are completely visible,
resulting in potentially valuable training data. However, due to the drying process, the
plants often also change shape and color, making the plants look rather dissimilar to living
individuals and two-dimensional. Moreover, the herbarium images are usually showing a
side-view of the plants, which can potentially also be detrimental to training, as pictures of
vegetation plots are typically taken from above.

We evaluate our approaches with different configurations on the InsectArmageddon dataset
[64, 33] using previously applied and novel metrics and methods of evaluation. We also
compare the performance of our method to the estimations of human experts to receive an
indication of how well a CNN compares to estimates from biologists directly, which has not
been done before.

To summarize, we formulate the following research questions:

• How well can CNNs predict the plant species composition in terms of species abun-
dances in grassland communities from vegetation images?

• How well can such an analysis be performed without using plant cover estimations
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from humans for training but only exploiting web images with species labels?

• How beneficial is the usage of images of preserved herbarium specimens with their
drastically different image and plant structure in comparison to plant images taken in
the wild during network pre-training?

• How does the performance of automated plant cover estimation compare to traditional
estimates done by humans?

2. Materials & Methods

Our plant cover estimation method is evaluated on the so-called InsectArmageddon dataset,
which we describe in detail in section 2.2. As this dataset comprises only a comparably
small number of annotated images, we utilize the technique of transfer learning, in which we
pre-train the network on another, larger and related dataset first and finally on the target
dataset. Usually, the knowledge gained during pre-training can then, in parts, be applied
in the final target task, resulting in a better performance in comparison to training only on
the latter. Hence, we also utilize pre-training datasets, which we introduce in the following
section (section 2.1).

2.1. Pre-Training Data

Similar to our previous works [30, 31], we utilize images of plant species extracted from the
Global Biodiversity Information Facility (GBIF) [66] to pre-train our CNN. This pre-training
serves as a preparation of the network for the plant species in the plant cover dataset to be
analyzed. This way, the network is primed for the typical appearances and characteristics
of the species, which not only increases performance in automatic cover estimation, but also
enables us to apply the pre-trained model to cover data directly.

We use the eight plant species of the InsectArmageddon datasets described in section 2.2,
namely Achillea millefolium L., Lotus corniculatus L., Trifolium pratense L., Centaurea
jacea L., Plantago lanceolata L., Scorzoneroides autumnalis (L.) Moench, Medicago lupulina
L. and a collective class of grasses, here represented by images from the genus Festuca Tourn.
ex L. to reflect a variety of different possible grass species.

We built two datasets with these classes, one with images taken in a natural environment
[65], in the following denoted as GBIF natural, and one comprising only preserved herbarium
specimens [67], denoted as GBIF preserved. In these datasets, each species is represented
by 900 images, from which 750 are utilized for training and 150 for validation purposes,
resulting in 6000 training and 1200 validation images. Example images for both datasets
can be found in Figure 1.
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Figure 1: Example images for the GBIF natural dataset (left) and GBIF preserved (right). The former
contains images taken in the natural environment with differing sizes and view points, while the latter
contains plant specimens from herbaria scanned with mostly homogeneous sizes and view points. The plant
species depicted in a certain row and column on the right side are the same as the ones depicted in the same
row and column on the left side.
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Figure 2: The distribution of plant species abundances in the InsectArmageddon dataset.

2.2. Plant Cover Data

For our experiments we utilize the so-called InsectArmageddon dataset introduced in Ulrich
et al. [64], Körschens et al. [33], which was collected during the eponymous project1 in
2018. The dataset covers imagery and respective plant cover annotations collected weekly
over 18 weeks, from April to August. The images were collected by an automated camera
system in so-called EcoUnits, which are experimental units with a base area of about 1.25×
1.25 meters containing small enclosed ecosystems [55]. As described in [64], in these units,
twelve herbaceous plant species were sown, ten of which were visible in the images and
monitored throughout the experiment, collecting image data from two cameras per unit in
the process. Three of the sown plant species were grasses (Poaceae/Festucaceae), which are
not differentiable in the images and, therefore, were summarized in a single class of Grasses,
resulting in eight plant categories in the dataset, seven of which represent species. It should
be noted that the soil was not sterilized before or during the experiment. Hence, in rare
cases unsown plant species occur in the images, which were removed in several cycles of
weeding. The experiment also included several different treatments, leading to a variety
of plant communities and reflecting a realistic experimental protocol. For details on the
experimental setup, please refer to [64].

Species Abundances. The species abundances within the EcoUnits are heavily imbalanced,
as shown in Figure 2. In the InsectArmageddon dataset, the most prevalent species is T.
pratense, taking up about a third of the total cover in the dataset according to human
estimates. The least abundant plant species are A. millefolium, S. autumnalis and L. cor-
niculatus, which together amount to only about 14% of the dataset’s cover.

1https://www.idiv.de/en/research/platforms-and-networks/idiv-ecotron/experiments/

insect-armageddon.html
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Figure 3: Example images from the InsectArmageddon dataset showing the change of the observed plants
over the months of monitoring.

Images. The images in the dataset show, depending on the camera angle, direction of view
and zoom level, up to about two thirds of the base area of the EcoUnits. In the first
weeks, primarily bare soil can be seen, which is quickly overgrown after a few weeks. As
the plants grow, they also heavily overlap each other, creating large areas with occlusions.
The images capture most of the plants’ life cycle and the different phenological stages, e.g.,
their flowering or senescence. Hence, the images cover the plant species in changing sizes,
shapes, and colors. Several example images from a single EcoUnit are shown in Figure 3.
It should also be noted that the borders of the EcoUnits are visible in many of the images.
Therefore, not all of the image is relevant for cover calculation, and some parts should be
excluded from the estimation process. Moreover, due to technical reasons, zoom levels can
vary from camera to camera and week to week, leading to a rather inconsistent view of the
vegetation plots, which had to be accounted for during method development. The viewing
angle of the cameras, which was approximately vertical for all cameras, and their direction
of view stayed consistent throughout the image collection process.

Annotations. The plant cover was surveyed using the images generated by every single
camera of each unit and extracted from Ulrich et al. [64]. Due to being very laborious,
this survey has been performed only weekly. The cover values were estimated by a single
ecologist on the aforementioned image data alone using a slightly adapted version of the
so-called Schmidt-scale [48], i.e., they are estimated in quantized percentages of 0, 0.5, 1,
3, 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90 and 100 percent. In the following, we
will refer to these annotations as reference estimates or observed cover values. It should be
noted that the estimates likely contain noise, which can, for example, be introduced by the
subjectivity of the estimator, unclear image parts, and, of course, the quantization itself. As
the cover values are independently estimated for each plant species, the sum of these values
over all species contained in a single image can exceed 100% as it includes overlap of the
plants.

After combining the images with the surveyed plant cover estimates and filtering out unus-

8



able images, we are left with a dataset of 682 annotated images distributed over all EcoUnits.

2.3. Methods for Automatically Extracting the Plant Cover

In this work, we utilize the base method we proposed in Körschens et al. [31], which is applied
with several small modifications in comparison to the original work, including different kinds
of data augmentations and additional postprocessing of images. Moreover, we present a novel
extension to the system from Körschens et al. [31] to extract plant cover information without
training on actual annotated plant cover data.

2.3.1. Base Network

To train the network, we follow the base method proposed in Körschens et al. [31]. This
approach, which we will refer to as segmentation pre-training, is motivated by four aspects.
First, there is usually only little training data available for plant cover estimation data, as
annotating such images is highly laborious. CNNs usually require large amounts of training
data to perform well. Therefore, it would be advantageous to be able to utilize additional
external training data to improve the training results. Second, transfer learning, the task
of training the network on larger datasets first, followed by fine-tuning the network on the
target task, has been shown to improve the performance of CNNs drastically [28]. Third,
in previous investigations [30] also found that performing pre-training on domain-related
image data (e.g., images containing the same plant species as in the target dataset) is more
beneficial in the plant cover prediction task than using unrelated data, like ImageNet images
[54]. The fourth and last aspect to consider is the amount of image data freely available
on the web, which is steadily increasing. Several facilities, e.g., GBIF or iNaturalist, have
started collecting and structuring large amounts of occurrence and image data, specifically
in biological areas. This kind of data is not only easily accessible but, in large parts, also
pre-annotated with taxonomics and therefore also easily usable as training data. Therefore,
this amount of well-annotated data is an optimal supplement to the already existing plant
cover annotation data.

While we have the option to pre-train our network for classification and apply it on plant
cover data afterward, we have shown in Körschens et al. [31] that training a network for
classification only often leads to the network focussing on a small number of discriminative
parts of the plants instead of all visible parts. This can be especially detrimental in plant
cover prediction, where often only the leaves of the plants are visible, while the network
focuses on the blossoms of the plants during pre-training, as they are usually the most
discriminative parts.

Because of this, the approach we introduced in Körschens et al. [31] trains the network
in three distinct phases, as shown in Figure 4. In the first phase, we perform standard
classification training, i.e., we train the network to predict the respective plant species
when given an input image. The trained network then utilizes the so-called class activation
mapping (CAM) approach [73] to generate segmentation maps for each image (here also
referred to as “weak segmentations” or “weak segmentation maps”), which usually cover
most of the plant, including blossoms and leaves. This segmentation data is then used in
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Figure 4: The basic 3-phase processing pipeline for training our network. In the first phase, a classification
network is trained using GBIF image data, which applies class activation mapping to generate weak segmen-
tation maps. In the second phase, these maps are used for training a segmentation network on the GBIF
image data. In the third phase, the networks weights can be used to either train a plant cover prediction
network on the actual vegetation data (like the InsectArmageddon dataset), or the network can be applied
directly to vegetation data to generate zero-shot predictions without any training on plant cover annotations.
Image adapted from Körschens et al. [31].

the second training phase to train a segmentation network, which, due to the nature of the
previously generated pseudo-ground-truth segmentation maps, focuses on the complete plant
instead of only single parts. The parameter values of this network, also known as weights,
are then used as initialization of our plant cover prediction network in the third training
phase, in which we utilize the plant cover annotations to train the network for regression
of the cover values, as shown in Phase 3a in Figure 4. This approach is described more in
detail in section 2.3.2. Alternatively, we can also apply the trained segmentation network
from Phase 2 to the vegetation images directly to determine plant cover predictions without
additional training, as shown in Phase 3b in Figure 4. This approach is referred to as our
zero-shot approach and is explained more in detail in section 2.3.3.

2.3.2. The Cover-Trained Approach: Plant Cover Prediction with Dedicated Training Data

The network consists of two parts: a feature extractor and a network head. To be able to
predict species cover values for our investigations with the neural network, the network head
is dedicated to the computation of these values. To this end, we utilize the calculation model
from Körschens et al. [30]. The plant cover is calculated by determining the occurrence
probability for each plant species per pixel and then aggregating these into a numerical
cover vector. Based on presence or absence of plant species, the calculation model also
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determines probabilities for background areas like bare soil, as well as areas irrelevant for
cover calculation. This kind of calculation of the plant cover values also has the advantage
of being easily interpretable. I.e., the predicted pixel-wise classifications (the most probable
species per pixel) can be viewed as segmentations and therefore analyzed visually by the
user to confirm the correctness of the predictions.

The approach from Körschens et al. [30] we use here can be seen as a probabilistic approach,
as the network predicts a probability of each plant species being contained in each pixel and
aggregates these over the complete image.

Training a network with dedicated plant cover data has the advantage that the CNN can
get more information about the underlying data and, therefore, can perform better than
without dedicated training data. However, a potential drawback is that some underlying
biases in the dataset or from the annotator could potentially also be introduced into the
network’s predictions, in addition to the laboriousness of gathering the annotations.

2.3.3. The Zero-Shot Approach: Plant Cover Prediction without Training Data

To avoid a laborious collection process of possibly biased training data, we also investigate
a novel zero-shot plant cover prediction approach, i.e., plant cover prediction without the
network having been trained on annotated cover data. To do this, we utilize the segmentation
network trained in phase 2 of the abovementioned training process. In this phase, the
network learns to segment the complete plant and determine its species, which is a necessity
in plant cover prediction. Hence, we can directly apply this network to plant cover data,
assign the class of each pixel to be the most probable class as predicted by the network, and
then aggregate the prediction similar to before, i.e., average the pixel-wise predictions over
the entire image. This has the advantage of not requiring additional annotations and being
applicable on images of all resolutions, as CNN inference is usually much cheaper compared
to network training. However, this approach also has certain caveats, which are discussed
in section 2.3.4 and section 2.3.5.

2.3.4. Applying a Segmentation Network to Plant Cover Images

A direct application of the pre-trained segmentation network yields several advantages but
poses challenges as well. An example of this is high-resolution processing. Training on high-
resolution images without the possibility to train on image parts only is extremely expensive
but still necessary for plant cover prediction training. Therefore, the images usually have
to be scaled down to a smaller resolution than the original one, leading to missing details.
When using the network only to predict the cover estimates from images of vegetation plots,
without dedicated training beforehand, we can separate the image into smaller patches
and predict on these sequentially. This makes it possible to process the vegetation images
independent of their resolution without losing details. In the following, we will separate the
original full-resolution image in full resolution into patches of 512× 512 px in two interlaced
grids as shown in Figure 5. We chose this patch size as we found it performed best in
comparison with similar alternatives (e.g., 256 × 256 px). The reason for this is likely
that 512 × 512 px is the most similar image size to the one used during the pre-training
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Figure 5: An example of an interlaced prediction grid. We split the image into evenly-sized patches, predict
on these separately, and fuse the result. To reduce border effects, we do the same with a second grid which
is offset by half a patch size and average the results over both grids. Different colors are used in this figure
for a clear differentiation of the two prediction grids.
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(448× 448 px). The patches are processed independently from one another by the network
and the output is put together with respect to the grid after prediction. The predictions of
both grids are averaged, which mitigates prediction irregularities at the grid cell borders. It
should be noted that the image can also be processed in a fully convolutional way (see [42])
without requiring patches with similar performance. However, the application of patches
leaves the memory footprint constant, allowing processing on machines with suboptimal
hardware, in contrast to fully convolutional processing.

Another challenge is the domain shift. The plants in the vegetation plots will not necessarily
look equal to the images in the pre-training dataset, possibly differing in size, color, and
shape. Such a shift should ideally be accounted for. We do this by performing test-time aug-
mentation, i.e., predicting on several modified instances of the original image and averaging
over these instances. During the prediction, we use the network to predict pixel-wise prob-
abilities on horizontally and vertically flipped vegetation images, as well as images scaled to
half the original resolution, and average the results over these. This process leads to better
prediction results, especially for different plant sizes.

Another problem when applying zero-shot plant cover estimation is the prediction of areas
irrelevant for cover calculation. As in some cases, parts of the images cannot contain plants,
e.g., the walls of the EcoUnits in the InsectArmageddon dataset (see section 2.2), for a
correct calculation, these should be excluded. Similarly, another challenge is the prediction
of empty areas relevant for plant cover prediction, like bare soil.

2.3.5. Determination of Background and Irrelevant Areas

The images contain background areas in which plants could grow. Hence, they are relevant
for cover calculation (e.g., bare soil). Other areas like the walls of EcoUnits are irrelevant.
As both kinds of areas can take a considerable part of the image, they should be included
in the calculation to prevent implicitly erroneous computations. When training with anno-
tated plant cover directly, these areas can automatically be learned by the model and are
therefore also included in the network’s calculation [30]. However, including these areas in
the automatic cover estimations is more difficult without dedicated plant cover annotations
as pre-training data for such areas are not available. Hence, alternative solutions have to
be found. Our proposed solution denoting areas irrelevant for cover calculation is to receive
the annotations externally, i.e., from a source other than our pre-trained network. One pos-
sibility is providing an existing delineated mask of relevant areas directly, which can be very
straightforward if the camera viewpoints and zoom do not change. Alternatively, especially
for more inconsistent camera views, such a mask could be provided by a simple dedicated
binary segmentation network, e.g., a U-Net [52] with a small set of annotated image data. It
should be noted that, as irrelevant and relevant areas are usually very coarse, annotating a
few images is usually not very laborious. As the InsectArmageddon dataset represents such
an inconsistent scenario, we utilize the latter method for discerning relevant and irrelevant
areas. Regarding background prediction, the solution is more complex as a respective anno-
tation would require segmenting the soil while leaving out small and large plants from the
foreground, which would be comparably time-consuming and therefore not desirable. Due
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to its complexity, in this paper we ignore the issue of the missing background prediction and
evaluate the method using the prediction of arbitrary plant species in background locations.
It should be noted that the issue of background estimation can even be neglected in many
cases, since usually most of the soil is overgrown by plants. This makes the influence of
background pixels in the cover calculation rather small, while the main difficulty lies in the
differentiation of the plants growing on top.

2.4. Network Setup for Investigations

For extracting plant species cover information for our investigations, we use the same setup
as described in Körschens et al. [31] with slight differences. During all three phases, we use
a ResNet50 [18], which is initialized with ImageNet [54] weights from Keras [9] before phase
1 and phase 2, as well as the AdamW optimizer [27, 43]. During each phase, we use the
ResNet in conjunction with a Feature Pyramid Network (FPN) [36] to increase the network
output resolution. Phase-specific parameters are listed in the following. The algorithm is
implemented in Python [69] using the PyTorch framework [47].

The evaluations are done in a 12-fold cross validation manner. As in the InsectArmageddon
dataset there are 24 EcoUnits, for each cross validation split we select two of them to
validate on, and use the rest for training, if applicable. Results below are averaged over the
12 validation splits. Hence, for every cross validation split, we train on about 92% of the
data (625 images on average), while testing on the remaining 8% (57 images on average). It
should also be noted that, while the dataset consists of images in a time-series, we train and
predict on images independently, ignoring the temporal aspect and relationships between
the images.

Phase 1. During the first phase, we use an FPN with layer P2 and 256 features, a learning
rate of 10−4 and a weight decay also of 10−4. Moreover, we utilize Global Log-Sum-Exp
Pooling (GLSEP) [29], as we found in previous work [29] that training with this pooling
method improves segmentation when one applies the network in weakly supervised object
localization (WSOL) [73, 8] tasks in comparison to standard global average pooling [35]. In
this phase, we also utilize horizontal flipping as well as random rotation for data augmen-
tation [57]. To improve the generated segmentation results, during the prediction of the
segmentation maps, we use horizontal and vertical flipping as test-time augmentations and
average over the network predictions for each augmentation. The loss used for training is
the standard softmax cross entropy loss [15].

Phase 2. In the second phase, we utilize different configurations for the FPN. To increase
the output resolution of the FPN further, we extend the FPN to include the other higher
resolution parts of the ResNet50; creating the FPN layers P1 and P0, which we investigate
in conjunction with the P2 layer and different numbers of features (P2: 512, P1: 256, P0:
128). We also utilize an additive combination of dice loss and binary cross entropy (BCE).
Moreover, we use horizontal flipping and random rotation for data augmentation in this
phase.
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Phase 3. The third phase happens as described in Körschens et al. [31], with the difference
that we utilize the mean scaled absolute error as loss, which we found worked slightly better
than the standard mean absolute error. As described in Körschens et al. [31], we construct
a cover estimation network by using the pre-trained ResNet50 with FPN from phase 2.
Instead of the dedicated segmentation network used during phase 2, we modify the network
to reflect the cover calculation model as described in Körschens et al. [30], in which the
probabilities for each plant species, as well as background and irrelevance are predicted in a
pixel-wise fashion and averaged over the image afterwards.

In this phase the network is trained with the mean scaled absolute error as regression loss,
using a batch size of 1, an input image resolution of 1536× 768 pixels, and a learning rate
of 10−5. Moreover, we utilize only horizontal flipping for data augmentation in this phase.

2.5. Baseline Comparison

To also have a comparison of our method with a simpler approach, we compare our results
with the ones from a ResNet50 that was pre-trained on the ImageNet classification dataset
[54] with added FPN, later also referred to at ImageNet baseline model. As the ImageNet
dataset is a normal classification dataset that does not contain the plant species from our
dataset, this network cannot be utilized for zero-shot cover prediction. Hence, we only
evaluate this network after training it on our dedicated plant cover data.

2.6. Comparison with Human Experts

To evaluate the performance of the complete method, with and without training on plant
cover data, we performed a study with several human estimators for comparison. The study
comprised six plant ecologists with experience in plant cover estimation. In the study, the
biologists estimated the cover values for each plant species in 12 different images from the
InsectArmageddon dataset. The cover estimates, similar to the ones done by our CNN,
have then been compared against reference cover estimates, which have been done by a
single ecologist as described in section 2.2.

2.7. Statistical Analysis

To measure, how well our employed models can predict the species compositions, we utilize
several metrics to shed light on different aspects of the models’ predictions. For the analysis
of the size of the species-wise error, we utilize the mean scaled absolute error with standard
deviation as scale value (MSAEσ), which we define as

MSAEσ(t,p) =
1

n

n∑

i=1

∣∣∣∣
ti
σi

− pi
σi

∣∣∣∣ , (1)

where t and p are the vectors of true and predicted values, respectively, and σ represents
the species-wise standard deviations over the complete dataset. Due to the large imbalance
in the plant cover values, even in single images, this metric relativizes the disproportions by
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relating the values to the respective species-wise standard deviations. In the following, for
simplicity, this metric will be referred to as MSAE.

The second metric utilized is the Intersection over Union metric (IoU), also known as Jaccard
Distance [21], which we use to quantify the quality of the segmentations generated by the
models. This quality tells us how well plant species in the topmost layer in the vegetation
images are predicted. The IoU metric is defined as

IoU(T, P ) =
|T ∩ P |
|T ∪ P | (2)

where T and P denote the sets of ground-truth segmentation pixels and predicted segmen-
tation pixels, respectively. It should be noted that the IoU is evaluated on a small subset of
14 images, as done in Körschens et al. [31]. This is because the number of plant individuals
per image is extremely high such that few images are already representative of the actual
distribution. Additionally, manual delineations of such a large number of plant individuals
very time intensive. It should be noted that the segmentations generated by the trained
models only contain the class with the highest probability, i.e., the most dominant class or
species per pixel, and do not provide an indication of the prediction of other classes in the
same location.

The third metric we use we will refer to as DCA-Procrustes-Correlation, DPC in short. As
the name suggests, the metric is a combination of a Detrended Correspondence Analysis
(DCA) [20], and a Procrustes analysis [16]. To generate the DPC, we first predict the
respective cover estimate outputs of our network for each plant species for each image in
the dataset. Afterward, we apply a DCA on the matrix of these predicted values, as well
as the respective reference estimates and compare these using the Procrustes analysis. This
combination of the two analyses allows for a multivariate analysis of the distributions of
predicted and observed values. For calculation, we utilize the decorana and protest functions
as implemented in the vegan R package [46, 50] and report the resulting correlation value
from the protest function. The advantage of the DPC is that, in contrast to metrics like
the MSAEσ, it quantifies, how well the entire joint cover distribution of all plant species is
reflected, instead of considering the species independently.

We utilize these metrics to compare the different model setups and training methods with
each other to answer two questions: 1. How well does the zero-shot model without any
additional training data compare to the cover-trained model, that uses cover estimates as
annotations; and 2. How well does the model perform when pre-trained with herbarium
image data in comparison to images taken in nature.

For a better indication of our models’ performance in comparison to the reference estimates,
we compare the predicted values by our model with these estimates, and a linear model,
in which we use the observed values as explanatory and the predicted values as dependent
variables (i.e., a model of the form observed = species * predicted). To indicate the fit,
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we provide the coefficient of determination R2, and the corresponding p-values to indicate
significance.

To get a further indication of the similarity of the model output in comparison with the
reference human estimation, we also investigate the Shannon-diversity [58]. This provides
insights into how the overall distributions of predictions and observed values differ.

Finally, to find out, how the models compare to human experts, we evaluate the average DPC
of the human estimators and compare with the ones resulting from our models’ predictions.

3. Results

The results of the evaluation of our models’ performance are shown in Table 1. We compare
the experimental results of the three different network setups in the zero-shot setting and
the setting with training on cover values. Moreover, we also compare the zero-shot and
cover-trained method with natural and preserved imagery used as pre-training. We find
that the best-performing model for the zero-shot scenario is FPN P1 256 with GBIF natural
pre-training, while the best-performing cover-trained model FPN P2 512 with GBIF natural
pre-training. These two models will also represent the zero-shot approach and the cover-
trained approach in the following analyses, respectively.

3.1. Comparison of Predicted and Observed Values

Figure 6 shows that the plant species composition is predicted well, with R2 values ranging
from 0.506 for the zero-shot model to 0.813 for the cover-trained model. The linear model
reveals that both models are prone to underestimating cover values, which is more severe
in the zero-shot model. More detailed species-wise plots can be found in the supplementary
material S1.

3.2. Diversity

A comparison of the Shannon diversity scores over all sites is shown in Figure 7. While
the overall trend is similar for both model types, the model fit is significantly better for the
cover-trained model.

3.3. Segmentation Quality

Table 2 shows the prediction performance of the top-layer of plants of both models as mea-
sured by species-wise Intersection-over-Union (IoU). Figure 8 also shows several qualitative
segmentations generated by the models.

3.4. Comparison with Human Experts

Our zero-shot cover prediction model achieves with a DCA-Procrustes-Correlation (DPC) of
0.55 (±0.072) a similar score in comparison to the human estimators (DPC of 0.62 (±0.14)).
The cover-trained model, outperforms both alternatives by a large margin with a DPC of
0.77 (±0.003).
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Table 1: The investigation results on the two datasets. “FPN PX N” denotes the usage of a Feature
Pyramid Network with layer X and N features. Abbreviations: MSAE - Mean Scaled Absolute Error, IoU
(Plants) - the intersection over union averaged over all plant species, DPC - DCA-Procrustes-Correlation.
Top results are marked in bold font. All results are averaged over three repetitions.

Network
Configuration

Pre-Training
Dataset

No Cover Training
(Zero-Shot)

Cover Training

MSAE
IoU

(Plants)
DPC MSAE

IoU
(Plants)

DPC

FPN P0 128
ImageNet

- - - 0.534 0.128 0.715
FPN P1 256 - - - 0.521 0.153 0.750
FPN P2 512 - - - 0.510 0.169 0.757
FPN P0 128

GBIF Natural
1.113 0.163 0.503 0.534 0.156 0.693

FPN P1 256 1.087 0.162 0.548 0.507 0.181 0.758
FPN P2 512 1.096 0.157 0.527 0.499 0.195 0.771
FPN P0 128

GBIF Preserved
1.597 0.079 0.362 0.549 0.127 0.689

FPN P1 256 1.614 0.070 0.366 0.523 0.154 0.727
FPN P2 512 1.736 0.066 0.385 0.513 0.168 0.754
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Figure 6: A comparison between the values predicted by our zero-shot model and the observed values on the
left, and the respective comparison for the cover-trained estimation model on the right side. Each data point
represents an image taken by a camera in a single week in the dataset. The continuous diagonal represents
the identity, while the dashed lines represent the result of the linear regression analysis.
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Figure 7: A comparison of the Shannon diversity calculated over the observed values and the predicted
values of our zero-shot approach (left) and cover-trained approach (right).

Table 2: A quantitative comparison of Intersection-over-Union (IoU) values for the segmentation quality
(i.e., correctness of the prediction of the top layer of plants) for our zero-shot method and the cover-trained
method.

A. millefolium C. jacea Grasses L. corniculatus M. lupulina
Zero-Shot 0.080 0.029 0.269 0.094 0.129
Cover-Trained 0.003 0.151 0.491 0.010 0.131

P. lanceolata S. autumnalis T. pratense Total
Zero-Shot 0.207 0.014 0.471 0.162
Cover-Trained 0.210 0.000 0.568 0.195
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Figure 8: A qualitative comparison of the segmentation quality of the zero-shot models (left) and the
cover-trained models (right). Below each segmentation map an error map indicates, in which locations the
segmentation has been correct. Uncertainty areas mark locations in which experts were not able to determine
a ground truth due to occlusions, empty areas, etc. These areas are exempt from the evaluation process. It
is visible that, while the predictions of several less abundant plants are better using the zero-shot model in
comparison to its counterpart, it cannot predict several common plants well and also no background (e.g.,
soil), leading to miscalculation of the cover percentages.
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Figure 8: (continued) A qualitative comparison of the segmentation quality of the zero-shot models (left) and
the cover-trained models (right). Below each segmentation map an error map indicates, in which locations
the segmentation has been correct. Uncertainty areas mark locations in which experts were not able to
determine a ground truth due to occlusions, empty areas, etc. These areas are exempt from the evaluation
process. It is visible that, while the predictions of several less abundant plants are better using the zero-shot
model in comparison to its counterpart, it cannot predict several common plants well and also no background
(e.g., soil), leading to miscalculation of the cover percentages.
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4. Discussion

General Aspects. The developed methods capture variations in species coverages well. More
specifically, natural images used for pre-training seem generally preferable in comparison to
images of preserved plant individuals, as well as ImageNet pre-training. This is shown in
Table 1, in which, for almost every metric and setup, the method using the natural image
pre-training outperforms the preserved-image counterpart. The reason for this discrepancy is
likely that the domain difference between images of dried specimens and images of vegetation
plots is too big for herbarium imagery to be useful in cover estimation. Moreover, the
herbarium imagery often contains plants in the same sizes and perspectives, while images
taken in nature are much more diverse, capturing a much larger set of variations useful in
cover prediction. Images of herbarium specimens are often collected in a very high resolution;
therefore, it might be possible to develop more specialized methods that can fruitfully utilize
herbarium image data for pre-training CNNs. However, from our results, we conclude that,
when trained on in our ‘naive’ way, the domain differences are too high to apply herbarium
data for pre-training beneficially.

Furthermore, as shown in Table 1, while the top-performing ImageNet pre-trained model
outperforms several of our cover-trained models, the best cover-trained model with natural
GBIF images as pre-training still performs better than all ImageNet baseline models. We
can also see that the best-performing cover-trained model outperforms the best-performing
zero-shot model in all metrics. However, while the former reduces the MSAE to about 50%
compared to the best zero-shot model, the values for IoU and DPC are only slightly worse
for the zero-shot approach in comparison to its fully-trained counterpart. This indicates
that the zero-shot model cannot precisely predict the exact reference cover estimates but
can still predict the top layer of plants and the relative species distribution reasonably well.

Comparison of Predicted and Observed Values. The model outcomes comparing predicted
vs. observed values suggest that, in general, the zero-shot prediction appears to be most
reliable for Trifolium pratense, Plantago lanceolata and Medicago lupulina, which are likely
the easiest to recognize in the vegetation images due to their morphology. Moreover, for
several of the species, we see very high predicted cover values for nearly and also completely
unobserved plant species in certain images, with a strong negative influence on the general
linear trend. These strong mispredictions can be explained by the zero-shot model’s inability
to predict bare soil. In the case of bare soil, the model predicts arbitrary classes instead,
leading to large errors in these cases. Hence, using the model in areas containing no or only
little background areas such as bare soil likely leads to better cover predictions.

As the cover-trained model can predict background areas like bare soil, the relationship
between the predicted and observed values is much better for all species, as shown in Figure 6
(right). The species with the best linear fits are Medicago lupulina, Lotus corniculatus and
grasses, followed by Trifolium pratense and Plantago lanceolata, most of which belong to the
most prevalent plants in the dataset. Due to this, the network also has seen many instances
of these plants in the training data, which leads to a better prediction. In contrast, the three
worst-predicted species are Achillea millefolium, Scorzoneroides autumnalis and Centaurea
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jacea, the former two of which are the species with the smallest abundances in the dataset,
likely leading to the opposite effect. For Centaurea jacea, the reason for the mispredictions
is likely that the fine leaf texture cannot be captured by the network due to a too low
resolution.

When observing the general trend of the predictions in Figure 6, in both plots one can see
that the regression lines lie below the 1:1 line, indicating a systematic underestimation of
plant cover estimates. This underestimation is likely caused by the heavy occlusion in the
dataset and the network’s current inability to deal with it.

When looking at the Shannon diversity in Figure 7, similarly, the cover-trained model pro-
duces better values compared to its zero-shot counterpart, while, for the latter, there is also
a large number of values lying on the diagonal, indicating a good match. Moreover, it is
visible for both models that, as there are many outliers below the diagonal, the models often
overestimate the diversity. This likely happens because the models predict several additional
species in images with only a few observed species, possibly indicating more species in the
image than initially estimated in the reference estimates. It should also be noted that, as
the reference estimates have been done on images as well, they also underlie the problem of
occlusion, possibly leading to inaccuracies in the model’s evaluation.

Segmentation Quality. The numerical results for the segmentation are similar for the zero-
shot approach and the cover-trained approach, as also shown in Table 2. However, while the
total segmentation quality averaged over all plant species is similar, both models have dif-
ferent recognition rates, depending on the species investigated. For the cover-trained model,
the plants recognized best are usually the most prevalent species in the InsectArmageddon
dataset. The zero-shot model, in contrast, demonstrates better recognition rates for some
of the rarer species in the dataset, like Lotus corniculatus and Scorzoneroides autumnalis.
This is also visible in the qualitative results shown in Figure 8. The reason for that is likely
that the zero-shot model is provided with balanced training data in the GBIF dataset and,
hence, does not focus on some plants more than others. In contrast, the cover-trained model
is trained on the heavily imbalanced InsectArmageddon dataset and, thus, focuses more on
the more abundant species therein. Overall, we can conclude that both model types can
predict the plants in the top layer similarly well, while focusing on different species. How-
ever, the top layer does not necessarily represent the distribution of the plant community
accurately, as the partially occluded plants can still have a big effect on the total cover. The
occluded plant parts are not taken into account when analysing the top layer only. The high
MSAE in conjunction with the comparably good IoU value shown in Table 1 suggest that
the problems for the zero-shot model do not lie in the prediction of the top layer of plants
but elsewhere, like the prediction of the lower layers or the prediction of the most abundant
plants. As mentioned above, the zero-shot model, in its current state, is unable to predict
background (e.g., bare soil) and instead predicts arbitrary plant species, also visible in Fig-
ure 8, leading to drastically wrong cover predictions in these instances. Another problem
with the zero-shot model is likely the occlusion in the images. While the cover-trained model
can implicitly gather knowledge about occlusion when training on the annotated cover data,

23



the zero-shot model has no such knowledge available, leading to worse results in images with
heavy occlusions. As the DPC represents the relative relations of the cover values between
each other, we can also conclude that the DPC for the zero-shot model is highest for images
in which the distribution of the top layer of plants approximately matches the overall cover
distribution.

Comparison with Human Estimators. In our comparison study we can see a similar perfor-
mance of the human estimators with the zero-shot model and a more significant gap between
these values and the results from the cover-trained model. The significant difference in DPC
for the human estimators, as well as the comparably large standard deviation, indicates
strongly varying cover values even in manual estimation, demonstrating the difficulty of
plant cover estimation from images themselves. Moreover, the study shows that, despite
its drawbacks, the zero-shot cover estimation approach can still potentially be used to re-
place human estimation, primarily due to its consistency and freedom of bias. Consistency
is an especially important factor, as we have seen in our study by means of the standard
deviation that human estimators can differ greatly during manual estimation. These in-
consistencies can lead to potentially large estimation errors that can be mitigated when
applying our method. When plant cover annotations are provided, the model more closely
reflects the reference estimates used during training than the human and the zero-shot esti-
mates, demonstrating that dedicated cover annotations can boost the estimation quality, if
sophisticated cover estimates are provided during training. In contrast, the zero-shot model
reasonably well reflects the species composition that would be predicted by other experts.

Summary & Usability Notes. While the cover predictions of the zero-shot model are not
numerically accurate concerning the reference cover estimates, with the DPC values calcu-
lated over the whole dataset, we have shown that the relative distribution of the estimated
cover values is similar to human performance. However, as this analysis includes images
with background areas currently unpredictable by the network (e.g., soil and litter), the
estimates likely improve in images without such areas. Moreover, as the model in its current
state does not perform any occlusion handling but merely predicts the top layer of plants,
the model’s estimates will also be better in images with only one or few layers of plants,
i.e., images with little occlusion. Lastly, as irrelevant areas should ideally be excluded for
a good estimate, these areas should be provided by either a separate prediction model, as
done here, or provided directly by a user. This additional effort, however, is removed if
the images are already taken in a way that no such areas appear. Therefore, with several
caveats, such a zero-shot model for cover estimation offers an easily adaptable method for
vegetation surveys without requiring dedicated cover annotations. Therefore, this extension
of the original method from Körschens et al. [31] offers a good alternative in situation where
training data is not available. In comparison with existing approaches like Kattenborn et al.
[24] and Du et al. [13], our zero-shot approach works similarly to theirs, as the top-layer
of plants is segmented to predict the cover. However, our approach does not require any
manually made segmentation annotations, which drastically reduces the amount of work
necessary to utilize our cover prediction approach. Moreover, also in contrast to Kattenborn
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et al. [24] and Du et al. [13], our approach can work with detailed herbaceous plant species
instead of mostly homogeneous UAV image data.

When adding dedicated cover annotations, the results can be improved even further com-
pared to our zero-shot approach, as shown in the previous experiments. With the training
data, the network significantly improves on the most dominant plants in the dataset while
possibly gathering some information about occlusion relationships.

While also similar to existing vegetation cover prediction approaches [44, 3, 26, 56, 10] on the
first glance, our methods cannot only differentiate between vegetation and non-vegetation,
or merely analyse the vegetation composition on a high level, but can do so on species-
level, especially without any image delineations and only estimates as training data, or even
without training data at all. It does not require any hand-crafted rules for differentiation,
in contrast to [3, 26] and is able to differentiate with a much higher taxonomic granularity
than [44, 56].

Our approaches can be applied in different scenarios. An example is an application to
images taken by dedicated camera setups, as done in this work. Camera setups ensure that
the images are collected the same way and, therefore, aid the approaches in analyzing the
images in a consistent manner. However, our methods can also be applied to images taken
by mobile devices directly in the field. While, in this scenario, a consistent image collection
setup is not ensured, our methods can nevertheless drastically improve the collection of
vegetation data.

Generally, our approaches can be utilized to analyze species communities, as we have shown
that the overall species composition is well represented by the predictions of our model. In
addition to this, our approaches might also be utilized to analyze the species-wise cover.
However, in this case there often are larger deviations between predicted and observed cover
estimates, as the different species can not always be predicted equally well by the model.
The results can vary due to morphology, size and visibility of the respective plants and the
prediction quality is there strongly dependent on the species.

5. Conclusion

We presented two approaches for automatic plant cover prediction: a cover-trained and a
zero-shot approach. The latter produces predictions that are comparable with ones produced
by human estimators, while the former produces cover estimates that are closer to the
reference estimates. Hence, both approaches can be of value to ecologists. As per our study,
the zero-shot approach can be used to retrieve data on plant communities, even when no
dedicated cover annotations are available, while the cover-trained approach can be utilized
to tune the outputs of the model to be more similar to a set of reference estimates.

Moreover, we compared the usage of plant images taken in their natural environment versus
using dried herbarium specimens during pre-training and found that natural images perform
far better in a large number of metrics in comparison to the herbarium specimens. We
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conclude that the domain difference of dried specimens to images of vegetation plots is likely
far too large for such imagery to be useful in cover estimation and therefore recommend using
natural imagery in future endeavours.

We have seen that, while our approach produces comparable or better results to human
estimation concerning the relative values (DPC), the concrete estimates, especially the zero-
shot model, underestimate cover. As the reason for this is likely the huge amount of occlusion
in the image, we will tackle the problem of occlusion as a next step. A possibility to do
this is with means of data augmentation, e.g., Cutout [11], Inverted Cutout [32] or methods
utilized in amodal segmentation [72, 37].

In addition to that, to improve the performance of the zero-shot model on plots containing
bare soil and other background-like areas, the approach could be extended with another
small model or an anomaly detection approach to recognize such areas.

Furthermore, as the zero-shot approach and the cover-trained approach both have advan-
tages and disadvantages, they could also be combined into a single approach, to mitigate
each of their disadvantages. In such a combined approach, for example, the predictions
could be performed by each model individually and then weighted afterwards, depending on
the strengths and weaknesses of each model.

Lastly, the approach for predicting plant cover can also be extended to predict the phenology
of the plants in the images. Due to pre-training, the network already has knowledge of the
blossoms of the plants in addition to the plant leaves, and the extension of the detection
of senescing or flowering plants is therefore likely possible with only little adaptation of the
method.
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[22] Kamilaris, A. and Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers

and electronics in agriculture, 147:70–90.
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