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Abstract

As segmentation of cells from microscopy images is a very complex and error-prone
task, we present a new unsupervised and fully-automatic method based on Regularized
Geometric Hulls (RGH). While it performs up to two orders of magnitudes faster than
state-of-the-art methods, wide-range experiments performed on the recent CellCognition
dataset demonstrate its robustness and accuracy.

1 Introduction

During the decades of research in the field of microscopy-based tissue analysis, the identifica-
tion and segmentation of individual cells is one of, if not the most important and fundamental
step within the whole processing pipeline. While classically this task had to be performed
manually, more and more automatic or semi-automatic methods came into the focus of modern
computer vision research. As this problem is highly affected by image degradations such
as blur or pixel noise, traditional contour segmentation methods are likely to fail in these
scenario. Furthermore, other approaches require manual annotation of cells for localization or
employ computationally expensive machine learning techniques for building complex models
of cell appearance. Segmentation of cells from images has been tackled with a wide variety
of tools, ranging from simple thresholding to machine learning-based methods [5]. Many of
them tackle specific types of microscopy images and are application specific.

For instance, approaches based on Seeded Watershed Transform are well-established for
cell segmentation [6]. However, the quality of the results depend heavily on the initial seeds
and the approach often produces over-segmented images. These shortcomings necessitate
further processing steps, which result in computationally complex algorithms, and a different
approach is called for. Other popular approaches use machine learning methods. Arteta et al.
[1] employ a SVM classifier for categorizing each pixel to belong to either cell foreground or
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Figure 1: Influence of different values for the regularization parameter { on geometric hull
construction for the case of (a)—(d) dense point sets and (e)—(h) contour point sets. Note that
the RGH preserves inner contours.

background. This binarization is further analyzed for connected components to achieve final
segmentation results. While this approach shows promising results, pixel-wise operations
on high-dimensional image sequences common in time-lapse microscopy videos make it
unsuitable for fast processing. Furthermore, it depends on the availability of manually labeled
training data, which is often difficult or impossible to supply.

In contrast, we propose a method for fast and robust joint cell detection and segmentation
based on Regularized Geometric Hulls (RGH) [7] which is designed to be unsupervised,
acting fully automatic, and requires only one rather simple parameter to be adjusted.

2 Regularized Geometric Hull

This section is dedicated to briefly introduce into the concept of Regularized Geometric Hulls
(RGH) recently presented by Siile er al. [7], which is the core ingredient of our proposed
method. These can be regarded as an extension of classical convex hulls.

Definition 1 (Convex hull).
Given an arbitrary set of Euclidean points P = { plp € ]RZ} (or discrete lattice points
Q= {q|q S Zz} ), the Convex Hull Py O P (Qy 2 Q) is the smallest convex subset of
R? that contains P ( Q).

Various algorithms for the computation of the convex hull with fair runtime complexity
O (nlogn) exist in the field of computational geometry. As this convex hull approximation of
points is insufficiently coarse for most computer vision problems, we aim to allow a certain
degree of non-convexity—i.e. concavity—while computing geometric hulls.

Definition 2 (adjacent points).
Letd : M? — R be a metric in M?. Two points p,q € M? are called -adjacent wrt. a
non-negative constant 0 < { € R, if

p~tqedpa)<{ . (1)

Definition 3 (Regularized Geometric Hull (RGH) for Euclidean point sets).
Let P = { p|p € RZ} be an arbitrary set of Euclidean points and A(p1,p2,p3) C P the
set of all points p; € P enclosed by the triangle defined by the 3-tuple (p1,p2, p3) € P>.
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(e) Original contour (f) Outer contour (g) Delaunay-like ap- (h) Result of morpho-
point set Q smoothed by RGH proximation of RGH logical closing

Figure 2: The RGH can be approximated by using Delaunay-like triangulations of the input
point cloud P or contour ), which realizes a morphological closing operation with adaptive,
polygonial structure elements.

Further, let
PAC = {A(P17P27P3) € P pi~* paApy~F p3Ap ~° p3}, 0<CeR, (2
be the set of all triangles of {-adjacent points in P. Then, the union set
PEI = U PAC upP (3)

is called the Regularized Geometric Hull (RGH) of P wrt. .

Definition 4 (Regularized Geometric Hull (RGH) for discrete lattice point sets).
Let Q = {q|q € Zz} be an arbitrary set of discrete lattice points and A(q1,q92,q93) C Q

the set of all triangular points q; € Q induced by the lattice points (q1, @, q3) € Q3. Let
further be

QEZ{A(q17QZ7Q3)€Q3|q1 ~5 qz/\qzwg @GN q ~5 q3}’ O§C€R7 4)
the set of all non-degenerated triangles of {-adjacent points in Q. Then, the union set

Qx=UJQiu@Q (5)
is called the Regularized Geometric Hull (RGH) of Q wrt. .
Clearly, the properties of the geometric hull PIC{ strictly depend on the choice of the

structure parameter , as can be seen in Fig. 1. If { = 0, the geometric hull P?{ is identical to

the point set P. In turn, if { — o, the geometric hull PEI converges to the convex hull Py
yielding the relation

P=PyCP,CP;=Py, 0<(cR (6)
The structure parameter { regularizes the convexity or concavity of the geometric hull. In

contrast to the classical convex hull Py, the RGH P§I describes the geometric structure of
the input data P by a set of outer and inner contours.

2.1 Approximation

Def. 3 and 4 suggest that the computation of the RGH shows cubic complexity &(n?) in the
number #n of input points which makes its application unhandy in realistic scenarios. For this
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reason, we approximate the underlying set of triangles PAC C P? by a modification of the

Delaunay triangulation [2] P§DT C P?, which is supposed to be a triangular tessellation of a
given point set P optimal wrt. a given distance criterion. All triangles obtained by Delaunay’s
triangulation algorithm are drawn into a binary image, wherefrom final contours are extracted

afterwards. Hence, the Delaunay triangulation P ACDT—restricted to triangles with edge lengths
smaller than 0 < { € R—can be interpreted as an approximation of the previously used set

PAC of triangles of {-adjacent points. The images shown in Fig. 2(c) and 2(g) show the results
of the RGH algorithm using the Delaunay-like approximation for both a discrete point set and
a set of discrete contour points, respectively. Compared to the results of the original RGH
algorithm shown in Fig. 2(b) and 2(f), the results are reasonably good and useful for further
processing. As the Delaunay algorithm shows solely quasi-logarithmic complexity &'(nlogn)
in the number n of vertices, this approximation remarkably speeds up the whole computation
and allows for real-time performance.

2.2 Geometric Interpretation

When analyzing the results of the RGH or their approximation based on Delaunay triangula-
tion, one can observe various handy properties useful for further processing of precomputed
contours or point sets. First, the RGH augments the input contour or dense point set P by a
geometric orientation, enabling us to easily apply neighborhood-based methods for shape
recognition. While doing so, in the case of discrete point sets and dependent from the structure
parameter §, existing holes are preserved and isolated objects are detected, as can be seen in
Fig. 2(b) and (c).

Second and as illustrated in Fig. 2, the presented method performs a smoothing of a given
contour which can be used to deal with inaccurate segmentation. Again, the impact of this
smoothing is tuned by the structure parameter {. In terms of computational geometry, this is
comparable to the morphological closing operator applied to binary objects. So, RGHs can
be characterized as such a closing operation based on adaptive, polygonial structure elements.
In contrast to classical morphological closing with constant regular structure elements (e.g.
rectangles, ellipses), the results of RGHs constructed from contours or dense point sets appear
much more smooth and intuitive, as can be seen in Fig. Fig. 2(d) and (h), respectively.

3 Evaluation

3.1 Dataset

As annotated image data of cells is very rare, most of the existing approaches were evaluated
on rather small non-public databases. For instance, Arteta et al. [1] used three datasets of 12
to 22 images in their experiments. In contrast, the CellCognition dataset presented by Held
et al. [4] consists of 7 sequences of 206 frames of size 1392 x 1040 px, each showing RNA1
treated human HeLa Kyoto cells expressing fluorescent H2B-mCherry (orange) and a-tubulin
(green). In total, the dataset contains 363,120 annotated cell objects with automatically
generated ground truth data providing centroids and bounding boxes. Fig. 3 shows an example
frame of the data-set, with the full recording and the segregated nuclei. Apart from the huge
number of objects, the data-set is made more challenging by low contrast in many cases, and
overlapping cells due to limits in the thinness of slide preparations.
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(a) microscopic image (b) corresponding nuclei ex-  (c) Thresholded nuclei (d) RGH result
pressing H2B-mCherry
Figure 3: Images from the CellCognition dataset (a) are initially thresholded (c) and further
used to extract nuclear boundaries by RGH (d).

3.2 Experimental Setup

As the proposed method is designed in a very general way, the overall framework is rather
straightforward. After binary thresholding the input images (cf. Fig. 3(c)), they are directly
passed to the RGH module to create foreground-background images as exemplary shown in
Fig. 3(d). The values of the structure parameter { are varied in order to show its influence on
the overall results. Cells are finally extracted by subsequent contour extraction.

For comparison to other methods we used two popular quantification methods. First,
suggested by Arteta et al. [1], we assumed each cell detected by our system to be a true
positive, if the distance between its centroid and the centroid of the nearest ground truth cell
is smaller than a predefined threshold pgis¢. Usually, this threeshold is set to the radius of
the smallest cell expected to appear in the data. Second and more commonly used in object
detection, a detected cell is assumed to match a ground truth cell if the ratio

area (Bget M Bot
r (Baet, Byt) = (Buci 1 By (7)
area (Bget UBgt)
of the union and intersection areas of respective bounding boxes Bge; and By exceeds the
value of Pyrea = 0.5 (¢f. Pascal Criterion [3]).

3.3 Results

In order to evaluate the performance of our methods, we compared to the state-of-the-art
method presented by Arteta ef al. [1]. From the numbers reported in Tab. 1, it can be observed
that our approach performs better or at least comparable to the competing method. Intuitively,
the structure parameter { only slightly influences the overall accuracy. Wrong segmentation
mainly occurs when two objects are closer than the structure parameter {. Furthermore it has
to be noted that the evaluation based on cell centroid distances yields higher accuracy. This
should be taken into account for further comparisons. The most remarkable observation arises
from the computational analysis. While the supervised method of Arteta et al. [1] requires
a very time-consuming training phase, even the testing step is rather slow. In contrast, our
approach performs localization and segmentation almost two orders of magnitudes faster,
which is a great advantage in real-world applications.

4 Summary

We proposed a method for detecting and segmenting cell in microscopy images relying on
Regularized Geometric Hulls (RGH) only incorporating one single parameter which is easy to
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Method Accuracy Runtime

Centroid distance ~ Pascal criterion training testing

Pdist = 2OPX Pareca = 0.5
our approach — 1.96 Ytrame

¢ =3px 91.65% 85.75%

¢ =4px 91.75% 85.01%

¢ =5px 92.11% 85.77%
Arteta et al. [1] 88.79% 86.20% 6231.59s  130.66 Yframe

Table 1: Evaluation of our approach and comparison to state-of-the-art methods.

tune. In contrast to competing approaches, our method does not require any supervision, prior
learning phases or manual annotation. Extensive experiments on the recent CellCognition
dataset verified the accuracy of our approach and demonstrated its superior runtime behavior.

Subjected to future work, we intend to predict the structure parameter § adaptively while
segmentation or learn it from training data and to use more sophisticated preprocessing of the
input data compared to binary thresholding as used in our framework.

Acknowledgements

The authors thank Christian Wojek and Stefan Saur for useful discussions and suggestions.
Mahesh Venkata Krishna is supported by Carl Zeiss AG through the “Pro-Excellenz” scholar-
ship of the Federal State of Thuringia, Germany.

References

[1] C. Arteta, V. Lempitsky, J. Noble, and A. Zisserman. Learning to detect cells using
non-overlapping extremal regions. In MICCAI, pages 348-356. Springer-Verlag, 2012.

[2] B. Delaunay. Sur la sphere vide. USSR Academy of Sciences, (6):793—-800, 1934.

[3] M. Everingham, L van Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (voc) challenge. IJCV, 88(2):303-338, 2010.

[4] M. Held, M. Schmitz, B. Fischer, T. Walter, B. Neumann, M. Olma, M. Peter, J. Ellenberg,
and D. Gerlich. Cellcognition: Time-resolved phenotype annotation in high-throughput
live cell imaging. Nature Methods, 7(9):747-754, 2010.

[5] E. Meijering. Cell segmentation: 50 years down the road. Signal Processing Magazine,
IEEE, 29(5):140-145, Sept 2012.

[6] F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communication
and Image Representation, 1(1):21-46, 1990.

[7] H. SiiBe, W. Ortmann, J. Lautenschldger, C. Lautenschlédger, M. Korner, J. GroBkreutz,
and J. Denzler. Quantitative analysis of pathological mitochondrial morphology in
neuronal cells in confocal laser scanning microscopy images. In /[WBBIO, pages 1290-
1301, 2014.



