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Highlights 55 

 56 

- We appraise four emerging tools and technologies (computer vision, acoustic 57 

monitoring, radar and molecular methods) that provide unprecedented 58 

opportunities for insect monitoring and the study of insect ecology. 59 

- These technologies have various benefits over traditional insect monitoring 60 

methods, including increased resolution of data collection across space and time, 61 

and a broader taxonomic coverage. 62 

- At the same time, each technology has its limitations, some of which can be 63 

overcome with further methodological developments. 64 

- Key issues regarding open science and international standards need to be 65 

addressed. 66 

- While technology can never replace the knowledge of entomological specialists, 67 

we expect that integration of data across technologies, along with expert 68 

knowledge, will become commonplace in the future.  69 

 70 

 71 

 72 
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Glossary 73 

 74 

Term Definition 

Acoustic sensor A device that detects and records sounds. 

AI (Artificial intelligence) Scientific field of computer science interested in (partially) 

reproducing human skills, such as thinking, acting, or interpreting 

data, with computational algorithms. Often used as a synonym for 

machine learning (see below).  

Citizen science The participation of the general public in scientific processes. 

Participation can occur at different levels of involvement and 

expertise, and at different stages of the process (study design, 

data collection and/or interpretation). 

Computer vision Scientific field of computer science that develops algorithms for 

analysing image or video data to produce descriptions of the 

depicted content, e.g., a categorization via numerical 

representations.  

(Convolutional) neural 

networks 

Group of machine learning methods that require large datasets for 

training, often used for image analysis and pattern recognition, 

where each network consists of connected nodes and layers that 

process input data to obtain desired outputs.  

Deep learning General term that denotes the training and application of deep 
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(convolutional) neural networks for a specific task, often used as a 

synonym for machine learning with deep neural networks. 

Edge computing Data processing done near the site of data collection, instead of 

transferring the data to a remote location for processing and 

analysis. 

Environmental DNA 

(eDNA) 

DNA obtained from environmental samples such as water from 

lakes or rivers, soil, faeces, air etc. 

FAIR data Data that are findable, accessible, interoperable and reusable. 

Machine learning Scientific field of computer science for developing predictive 

algorithms that learn patterns in data to make predictions. The 

algorithms learn from example training data rather than being 

programmed explicitly.   

Metabarcoding The recognition of species from their genetic structure, applied to 

multiple taxa contained in bulk or mixed samples. A common 

genetic region used for barcoding is mitochondrial cytochrome c 

oxidase subunit 1 (CO1).  

Multi-sensor station Observation device equipped with multiple sensors and recording 

units. 

Radar Device emitting radio waves in a certain direction to record the 

time, intensity and other features of the electromagnetic pulses 

that return from objects 
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Traditional monitoring Observations, usually by sight or trap, and species identification by 

human eye in the field or in the lab. 

 75 

 76 

 77 

 78 

 79 

Abstract  80 

Insects are the most diverse group of animals on Earth, but their small size and high 81 

diversity have always made them challenging to study. Recent technological advances 82 

have the potential to revolutionise insect ecology and monitoring. We describe the state-83 

of-the-art of four technologies (computer vision, acoustic monitoring, radar, and 84 

molecular methods), and assess their advantages, current limitations and future 85 

potential. We discuss how these technologies can adhere to modern standards of data 86 

curation and transparency, their implications for citizen science, and their potential for 87 

integration among different monitoring programs and technologies. We argue that they 88 

provide unprecedented possibilities for insect ecology and monitoring but it will be 89 

important to foster international standards via collaboration.  90 

 91 

 92 
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Technological advancement for insect monitoring 93 

Insects are the most diverse group of eukaryotic organisms on Earth, comprising an estimated 94 

80% of all animal life [1]. This staggering diversity, of which at least 80% remains undescribed, 95 

forms a major challenge to studying insects and monitoring their responses to environmental 96 

changes [2]. Recent reports of long-term declines in insect biomass and abundances [3,4], in 97 

combination with the emergence of new technologies [5–7], have led to calls for [8], and the 98 

establishment of, new research projects for monitoring populations and assemblages of insects 99 

and other invertebrates [9,10]. 100 

Traditionally, the monitoring of insects involves the killing of insects, followed by time-consuming 101 

sorting and species identification by specialists [11]. Often the number of individuals and the 102 

taxonomic diversity within a sample are so large that only a subgroup of taxa are identified, or 103 

taxa are only identified to a coarse taxonomic level. Hence, there is a heavy bias towards 104 

research on well-resolved groups, such as butterflies and ground beetles, whereas the diversity 105 

of other taxa, e.g. most Diptera is often ignored [e.g. 12]. Additionally, the required human 106 

labour for both data collection and processing limits the number of locations or the frequency of 107 

sampling in traditional insect monitoring programs.      108 

Recent development of technologies that employ novel detection and identification methods, 109 

often in combination with citizen science, has opened up exciting new avenues for tracking 110 

insect populations and assemblages [5–7,13]. These technologies, which include automated 111 

image- and sound recognition, radar, and molecular methods, have the potential to radically 112 

increase the spatial, temporal and taxonomic coverage of monitoring programs. They also allow 113 

new questions to be asked about insect population dynamics, phenology and biotic interactions 114 

(Box 1). At the same time, these technologies come with their own set of limitations, and are in 115 

parallel development in different projects and countries. To ensure efficient progress, there is a 116 

need for large-scale collaboration to develop international databases, metadata standards, and 117 
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open communication on hardware and software development, to ensure adherence to FAIR 118 

data principles.  119 

This paper is a collaborative effort of researchers from different European countries, aiming to 120 

review emerging tools and technologies for insect monitoring and outlining a research agenda 121 

that harnesses their potential. We provide an overview of (1) the state-of-the-art of these 122 

technologies, their advantages, current limitations, and future potential, (2) how the data 123 

collected using these technologies can adhere to modern standards of data curation and 124 

transparency, (3) how citizens can participate in projects using these new technologies, and (4) 125 

the potential for integration and synergies among technologies. 126 

 127 

 128 

Box 1: Seeing the unseen using new technologies 129 

Species interaction networks: 

Interactions between species are often hard to detect due to the time, place or scale at which 

interactions take place, but modern technologies can help make the unseen visible. Molecular 

methods are being used to identify both the predators and food of insects directly, i.e. by 

analysing faeces [14], gut contents [15] (also from blood meals [16]), or parasite presence 

[17], and indirectly, using DNA left after resource visitation, such as on flowers [18]. Also 

computer vision has been used to quantify insect resource use and foraging behaviour [19]. 

Quantifying ecosystem services: Technologies are already being used to quantify insect 

pollination. Computer vision is applied to images taken by cameras fixed above plants [19–21] 

and metabarcoding can be used on pollen or flowers to identify flower visitors [19,22,23]. 

Computer vision or acoustic monitoring may also prove useful in studying the decomposition 
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of dung, carrion or dead plant matter, but has to our knowledge not yet been applied.  

Tracking species movements and occurrences from local to continental scales:  

For many ecological questions, as well as for biodiversity conservation, public health and crop 

protection, it is essential to track the whereabouts of specific insect species. Several of the 

technologies we discussed can help doing this. At the smallest scales, computer vision can 

track insects, such as pollinators, as they forage for resources [19,20], and eDNA can detect 

traces of past insect visits [18]. At regional to continental scales, different technologies can be 

used to detect the occurrence and movement of beneficial species [24], pest species [25–27], 

disease vectors [28], invasive species [29–31], and protected species [32].   

Energy and biomass fluxes within and across habitats:  

The movement of insects creates fluxes of nutrients and energy across large distances and 

across ecosystem boundaries (linking e.g. aquatic and terrestrial systems). Tracking these 

fluxes is now possible in 4 dimensions in a non-invasive and unbiased way [33,34]. Vertically-

looking radar has been used to quantify high altitude insect migrations [35], and vertical 

photography and lidar can show insect biomass fluxes at closer ranges [33,36].   

 130 

 131 

 132 

  133 
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Four technologies that are revolutionising 134 

entomology  135 

Computer vision 136 

Computer vision is a field of computer science that develops algorithms to extract information 137 

from digital images and video (Fig. 1A). In ecology, computer vision is being used in diverse 138 

ways to collect observations and automize species identification. For instance, it is being used 139 

for automated and standardised sampling of biodiversity, using cameras aimed at an 140 

environmental feature [19] or at a screen placed in the field (see Box 2), often in combination 141 

with traps (e.g., light traps [37], sticky traps [38] or pheromone traps [39]) to increase detection 142 

rates. Computer vision is also helping to digitise the vast museum collections of specimens to 143 

mobilise historic occurrence records [40,41]. Images are also being collected by citizen 144 

scientists and uploaded to portals for opportunistic observations [42]. Several of these 145 

applications (e.g. www.iNaturalist.org, www.observation.org/apps/obsidentify/, and 146 

www.pictureinsect.com) support automated identification. While the technology has yet to be 147 

applied at a large scale for insect monitoring, the first applications show promising results (Box 148 

2). 149 

 150 

There are a number of potential advantages to using computer vision for sampling and 151 

identifying insects over traditional techniques. First, computer vision methods are often non-152 

destructive, so individuals don’t need to be interfered with or killed. Second, computer vision 153 

technology can count and classify insects with less human labour and observer bias [6]. Third, 154 

by reducing the necessity for taxonomic expertise, computer vision is creating opportunities to 155 

expand the engagement of citizen scientists (Box 3). Last, computer vision can be used to 156 
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collect information on insect behaviour and interactions. For instance, fixed cameras have been 157 

mounted over resources such as flowers to record the activity of insects, including plant-158 

pollinator interactions [19,20]. 159 

 160 

Computer vision uses machine learning algorithms, such as convolutional neural networks 161 

(CNNs), which are trained to identify insects using a library of pre-classified images. Accuracy 162 

rates can be over 90% at the species-level for some taxa, but strongly depend on taxon group 163 

size and morphological similarity [43–48]. In addition to taxonomic identification, algorithms are 164 

being used to count individuals in an image and estimate individual size, biomass and 165 

movement [49,50].  166 

 167 

Several technical challenges are currently hindering the widespread application of computer 168 

vision in entomological research. A main challenge is the large amounts of training data 169 

(reference libraries) needed, which may be taxon, region, and project specific. Computers have 170 

difficulties identifying species with limited training data (typically rare species), and tend to 171 

overpredict species with a disproportionately large amount of training data (typically common 172 

species). One solution to expand reference libraries is the development of apps for local experts 173 

and citizens to submit training image data of species at different angles [51]. Another challenge 174 

is the power consumption for the cameras and subsequent data transfer. This difficulty may be 175 

reduced by the use of solar panels (Box 2), but this increases the risk of theft. For on-site 176 

classification, internet connectivity is important, however, edge computing (local data 177 

processing) enables classification directly on the device (e.g. the Seek app by iNaturalist 178 

(https://www.inaturalist.org/pages/seek_app) with the potential for real-time monitoring [19]. 179 

Hence, while there still are challenges [6], already the opportunities of computer vision are 180 

numerous and will likely transform insect monitoring in the coming decade (Fig. 2A). 181 
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Acoustic monitoring 182 

A diverse range of insect taxa emit sounds that can be used for efficient monitoring. Like 183 

computer vision, acoustic monitoring uses a field recorder to collect information (i.e., sounds), in 184 

combination with machine learning algorithms for species identification (Fig. 1B). Insect sounds 185 

may be sampled using stationary recorders or by mobile transects from cars or trains [52,53]. 186 

So far, these methods have mostly been applied to detect the chirping of insects such as 187 

orthopterans and cicadas (Box 2), and have been tested on freshwater invertebrates [54,55], 188 

and bees, hornets and mosquitoes based on their flight sounds [56,57], but they have a much 189 

broader range of possibilities (Fig. 2B). 190 

 191 

One of the main advantages of acoustic monitoring over other sampling approaches, is that 192 

insects can be detected over much longer ranges - sometimes more than 100 m [53]. 193 

Additionally, like computer vision, acoustic monitoring is nondestructive, rapid, and inexpensive 194 

[58], and machine learning algorithms applied to the recorded sound circumvent observer 195 

biases [53,59]. In addition to species presence, acoustic signals contain information on insect 196 

behaviour, such as phenology, activity and courtship behaviour [52,53,60], and can provide 197 

direct measures of ecological functions, such as pollination or wood-boring [57,61]. Recordings 198 

of composite environmental sounds [62] - soundscapes - also contain rich information about the 199 

state of biological assemblages related to species diversity [63].  200 

 201 

Identification of species from their sounds is still limited by the size of the reference libraries, 202 

which are poorly developed compared to those for vertebrates [59]. Currently, these libraries are 203 

only sufficiently large in temperate regions for some terrestrial vocalising insect groups, whereas 204 

for the use of other insect sounds (especially flight sounds), reference libraries are largely 205 

lacking (but see [56]). Citizen science schemes could, however, help build these acoustic 206 
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reference libraries [64]. There is also a strong need for research into the factors that influence 207 

the detectability of insect sounds, including microphone type, weather, and vegetation 208 

attenuation, to understand the sampling ranges. Nevertheless, acoustic monitoring has 209 

underexplored potential for low-cost but large-scale monitoring (Fig 2B). 210 

 211 

Radar  212 

The application of remote sensing technologies for biodiversity monitoring has rapidly expanded 213 

over the last decade. In entomology, radar monitoring uses terrestrial radar systems, including 214 

weather surveillance radar, to detect insects in the airspace (Fig. 1C). It has been long known 215 

that radar can detect large swarms of insects, but modern radar can provide detailed 216 

information on flying insects, including size, shape, speed, trajectory and wing beat frequency 217 

[65]. Specialised entomological radars can detect insects far above the ground, from 150 m 218 

above ground level, with the potential to detect larger insects (i.e., >15 mg) up to 1.2 km above 219 

ground level [65].  220 

 221 

Advantages of monitoring insects by radar are that it’s non-invasive, has large detection radius, 222 

and can operate day and night. Hence, radar observations are especially useful to study 223 

biomass fluxes [35], migratory behaviour [65], and population dynamics [24] (Box 1). Radar can 224 

also be used to reveal insect presence indirectly, by detecting signs of vegetation damage [25] 225 

or nest structures [66]. Data from weather surveillance radars have already been combined with 226 

local monitoring programs to document population declines in mayflies [67] and the movement 227 

of locust swarms [26].  228 

 229 
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Radar technologies have significant potential for large-scale monitoring of insects, even at the 230 

continental-scale, using the existing networks of weather surveillance radars [34]. However, 231 

they would benefit from improved algorithms for filtering biological targets from other airborne 232 

particles, as well as increased knowledge of the reflective properties of insect taxa [68,69].  233 

 234 

LiDAR (laser radar) has only recently been applied in entomology, but can be used to detect 235 

insects much closer to the ground than most radar systems, over sampling ranges of 10-600 m. 236 

Moreover, it has the potential to use the spectral reflectance to identify insects to much lower 237 

taxonomic levels [28,70,71]. As the technology develops, better taxonomic classification can be 238 

achieved when libraries on spectral scatter become available for more taxa [13].  239 

 240 

 241 

Molecular methods 242 

Out of the modern technologies, molecular methods using genetic information are the most 243 

developed and most widely used so far. These methods can be used for many goals including 244 

the quick discovery of new species [72], the detection of endangered [32], invasive or pest 245 

species [73], the characterization of species interaction networks [18,74], and assessment of 246 

taxonomic [22,75] and genetic diversity of whole assemblages [76,77].  247 

 248 

The most common use of genetic information is based on DNA barcoding, i.e. amplification of a 249 

short section of DNA from a specific gene or genes, providing adequate separation between 250 

focal taxa. Barcoding was originally proposed for the identification of individual specimens [78]. 251 

Yet, advancements in laboratory protocols and high-throughput sequencing technologies now 252 

enable DNA isolation, amplification and taxon identification from complex mixture samples (DNA 253 
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metabarcoding; Fig. 1D) [29]. Compared to traditional monitoring, metabarcoding can be time- 254 

and cost-efficient [72]) and is highly scalable, enabling simultaneous processing of many 255 

samples and species. Metabarcoding methods can be applied directly to organismal samples, 256 

using the storage medium [79] or homogenised bulk samples of collected insects [80]. 257 

Alternatively, it is possible to detect the presence of species from DNA fragments in 258 

environmental samples (eDNA), such as water [32], soil [81] or air [82]. Interactions between 259 

insects and other taxa can be identified by using samples derived from animals guts, blood or 260 

faeces [74] (Box 1). One of the most recent advances is the use of eRNA [83] to distinguish the 261 

presence of living from dead individuals, since RNA is only present in metabolically active cells, 262 

whereas DNA may derive from the remains of dead individuals. 263 

 264 

Molecular methods overcome many of the observation biases associated with traditional 265 

monitoring, however, they bring a new set of biases. Differences in DNA amounts and 266 

extractability among insect taxa [79], or taxa-specific variation in PCR amplification [84,85], may 267 

result in some species not being detected even when present in the sample. Size sorting within 268 

a sample can help DNA amplification of small and rare species [86]. However, commonly used 269 

markers, such as the CO1 gene, sometimes still fail to detect some insect taxa such as 270 

Hymenoptera [87]. Amplification biases may also be circumvented by bypassing the PCR step 271 

and directly sequencing the complete extracted DNA [75,88] or RNA (metatranscriptomics). 272 

RNA sequencing also brings the potential to detect metabolic capacities and gene expression of 273 

individuals or assemblages at the moment of sampling [89].  274 

 275 

The primary outputs of DNA-technologies are gene-based operational units (operational 276 

taxonomic units [OTUs] and amplicon sequence variants [ASVs]; e.g. [90]), which represent 277 

clusters of organisms with similar DNA sequences. To link with existing knowledge of species and 278 

their ecology, these units must be mapped to reference databases, such as BOLD or GenBank. 279 
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These reference databases are rapidly growing, BOLD now containing genetic data on 213,344 280 

publicly available insect species. However, errors, synonymy, misidentifications and missing 281 

species can cause misclassifications. Nevertheless, international, national and taxon-specific 282 

initiatives are currently making strong progress on improving the taxonomic coverage of such 283 

reference libraries [80,91]. 284 

 285 

 286 

Box 2: Case in point: Pioneering monitoring projects   287 

Case study Brief description  

DIOPSIS 

(Netherlands) 

 

 

Fig .I. DIOPSIS. 

 

DIOPSIS (Digital Identification Of Photographically Sampled Insect Species) 

takes regular photos of a yellow screen that attracts insects and uses 

machine learning to recognize and count the photographed insects [92]. 

Photos are taken every 10 seconds or when movement is detected. If a 

photo is different from the previous one, it is stored locally and/or sent to a 
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server through 4G. Individual tracking across pictures is applied to remove 

duplicates. Since 2019, about 80-100 DIOPSIS cameras have been 

deployed each year in the Netherlands. 

 

INPEDIV 

(Germany) 

 

Fig. II. INPEDIV 

(Image credit: Livia Schäffler) 

 

The project „Integrative analysis of the influence of pesticides and land use 

on biodiversity in Germany“ (INPEDIV) aims at investigating effects of 

organic and conventional farming on biodiversity in open calcareous 

grasslands at 20 protected sites in western and eastern Germany. The 

project combines traditional and modern methods to examine impacts of 

agricultural land use on biodiversity across trophic levels along trap lines 

reaching from agricultural fields into adjacent protected areas. Flying insects 

caught in Malaise traps are determined by metabarcoding of bulk samples. 

Additionally, the pesticide load is analysed at each trap location. 
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Suivi des 

Orthoptères 

Nocturnes 

(France) 
Fig. II. Suivi des Orthoptères Nocturnes. 

 

In France, nocturnally vocalising bush crickets have been monitored by 

citizen scientists since 2006, as an add-on to the acoustic bat monitoring 

scheme Vigie-Chiro. For this purpose, Tadarida software was developed to 

detect both bat and insect calls and classify them into 79 classes including 

all common bat and bush-cricket species, using a random forest algorithm 

[93]. This nationwide monitoring scheme, with so far 16 349 individual 

sampling locations, has detected significant declines of four bush-cricket 

species, and an increase of Phaneroptera nana.  

Insektmobilen 

(Denmark / 

Germany) 

 

Fig. III. Insektmobilen (Image credit: Anders 

Drud, Natural History Museum of Denmark.) 
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InsektMobilen uses nets mounted on car rooftops (car nets) to sample 

flying insects, followed by DNA metabarcoding and image 

classification to quantify biomass, richness and diversity [94]. In 

Denmark and Germany, volunteers sampled insects over 250 five-km 

routes during June/July 2018 and 2019. In Denmark, the project 

detected 319 species not known for Denmark and 174 species 

included in the Danish Red List.   

AMMOD 

(Germany) 

 

 

Fig IV. Illustration of the modular AMMOD monitoring station design. (1) 

Acoustic monitoring, (2) Smellscapes (pVOCs), (3) Visual monitoring: Moth 

scanner, (4) Visual monitoring: Wildlife camera trap, (5) Base station, (6) 

Data transfer and management, (7) Metabarcoding: Automated Malaise 

trap, (8) Metabarcoding: Automated pollen sampler. Figure draft and design: 

J. Wolfgang Wägele. 
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AMMODs are Automated Multisensor stations for Monitoring of species 

Diversity [9]. Analogous to weather stations, these are autonomous 

samplers that monitor plants, birds, mammals and insects. The technology 

consists of six modules: (i) automatized visual monitoring and image 

analyses (mammals and moths), (ii) detection of smellscapes using volatile 

organic compounds, (iii) Malaise and pollen traps for metabarcoding, (iv) 

automated bioacoustic monitoring (birds and bats), (v) development of a 

base station, and (vi) data management and cross-platform analysis. Since 

2020, AMMOD is being tested at three sites in Germany. 

 288 

 289 

 290 

Box 3: New technologies as opportunities to advance 291 

citizen science  292 

 293 

About 70-80 % of species records in Europe are collected by volunteers [95]and these data 

underpin many national and regional assessments of biodiversity change [96,97]. Historically, 

most insect monitoring was organised outside academia, especially by taxonomic specialists 

and natural history societies [98], and there is a long tradition of including lay people in the 

scientific data collection process for various insect taxa including butterflies and mosquitoes 

[95]. Recent technological developments have increased the opportunities for people, 
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including non-specialists, to get involved, for example helping with digitization of museum 

collections (e.g. Denmark). 

  

Out of the new technologies, computer vision has been most often integrated into citizen 

science; for example, a range of smartphone applications use computer vision to help users 

identify species (e.g. iNaturalist, ObsIdentify, and Picture Insect, lepsnap). Many of these 

applications use a so-called ‘human-in-the-loop’ approach - the technology helps users 

narrow down the likely species by suggesting the most visually similar species. Another way 

citizens have contributed to computer vision-based science is by helping to compile the 

training data needed for machine learning, for example in the PollinatorWatch project. In 

projects using DNA-technology, some rely on citizen scientists for the collection of the insect 

samples [94], which are subsequently processed by scientists. A few citizen science projects 

are starting to include citizens in the analysis steps e.g., the DNA&life project in Denmark [99].  

 

Ecologists often debate the reliability of species observations from citizen science. However, 

the development of AI based apps [100] and DNA based methods [31] may help increase 

identification accuracy. For instance, AI tools may allow instant feedback on the likelihood of 

an observation. AI methods can also be used to develop intuitive field guides that may deviate 

from classic dichotomous identification keys. Some citizen science platforms already use 

crowd-sourced expert identification for validation of observation (such as expert crowd 

verification of iNaturalist or iRecord observations); however, the rate of manual validation is 

unable to keep pace with the rapidly growing number of submissions. In these cases, 

technologies could use active learning AI algorithms, which select only a subset of images for 

human validation for i) groundtruthing or training of the AI classifier, and ii) where the AI 
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classifier was most uncertain in its decision. Citizens with taxonomic expertise may also help 

compile the training datasets by identifying species on images or sounds. 

 

New technologies have the potential to increase the accessibility and diversity of 

entomological citizen science. For instance, citizen science activities could be extended to 

volunteers with expertise in joint software development and data visualisation. Care, however, 

needs to be taken to avoid access barriers and unintended exclusion due to possible 

technology barriers or disconnect of data, people and wildlife. Overall, there could be 

considerable benefits from involving citizen scientists in the development and application of 

the tools through co-created projects and community partnerships [98].  
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Fig. V. Using automated identification technology to monitor insects can be a win-win 

situation for citizens and scientists. Using such tools, citizens can learn about species 

identity and ecology, and scientists can use the data collected to study, for example, species 

interactions, such as this lady beetle feeding on aphids on their host plant.   

 

 294 

The road forward 295 

The development of new technologies for insect ecology and monitoring is no goal in itself, but 296 

must be guided by the needs of society, policy makers, as well as the scientific questions 297 

scientists address (Box 1). Furthermore, they must meet the demands of modern science in 298 

terms of data curation and transparency [101], and consider the possibility of involvement of 299 

other stakeholders, such as citizens (Box 3), who have contributed 70-80 % of species 300 

occurrence records in Europe [95]. There are also un(der)explored possibilities for integration 301 

among technologies. In the next sections, we will outline the opportunities for how these 302 

technologies can revolutionise insect ecology and monitoring.    303 

 304 

Open Science  305 

Insect data collected by traditional monitoring schemes or derived from museum specimens are 306 

becoming increasingly accessible via data discovery platforms such as www.GBIF.org. 307 

However, for data collected using the technologies discussed here, the norms and practices of 308 
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open science, as well as standards for data publishing have yet to evolve and to be agreed 309 

upon. To make these new technologies open and reproducible, both the underlying data and 310 

processing steps must be FAIR: findable, accessible, interoperable, and reusable [101] . 311 

 312 

While generalist data repositories may function sufficiently well for basic data access and 313 

retrieval, specialist repositories are often needed for the most efficient data re-use. Data 314 

openness has been fostered for DNA-based technologies through International Nucleotide 315 

Sequence Database Collaboration (www.INSDC.org) data portals such as the Sequence Reed 316 

Archive (SRA). GBIF has also led the development of protocols to deal with sequence data to 317 

improve discoverability of DNA derived data [102]. For sharing species images, there are 318 

various citizen scientist platforms, but fewer for audio recordings (but see www.iNaturalist.org).  319 

 320 

New technologies face practical problems about which form of data should be stored due to the 321 

typically large file sizes or novel data attributes. To ensure comparability over time, data should 322 

be stored in their original form, so the data can be reprocessed when reference libraries or 323 

technologies improve and enable better species detection and/or classification.  324 

 325 

Standardisation and quality of data and metadata are key for interoperability and reusability. 326 

Among the most widespread are Ecological Metadata Language (EML [103]) and Darwin Core 327 

[104]. Yet, it is still unclear what metadata would be sufficient for reproducibility of data collected 328 

by different technologies or different protocols [105]. Technological reproducibility also needs to 329 

involve openness of hardware (type, model, as well as mechanical, electrical and optical 330 

settings), and software (version, documentation), and the availability of analytical code as a 331 

community norm. For DNA technologies, specific steps of the laboratory protocols, such as 332 

preservation buffer, DNA polymerase, PCR enhancer, are essential for reproducibility [106] and 333 

automated workflows are being proposed for standardisation [102,107]. 334 
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The potential of technological integration  335 

Each of the reviewed technologies has its own strengths and weaknesses, and new studies 336 

should seek to combine the strengths of the different technologies, as well as integrate the 337 

continued value of traditional monitoring methods. Combining different technologies could bring 338 

a range of benefits: increased spatial, temporal or taxonomic coverage, a broader range of 339 

biodiversity metrics, or simply more confident taxonomic assignment. Integration is also likely to 340 

be the optimal solution for effective large-scale and long-term insect monitoring. Some 341 

examples of complementary use of methods already exist. Below, we outline some possibilities:  342 

 343 

(1) Quantification of different biodiversity metrics in insect bulk samples 344 

A combination of technologies applied to the same sample can increase the range of produced 345 

biodiversity metrics. While molecular methods provide reliable biodiversity metrics such as 346 

richness and diversity, traditional methods [108] and computer vision [50] still provide more 347 

robust quantitative metrics such as biomass and abundance. Although we note that methods 348 

are being tested to quantify species abundances and biomass from DNA samples [109]. 349 

 350 

The onset of robotic techniques for the processing of individual insects from bulk samples [110] 351 

may to a large extent replace the laborious work of manual species identification. Together, 352 

computer vision, robotic sorting, and DNA-based identification may add both images and DNA-353 

sequences of previously unencountered taxa to reference libraries, provide all desired 354 

biodiversity metrics, and discover new and rare species for further processing by taxonomic 355 

specialists. So far, only a prototype for this approach exists [110], but this combination of 356 

technologies can upscale biodiversity monitoring to unprecedented levels.  357 

 358 

(2) Increasing confidence of species identification  359 
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The integration of different technologies may improve identification accuracy and coverage of 360 

the insects in a sample. Integration could occur either during the taxonomic classification step, 361 

as a multi-sensor input for the neural networks (so-called cross-modal perception), which may 362 

work especially well for combined visual and acoustic monitoring. Alternatively, integration may 363 

occur as a final step to check for overall concordance of the classifications between the 364 

technologies; for instance, following analysis of insect bulk samples by computer vision and 365 

DNA analysis. Integrating optical and acoustic sensors may be especially useful for developing 366 

pollinator indicators, which are especially urgent given their key role in ecosystems, but difficult 367 

to accurately identify based on each technology alone.  368 

 369 

(3) Filling the gaps: increased spatial, temporal and taxonomic coverage 370 

Due to the decreased human labour needed, new technologies can increase the spatial, 371 

temporal and taxonomic coverage of monitoring programs. To align with existing schemes, new 372 

technologies could be initially set up to target current spatial and temporal gaps e.g., when and 373 

where fewer people are active, such as in remote areas. Another way of upscaling monitoring to 374 

large spatial scales with great potential is the use of (weather) radar. Although radar currently 375 

largely lacks certainty about species identity, it could also be combined with vertical 376 

photography [33] and aerial eDNA [82] to sample the same aerospace.  377 

 378 

For assessment of whole ecological assemblages within a region, multi-sensor biodiversity 379 

‘weather’ stations [9] may become particularly useful. These stations simultaneously use 380 

multiple technologies and trap types to monitor a broad range of organisms, including insects, 381 

plants and vertebrates (see AMMOD project in Box 2). Such monitoring is especially useful to 382 

understand trophic links and for monitoring overall ecosystem health.  383 

 384 

 385 
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On-going role of traditional monitoring 386 

Regardless of technological developments, new technologies cannot replace specialist 387 

taxonomic knowledge and traditional methods [111]. Instead, new technologies should seek to 388 

complement traditional monitoring, to alleviate workload and tedious tasks, and to increase the 389 

spatial, temporal and taxonomic coverage of existing monitoring schemes. Furthermore, 390 

combining metabarcoding and microscopy has been shown to increase the level of species 391 

identification [108].  392 

Entomological expertise is also needed for building and improving reference libraries and the 393 

validation of the results from automated monitoring. Moreover, there are still some groups that 394 

can be poorly distinguished by modern technology, e.g. morphologically similar taxa (such as 395 

ants) or taxa that are poorly distinguishable by commonly used barcoding genes [112]. As novel 396 

methods continue to emerge and may eventually dominate the records, expert checks will 397 

become crucial to ensure data quality. 398 

Another area where human labour will remain essential is the detection of protected species, 399 

which are rare and not allowed to be trapped, such as those under the European Commission 400 

Habitats Directive for Annex I. For aquatic species, eDNA may be a viable option, but for 401 

monitoring rare terrestrial habitat specialists, such as the hermit beetle Osmoderma eremita or 402 

the Great Capricorn Beetle Cerambyx cerdo, human observations will remain essential.  403 

 404 

 405 
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Outstanding questions 406 

● What standards are needed to ensure interoperability of data and reproducibility 407 

of methods using each technology? How should these standards be fostered by 408 

the scientific and biodiversity informatics community? 409 

 410 

● How do these new technologies compare to traditional methods in accuracy and 411 

informativeness? Are new technologies just quicker and cheaper? When should 412 

we still use traditional taxonomy and sampling, and how can new technologies 413 

and traditional sampling best complement each other?  414 

  415 

● What are the sampling biases of new technologies, in terms of both taxonomic 416 

accuracy (which groups can be monitored by each technology) as well as species 417 

traits (which kinds of species might be missed by each technology)? 418 

 419 

● How should the technologies be optimised to maximize both data quantity and 420 

data quality, bearing in mind that many of the new technologies may rapidly 421 

increase the rate of data collection, outpacing storage capacities and/or the rate at 422 

which the data can be validated, processed and analysed? 423 

 424 

● How should data aggregation services (such as GBIF and national records) define 425 

and label data from novel identification techniques, including the uncertainty in 426 

species identity and non-validated insect records, so that these uncertainties are 427 

transparent to the end-user? 428 

 429 
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● How can new technologies overcome common biases associated with the effects 430 

of insect activity on monitoring indices and provide unbiased density estimates? 431 

 432 

● What is the best sampling design to upscale and integrate different technologies 433 

for large-scale and long-term insect monitoring? 434 

 435 

● How can new technologies facilitate and enhance engagement with society, 436 

promote experience of and learning about insects, and foster meaningful and 437 

innovative citizen science? 438 

 439 

● How can we ensure that the outputs of these technologies align with policy-440 

relevant indicators for ecological states and trends at relevant spatial and 441 

temporal scales? 442 

 443 

Concluding remarks 444 

The technological developments described in this paper provide unprecedented possibilities for 445 

entomological research and monitoring. However, most of them are still in a proof-of-concept 446 

stage and are not ready for large scale deployment, and none of them is free of biases (see 447 

Outstanding Questions). While these technologies cannot replace specialist taxonomic 448 

knowledge, they can help save time on species identification, and some can enable non-lethal 449 

monitoring. Existing monitoring programs using traditional methods have proven invaluable for 450 

understanding the extent of recent insect declines [3], and should be maintained to extend 451 

historic time-series. Before new technologies can be deployed for large-scale insect monitoring, 452 

international standards need to be developed via collaboration across borders, projects and 453 
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technologies. It will also be crucial to involve different stakeholders to develop policy-relevant 454 

indicators, so that the data collected can be truly and broadly useful. The future of entomology 455 

will be a collaboration between human and machine.  456 
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Figure captions 717 

 718 

Figure 1. Workflows, from data collection to end product, of each of the four covered 719 

technologies.  720 

 721 

Figure 2. Current and potential future scope of the four technologies  A non-exhaustive list of 722 

current, in development and expected future possibilities for insect ecology and monitoring 723 

using the four technological developments discussed in this paper. Colours refer to different 724 

aspects of each technology: taxonomic precision and groups (orange), the metrics for 725 

biodiversity that can be obtained (light blue), the size, scale and type of samples that can be 726 

processed (gold) and the technological challenges for data processing (dark blue). Terms that 727 

transgress the borders between technologies are applicable to both.  728 

 729 

 730 



Highlights 
 

- We appraise four emerging tools and technologies (computer vision, acoustic 

monitoring, radar and molecular methods) that provide unprecedented 

opportunities for insect monitoring and the study of insect ecology. 

- These technologies have various benefits over traditional insect monitoring 

methods, including increased resolution of data collection across space and 

time, and a broader taxonomic coverage. 

- At the same time, each technology has its limitations, some of which can be 

overcome with further methodological developments. 

- Key issues regarding open science and international standards need to be 

addressed. 

- While technology can never replace the knowledge of entomological 

specialists, we expect that integration of data across technologies, along with 

expert knowledge, will become commonplace in the future.  
 

Highlights



Outstanding questions 
 

● What standards are needed to ensure interoperability of data and 

reproducibility of methods using each technology? How should these 

standards be fostered by the scientific and biodiversity informatics 

community? 

 

● How do these new technologies compare to traditional methods in accuracy 

and informativeness? Are new technologies just quicker and cheaper? When 

should we still use traditional taxonomy and sampling, and how can new 

technologies and traditional sampling best complement each other?  

  

● What are the sampling biases of new technologies, in terms of both taxonomic 

accuracy (which groups can be monitored by each technology) as well as 

species traits (which kinds of species might be missed by each technology)? 

 

● How should the technologies be optimised to maximize both data quantity and 

data quality, bearing in mind that many of the new technologies may rapidly 

increase the rate of data collection, outpacing storage capacities and/or the 

rate at which the data can be validated, processed and analysed? 

 

● How should data aggregation services (such as GBIF and national records) 

define and label data from novel identification techniques, including the 

uncertainty in species identity and non-validated insect records, so that these 

uncertainties are transparent to the end-user? 

 

● How can new technologies overcome common biases associated with the 

effects of insect activity on monitoring indices and provide unbiased density 

estimates? 

 

● What is the best sampling design to upscale and integrate different 

technologies for large-scale and long-term insect monitoring? 

 

● How can new technologies facilitate and enhance engagement with society, 

promote experience of and learning about insects, and foster meaningful and 

innovative citizen science? 

 

● How can we ensure that the outputs of these technologies align with policy-

relevant indicators for ecological states and trends at relevant spatial and 

temporal scales? 

 

outstanding questions
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