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Abstract

Sensor data fusion from multiple cameras is an impor-
tant problem for machine vision systems operating in com-
plex, natural environments. In this contribution we tackle
the problem of how information from different sensors can
be fused in 3-D object tracking. We embed an approach
called Democratic Integration into a probabilistic frame-
work and solve the fusion step by hierachically fusing the
information of different sensors and different information
sources (cues) derived from each sensor. We compare differ-
ent fusion architectures and different adaptation schemes.
The experiments for 3-D object tracking using three cali-
brated cameras show that adaptive hierarchical fusion im-
proves the tracking robustness and accuracy compared to a
flat fusion strategy.

1. Introduction

More and more applications arise in which several cam-
eras are placed at different positions in the environment to
solve a certain task. A prominent example are surveillance
tasks in public areas such as airports or parking lots. Up to
now it is an unsolved problem how sensor data from sev-
eral sensors shall be fused considering that each sensor can-
not contribute to the solution of the problem all the time
the same way (for example, due to occlusions). Also even
complete failures in individual sensors may occur (e.g., due
to hardware problems), which should not result in a break-
down of the whole system. In addition to that it might be
necessary that each sensor is adapting its processing to the
environmental conditions (day/night, rain/sunshine, etc.).
Data fusion from multiple sensors should be robust with re-
spect to these problems.

The main contribution of this work is a robust cue inte-
gration and adaptation mechanism for object tracking using

multiple cameras. The basis of our approach is the Demo-
cratic Integration mechanism [4]. Democratic Integration
has originally been applied to fuse multiple cues arising
from a single camera. We extend this approach towards hier-
archically fusing cues originating from multiple calibrated
cameras. Our goals are to demonstrate that cues from mul-
tiple cameras can be fused in a self-organized manner, such
that the contribution of each of the cameras is dependent on
the estimated reliability of that camera, and that such a sys-
tem is robust with respect to unexpected failure of individ-
ual cues or entire cameras.

For estimating the 3-D position of the moving object a
particle filter approach is applied, while 2-D tracking in the
image plane is done by several simple cues, such as color,
motion, and template matching. For the integration of the
different cues and the results of each individual sensor, we
compare different integration schemes: adaptive vs. non-
adaptive fusion, and flat vs. hierarchical fusion. We demon-
strate the robustness of our approach in extensive exper-
iments featuring clutter, occlusions, lighting changes, ob-
jects with changing appearance, and simulated sensor fail-
ures.

2. Probabilistic Data Fusion

In the following, the data fusion concepts shall be ex-
plained in greater detail. First the original Democratic Inte-
gration approach [4] is briefly presented and reformulated
as a probabilistic data fusion mechanism with adaptation as
illustrated in Figure 1. This concept is then extended to a
more general fusion architecture with different state spaces.
Then we will present approaches for hierarchical data fu-
sion.

2.1. Data Fusion with Democratic Integration

In Democratic Integration several adaptive cues are fused
in a self-organizd fashion. A central concept is the so called



Sensor data

Cues pj

Data fusion pc

State estimation

x̂

New weights

New parameters

Figure 1. Overview of a general framework for
probabilistic data fusion with adaptation

result saliency map p
(t)
c into which the different cues p

(t)
j are

fused to produce the final result for tracking with one cam-
era. The cues used in this work are motion detection, color
tracking, template matching, and trajectory prediction. The
motion cue computes differences in subsequent edge im-
ages to estimate a moving objects location. The color cue is
adaptively locating image areas that are compatible with the
estimated color of the tracked object. The template cue re-
lies on a simple correlation based template matching, again
in edge images. The prediction cue uses the results of the
other cues to predict the next object position assuming con-
stant acceleration. All of these cues are fairly simple and
well known from previous works [4].

Each of these cues computes — assuming proper nor-
malisation — a probability distribution over the 2–D state
space describing the position of the moving object in the im-
age plane. The result saliency map combines the individual
cues in a weighted sum with weights wj(t):

p(t)
c (x) =

J∑

j=1

wj(t) · p(t)
j (x) . (1)

The final state estimation can then be performed on the
fused probability distribution p

(t)
c using maximum likeli-

hood. This results in an estimated state x̂, the estimated po-
sition of the tracked object.

In an adaptation step the internal parameters of the cues,
e.g. the tracked color or template, can be updated by feed-

ing back this global result to the individual cues. This way
the cues stay co-ordinated ensuring that they are all track-
ing the same object, and it is possible for them to react to
changes in the environment or the object appearance.

In addition, the time dependent weights wj can be
adapted. For this, a quality measure qj has to be de-
fined for the individual cues. Basically this task can be done
by comparing two probability distributions, p

(t)
j and p

(t)
c .

The more similar the distribution p
(t)
j is to the global re-

sult, the higher the quality rating of the underlying cue.
Various distance measures can be used for such measure-
ments (see below). When comparing a cue’s distribution
p
(t)
j with the fused p

(t)
c , it is generally advisable to dis-

count the cue’s own contribution to p
(t)
c , i.e. it is best

to compare p
(t)
j with the fused result that would ob-

tained without the cue’s own contribution. This effectively
avoids situations where one cue can completely domi-
nate the fusion process. This method manages to main-
tain the idea of encouraging agreement between cues while
avoiding self-promoted domination of single cues.

With an adaptation parameter τ the qualities qj(t) lead
to a dynamic weight update given by:

wj(t + 1) = (1 − τ) · wj(t) + τ · qj(t) . (2)

The data fusion method discussed so far provides the re-
quired mechanisms for adapting to changing environmental
conditions, but has only been defined for a single camera. In
the next section we will discuss tracking with multiple cam-
eras.

2.2. Data Fusion with Multiple Cameras

The main idea in our approach is, that for fusing the
information gathered by multiple, calibrated cameras, the
saliency maps are substituted by a probability distribution
over the — in this case — 3–D state space [1]. In our ap-
proach we can also deal with the general case of an n–
dimensional state space and observations that are made in
several mj–dimensional state spaces.

The probability distribution on the 3–D state space is ap-
proximated using a Particle Filter and the Condensation Al-
gorithm [2, 3]. The particles are used to represent possible
3–D postitions of the tracked object. In our case the state
further consists of the 3–D velocity and acceleration of the
object, providing a propagation model for the Particle Fil-
ter. The data fusion mechanisms presented before can be in-
corporated for generating a rating of the particles. These are
obtained by fusing ratings of the individual cameras. At this
point projections from the 3–D state space into the 2–D state
spaces have to be known, i.e. a camera calibration step pro-
viding the projections from world coordinates into image
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coordinates is necessary. With these parameters it is possi-
ble to project the hypothesized object positions, i.e. the par-
ticle states, into the image planes, where probability distri-
butions are known.

In general to fuse the probability distributions p
(t)
j on

the mj–dimensional state spaces into one p
(t)
c on the n–

dimensional state space and using projections π j , the rat-

ings P
(t)
i for a state xi are computed as:

P
(t)
i (xi) =

J∑

j=1

wj(t) · p(t)
j (πj(xi)) (3)

The remaining steps of the Condensation-Algorithm are
performed as usual and provide a high particle concentra-
tion at the more probable states in the overall state set. The
weighted average of all particles can then be used for the
global state estimation. However, using the Particle Filter
we can only provide an approximation of the distribution
p
(t)
c . According to general theory of Particle Filters the ap-

proximation asymptotically approaches p
(t)
c for the particle

number I → ∞.
The adaptation step as presented for the 2–D case can

be applied to this more general case as well, again adapting
the weights wj . We now have to compare the probability
distributions that are estimated locally with the one result-
ing global distribution. For this quality measurement the rat-
ings provided by one input of the data fusion and the glob-
ally fused ratings are normalized to give probability distri-
butions on the states covered by the particle set. The quali-
ties qj then can be measured by comparison of two probabil-
ity distributions with the same measures as before. To avoid
the Despotism-Situation this is again done without compar-
ing p

(t)
j with its own contribution to p

(t)
c .

We can now track objects on 2–D image planes or in the
3–D space using adaptive data fusion algorithms. The fu-
sion concept of Democratic Integration was generalized for
fusing the probability distributions of arbitraty state spaces,
as long as the required projections π j can be defined. The
next idea is to hierarchically combine both kinds of data fu-
sion.

2.3. Hierarchies

In the given framework arbitrary fusion hierarchies could
be realized. As examples we will discuss a flat fusion and a
two-step hierarchical fusion.

In a flat fusion architecture the probability distributions
p
(k,t)
j of all cues j tracking the object in the image planes

k are directly fused into p
(t)
c , the combined distribution of

the estimated 3–D position. This approach allows each cue
to be weighted individually. The computational overhead is
minimized and only one fusion step is necessary. The flat
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Figure 2. Example of a two level hierarchy
for adaptive sensor data fusion. At the top
level a 3D estimate of the position of the mov-
ing object is computed from local estimates
computed in each sensor. For local estima-
tion each sensor uses its own set of cues.

fusion is the simplest possible way of using our approach
for object tracking with multiple cameras.

For the other hierarchy the distributions p
(k,t)
j are first

fused locally within each sensor resulting in several locally
combined p

(k,t)
c . In a next step these local distributions are

fused to determine p
(t)
c at the top level, as shown in Figure 2.

Several fusion steps are necessary in this approach, but be-
ing local most of them can be computed in parallel. One in-
tuitive assumption lead to the conclusion, that this hierarchy
could be superior to a flat fusion. Fusion is more reliable the
more accurate the fused inputs are. In the presented hierar-
chy we would get more reliable inputs through the first fu-
sion step and fuse them to get a more reliable total result. In-
terpreted differently, misinformation could be detected ear-
lier and would not interfere with that many other cues as in
a flat hierarchy.

An experimental comparision of these two hierarchies
and examples of the overall performance will follow in the
next section.

3. Experiments and Results

In order to evaluate our approach we choose the follow-
ing basic experimental setup: a toy train is moving on a cir-
cular path in front of three calibrated cameras [5] (SONY
DFW–VL500 firewire cameras with 320 × 240 pixel res-
olution opertaing at 25Hz). Various objects are placed in
the scene producing clutter, occlusions, and reflections. Fur-
thermore, in some of the sequences a handheld lamp intro-
duces dynamic spotlights, turning off a lamp gives global
lighting changes, and covering a camera with a hand simu-
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lates sensor failures. To obtain ground truth data for a nu-
merical analysis of the estimation error, the motion along
the rail track was modelled as a circular movement with
constant speed. Thus it was possible to compute the 3-D es-
timation error in each frame.

The toy train is tracked in 3-D using our proposed hierar-
chical, adaptive fusion scheme, unless stated otherwise. In
a first set of experiments we systematically varied the num-
ber of particles of the particle filter, the adaptation scheme
for updating the weights of each sensor and cue, and the
way the reliability of a sensor or cue is estimated. In a sec-
ond set of experiments, we vary the hierarchal structure of
the fusion architecture, as discussed before.

For each setup 5 independent runs were started, each
time with different random numbers for the transition noise
of the Condensation Algorithm.

In a first experiment we varied the number of particles in
the Particle Filter. As expected the error rate drops with in-
creasing particle number, while the computational complex-
ity is getting higher. As the accuracy saturated at around
2000 particles, we decided to run all further experiments
with this number.

In a second experiment, we varied the way the quali-
ties of sensors and cues are estimated. As explained above,
this measurement can always be reduced to a comparison
of probability distributions. We compared measures such
as the sum of absolute differences, sum of squared differ-
ences, two metrics based on the correlation coefficient, and
the Kullback-Leibler-divergence. The impact of the quality
measure on the final state estimation results turned out to
be only marginal, however. All measures gave roughly sim-
ilar tracking performance. For the subsequent experiments
we used a correlation based measure.

To test the adaptation mechanisms and the potential ben-
efits of hierarchical fusion described above, different strate-
gies were compared. The results are shown in Table 1. On
the lefthand side the results of flat fusion with and with-
out adaptation are shown, on the right hand side the same
experiments are performed with a hierarchical architecture.
The numerical values in the table denote the average esti-
mation error — the size of the tracked toy train is roughly
50 mm. In brackets the average of the standard deviations in
each run is shown. Note that very high values are due to to-
tal failure in tracking, i.e. the algorithms start tracking a dif-
ferent object or the states covered by the Particle Filter are
out of sight for some cameras.

For both types of hierarchies the adaptation step leads to
a decrease of the estimation error. In the sequences seq4
and seq6, featuring many occlusions, the advantage of the
adaptation step is especially significant, while at the other
sequences both adaptive and non-adaptive fusion peform
similar. Further the significant decrease in the error rate be-
tween a flat fusion and a two step hierarchical fusion jus-
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Figure 4. Fusion weights (influence) of the
three cameras as a function of time (frame
number): Upper: sequence seq7_light.
Lower: seq8. In both cases from time to time
one of the sensor’s weight is reduced signifi-
cantly due to the occlusion that occur by the
obstacle (the coffee can).

tifies the assumptions stated earlier. Altoghether the results
indicate an increase in the tracking accuracy both by adap-
tation and by a hierarchical data fusion.

In Figure 4 one example of the adaptive weighting of the
three sensors can be seen for the sequences shown in Fig-
ure 3. It can be seen that the influence of the cameras on the
final result varies over time – in these two examples due to
occlusions of the object. The difference between the two ex-
amples is the more stable reliability of camera 1 (Figure 4,
red curve in lower graph), which is mainly due to the better
viewing angle on the scene compared to the other two cam-
eras (see Figure 3, second row). It is worth noting, that al-
though the change in weights and the differences between
the weights of the cameras seems to be ony marginal, we
get a large reduction in the 3–D estimation error in com-
parison with a non adaptive fusion approach, as shown be-
fore.

4. Conclusions

In this paper we presented a probabilistic extension of
an adaptive sensor fusion framework, called Democratic In-
tegration. We compared two different integration schemes,
hierarchical and flat, with respect to the estimation error in
3-D object tracking. The results clearly show that a hierar-
chical approach outperforms the flat version. Also, the ben-
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Sequence flat hierarchy
noadapt adapt noadapt adapt

seq4 >1000mm (>1000) >1000mm (>1000) 50.70mm (32.06) 65.63mm (43.26)
seq6_hand >1000mm (>1000) >1000mm (>1000) 234.74mm (414.18) 73.50mm (40.73)
seq6_globlight >1000mm (>1000) 97.05mm (48.98) 94.46mm (107.83) 63.16mm (35.43)
seq6_light >1000mm (>1000) >1000mm (>1000) 56.76mm (34.84) 52.06mm (32.24)
seq5 >1000mm (>1000) >1000mm (>1000) 47.01mm (21.32) 45.98mm (24.44)
seq7_hand >1000mm (>1000) >1000mm (>1000) 54.02mm (51.66) 45.27mm (28.63)
seq7_globlight >1000mm (>1000) 64.89mm (30.91) 33.90mm (16.70) 38.46mm (19.92)
seq7_light >1000mm (>1000) >1000mm (>1000) 47.18mm (25.50) 48.31mm (27.25)
seq8 >1000mm (>1000) 229.37mm (>361.80) 53.41mm (30.82) 56.74mm (31.65)

>1000mm (>1000) >1000mm (>1000) 74.69mm (81.66) 54.35mm (31.51)

Table 1. Average 3-D estimation error and standard deviation for the different sequences.

Figure 3. Sample images of images sequence seq7_light (top) and seq8 (down) from the three cam-
eras’ perspective.

efits for adaptive fusion have been confirmed in the case of
significant changes in the environment or failure of individ-
ual sensors. In the hierarchical fusion architecture, we could
not demonstrate the need for adaptive fusion as clearly. Al-
though the mean estimation error is reduced by 27%, the
gain of adaptation depends on the scene under investigation.
Our guess is, that the speed of adaptation could be adapted
to the scene and the kinds of changes in the scene, which
was not done here. To automatically set the speed of adap-
tation is one of our future research goals.
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